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The network of sheep movements within
Great Britain: network properties and their
implications for infectious disease spread

Istvan Z. Kiss*, Darren M. Green and Rowland R. Kao
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During the 2001 foot and mouth disease epidemic in the UK, initial dissemination of the
disease to widespread geographical regions was attributed to livestock movement, especially
of sheep. In response, recording schemes to provide accurate data describing the movement of
large livestock in Great Britain (GB) were introduced. Using these data, we reconstruct
directed contact networks within the sheep industry and identify key epidemiological
properties of these networks. There is clear seasonality in sheep movements, with a peak of
intense activity in August and September and an associated high risk of a large epidemic. The
high correlation between the in and out degree of nodes favours disease transmission.
However, the contact networks were largely dissasortative: highly connected nodes mostly
connect to nodes with few contacts, effectively slowing the spread of disease. This is a result of
bipartite-like network properties, with most links occurring between highly active markets
and less active farms. When comparing sheep movement networks (SMNs) to randomly
generated networks with the same number of nodes and node degrees, despite structural
differences (such as disassortativity and higher frequency of even path lengths in the SMNs),
the characteristic path lengths within the SMNs are close to values computed from the
corresponding random networks, showing that SMNs have ‘small-world’-like properties.
Using the network properties, we show that targeted biosecurity or surveillance at highly
connected nodes would be highly effective in preventing a large and widespread epidemic.
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1. INTRODUCTION

In the 2001 foot and mouth disease (FMD) epidemic in
the UK, livestock movements, especially of sheep,
caused the initial dissemination of FMD to different
parts of the UK (Gibbens et al. 2001; Kao 2002). This
has prompted the recording of livestock movements to
aid disease surveillance and control within the livestock
industry (Bourn 2003). Sheep are not particularly
susceptible to FMD; however once infected, it is
difficult to identify clinical signs (Davies 2002). There-
fore, they may spread disease undetected, as occurred
in 2001 (Gibbens et al. 2001). Understanding the
structure of the sheep industry, therefore, is important
for preventing and controlling future epidemic
outbreaks.

The extensive detail of the livestock movement
dataset makes it well suited for the use of methodologies
developed within graph theory and social network
analysis. The contact network structure has impor-
tant implications for disease invasion and spread
(Anderson & May 1991; Liljeros et al. 2001; May &
Lloyd 2001; Pastor-Satorras & Vespignani 2001;
Hufnagel et al. 2004; Meyers et al. 2005), and its
orrespondence (istvan.kiss@zoo.ox.ac.uk).
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study can provide scientific support for the develop-
ment and implementation of effective preventive and
control measures.

Kao et al. (2006) have recently analysed the dynamic
livestock movement network of Great Britain using a
simple methodology where a network of epidemiologi-
cal contacts is derived from all the potentially infectious
movements. They related the percolation of the disease
through this ‘epidemiological network’ to the basic
reproduction ratio R0. However, their approach is
largely data-driven and it remains useful to understand
the livestock network in the context of existing network
theory. As a prelude to more analytical studies, we
identify key epidemiological characteristics of the
highly diverse sheep livestock network (Pollott 1998)
that distinguish it from baseline networks with
randomly distributed connections. The latter form the
basis of most prior studies of disease transmission on
networks, and so we discuss possible consequences for
disease spread and control.

Using parameters appropriate for FMD, an individ-
ual-based SEI model is used to simulate the spread of
the disease on the sheep movement network (SMN).
The 2001 FMD epidemic in the UK involved several
livestock species and movements were not the only
pathways for disease spread. However, movement of
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sheep carrying undetected disease was largely respon-
sible for most of the initial dissemination of FMD
around the UK and provided the infectious seeds for
virtually all localized regional epidemics (Gibbens et al.
2001; Kao 2002). The delay between the appearance of
an infectious agent and its detection provides a time
window when disease can spread via livestock move-
ments and our analysis addresses this initial stage of
disease spread.

Using this model, results and predictions from the
network theory approach are tested. Results from
epidemics spreading on the SMN are compared to
epidemics propagating on randomly generated net-
works, with the same number of nodes and same in and
out degrees as the SMN. Finally, the effectiveness of
targeted removal is explored by modelling the removal
of highly active nodes.
2. MATERIAL AND METHODS

2.1. Network construction

Sheep movements are recorded on the Animal Move-
ments Licensing System (AMLS) and Scottish Animal
Movement System (SAMS) databases maintained and
administered by Department for Environment, Food
and Rural Affairs (DEFRA) and Scottish Executive
Environment andRural Affairs Department (SEERAD),
respectively. These databases contain the date, source,
destination, species type and batch size of the move-
ments of large livestock. Both systems have been in
operation since the beginning of 2002, but full
implementation of the system was not immediately
achieved. Therefore, data prior to 2003 are excluded in
the analysis below. This study concentrates on data
prior to 30 November 2004, at which time changes in
the data recording system were implemented, also
matching the timeframe analysed in Kao et al. (2006).

Based on these livestock movement databases,
directed networks of sheep movements can be recon-
structed. Each node represents a livestock holding
listed as source or destination in the movement
databases. The directed links between nodes represent
livestock movements. Consistent with the 2001 epi-
demic (Gibbens et al. 2001) the network of sheep
movements is broken down in consecutive four-week
periods, beyond which it is assumed unlikely that an
epidemic could persist without being identified.

In order to create a static network for analysis, any
pair of nodes is considered connected by a directed link
if, during a single four-week period, there is at least one
movement of sheep between them. The constructed
networks are static, containing all the movements that
happened within a four-week period irrespective of
their relative timings. Markets in the database are
identified from the national June Agricultural Census
(2003). Regulations require that all livestock be moved
from a market within 48 h of arrival. This emptying of
markets between trading days and disinfection of
market premises minimizes transmission between live-
stock present on the markets on different trading days.
Thus, each market is considered to be a different node
on each day that movement to or from a market occurs,
J. R. Soc. Interface (2006)
though in practice this is a lower limit. For example, a
real market labelled A is represented by two distinct
nodes on day D1 and on day D2. Market A with all the
on and off moves that occur on day D1 is represented by
a node that is different from the node that represents
market A with all the on an off moves that occur on
day D2.
2.2. Network properties

In a directed contact network, a crucial role in disease
transmission is played by the strong components
(Newman et al. 2001). These are defined as subsets of
the network where any two nodes i and j are mutually
reachable by following directed paths, and thus a
disease introduced into any node in a strong component
can potentially reach any other node in that strong
component. The largest strong component is known as
the giant strongly connected component (GSCC).
Using Tarjan’s algorithm (Sedgewick 2002), the strong
components were determined for each consecutive four-
week period from 1 January 2003 until 30 November
2004. Within the GSCCs, the distribution of contacts,
clustering, the correlation between the in and out
degree of the nodes and the correlation between the
degrees of connected nodes was examined in detail.

Dijkstra’s algorithm (Sedgewick 2002) was used to
compute the minimal path lengths between all possible
pairs of nodes (i.e. the minimal number of links that are
needed to connect two nodes) within the SMNs. The
average path length, the distribution of path lengths
and the diameter of the SMNs (i.e. the longest minimal
path length) provide information about the possibility
of accessing nodes through the network. The shorter the
path length between two nodes, the more likely one
node is to become infected, should the other already be
infected. A shorter diameter means that the number of
generations for a disease to spread throughout the SMN
is reduced.
2.3. Network epidemic simulations

To understand the effect of network properties on the
spread of disease and to evaluate the extent of a
potential epidemic outbreak prior to the discovery of
disease, epidemic simulations on the SMNs and
theoretical random networks were compared, using an
individual-based SEI model. Theoretical random net-
works were generated using the same number of nodes
and the same in and out degrees for each node as found
in the SMNs. However, the links between the nodes
were placed at random using the configuration model
(Bollobás 1980). There are virtually no degree corre-
lations of connected nodes present in these random
networks: links were placed independently of the degree
of source and destination nodes.

The epidemic simulations focus on the initial spread
of FMD. In the 2001 FMD epidemic in the UK, the
disease remained and spread undetected for a period of
approximately 28 days (Gibbens et al. 2001). During
this time window, the movement of livestock was not
banned and no epidemic control measures were in place.
To our knowledge, although there is some experimental
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Figure 1. The average number of connections per node hki and the size of the giant strongly connected component (GSCC) for
networks built by considering consecutive four-week periods starting on 1 January 2003 until 30 November 2004. The continuous
line (solid diamonds) represents the average considering only those nodes that were active during the considered four-week
period. The dotted line (open diamonds) represents the average considering all the nodes that were involved in movements
during the whole period of study. The continuous line (open circles) represents the GSCC size.
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Figure 2. The in and out degree distribution of the sheep
movement network starting on 8 September 2004.
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evidence that multiple cycles of transmission in sheep
leads to decreasing viraemia (Hughes et al. 2002), there
is no estimate for the flock level infectious period in the
2001 epidemic. Hence, we make the worst-case assump-
tion that infectious premises stayed infectious until the
presence of the disease was discovered and control
measures were put in place. After the presence of the
disease was discovered, a movement ban was imposed
and infectious and potentially infectious farms were
targeted for control. Therefore, to model the initial
spread through movements of sheep, an SEI model is
used, where ‘S’ represents susceptible nodes and ‘E’ and
‘I’ represent exposed and infectious nodes, respectively.
Recovery is not considered here, since in the time-
period of interest, the disease was spreading undetected
and no control measures were in place. To account for
the movement ban, simulations are limited to 28 days.
The probability p of a susceptible node with k infectious
neighbours becoming exposed in a small interval of time
Dt is given by pZ1KexpðtkDtÞ. Here, t is the
probability per unit time of infection spreading through
a single contact between an infectious and a susceptible
node. An exposed node becomes infectious at rate d,
with the duration of the latency period of 1/dZ3 days
(Gibbens et al. 2001). For the purpose of the simulation
t was varied. The epidemics were seeded with ten
randomly chosen nodes to avoid early stochastic
extinction. Results were averaged over 100 different
network realizations and 100 epidemic realizations on
each network.
3. RESULTS

3.1. Network properties

Over the period studied, 131 927 different nodes were
identified as sources and destinations for sheep move-
ments. In figure 1, the average number of connections
per node (hki) is plotted for each four-week period.
There is a strong seasonal effect, with a maximum in the
number of movements in August and September of each
J. R. Soc. Interface (2006)
year. This increased activity suggests that during this
period the livestock network is particularly vulnerable
to large epidemics.

The in and out degree distributions of a single
network, representing the four-week period starting on
8 September 2004, are presented in figure 2. This period
was chosen to give a well-connected network, when the
SMN is expected to be most vulnerable to an epidemic.
Both in and out degree distributions within this
network show scale-free properties with high hetero-
geneity in the number of contacts per node. Similar
qualitative behaviour is observed for SMNs generated
over different time frames. Markets in general tend to
have a higher number of in and out links compared to
farms, even when separated into unique ‘market-days’
(not shown).

For each four-week period, the strong components
were identified using Tarjan’s algorithm. The size of the
GSCCs is shown in figure 1. In addition to seasonal
variation in the size of the GSCCs, there are clear
percolation-type transitions (Stauffer & Aharony 1992)
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Figure 3. The size distribution of the strongly connected components. (a) Below the percolation threshold, the network is
fragmented in components of small sizes. (b) Above the percolation threshold, the GSCC becomes isolated from the remaining
components. Distributions over the different time-periods considered are consistent. The isolated points on the right represent
the GSCCs.
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Figure 4. The average number of connections per node in the GSCCs (hkiGSCC) is shown by the continuous line (left-hand axis).
The proportion of edges that join two different nodes in both directions is shown by the dotted line (right-hand axis).
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characterized by a sudden increase in the size of the
GSCCs as time-periods with more movements are
considered. According to the distributions of strong
component sizes (figure 3a, note the log–log scale),
below the percolation threshold, the network of sheep
movements are fragmented into many disconnected
components of small size. Above the percolation
threshold (figure 3b), a clear giant (largest) strongly
connected component emerges with a size some 100
times greater than the next largest strong component.

The size of GSCCs in the SMNs represents a lower
bound on the maximum number of nodes that a newly
introduced infectious agent might reach. The upper
bound is given by the size of the giant weakly connected
component (GWCC; Schwartz et al. 2002). The GWCC
contains the GSCC plus all the nodes that can connect
to the GSCC in only one direction. During an epidemic
started from nodes in the GSCC, only nodes that are
destinations of directed connections starting in the
GSCC could be infected apart from the nodes in the
GSCC.

Each GSCC was isolated from the containing
network. The average number of links per node,
hkiGSCC, within the GSCCs is given in figure 4
(continuous line). The number of bidirectional links
J. R. Soc. Interface (2006)
within the GSCCs (i.e. that run between the same
nodes in both directions) is also presented as a
proportion out of the total number of links in figure 4
(dotted line). The proportion of such links is inversely
correlated with the average number of connections per
node (hkiGSCC). A high proportion of bidirectional links
limits the potential spread of an epidemic. The values of
hkiGSCC within the GSCCs present the same seasonal
variation as hki. Both the in and out degree distri-
butions within the GSCCs show the same heterogeneity
as seen in figure 2.

It is well known that in undirected networks
(equivalent in a directed network to connecting two
nodes by two directed links, one in each direction), the
distribution of contacts determines how infectious
disease may spread on a network, with a high variance
promoting disease spread. For infinite, undirected
scale-free networks with an infinite variance in the
numbers of contacts, an epidemic can spread even for
infinitesimally small transmission rates (May & Lloyd
2001; Pastor-Satorras & Vespignani 2001). However, in
directed networks, the extent to which heterogeneity in
the number of contacts aids disease spread depends on
the correlation between the in and out degrees of nodes
(Schwartz et al. 2002). The correlation between the in



Table 1. The correlation between the in and out degree of nodes (r0), the mixing measure (r1) and clustering coefficients
ðhci;C ; h~ci; ~CÞ for the GSCCs obtained from SMNs containing four weeks worth of movements starting on the dates indicated.

r0 r1 hci C h~ci ~C

21 May 2003 0.9167 K0.2956 0.0425 0.0047 0.0476 0.0438
18 Jun 2003 0.9810 K0.3266 0.0522 0.0017 0.0565 0.0488
16 Jul 2003 0.9480 K0.1252 0.0313 0.0023 0.0338 0.0251
13 Aug 2003 0.6237 K0.2368 0.0322 0.0042 0.0351 0.0312
10 Sep 2003 0.5690 K0.1318 0.0474 0.0031 0.0507 0.0492
8 Oct 2003 0.6976 K0.2543 0.0508 0.0041 0.0544 0.0472
5 Nov 2003 0.9167 K0.1296 0.0571 0.0081 0.0633 0.0495
21 Apr 2004 0.8068 K0.2768 0.0078 0.0011 0.0083 0.0055
19 May 2004 0.8936 K0.2257 0.0316 0.0063 0.0361 0.0451
16 Jun 2004 0.9499 K0.2455 0.0359 0.0024 0.0400 0.0530
14 Jul 2004 0.9101 K0.1166 0.0431 0.0047 0.0473 0.0454
11 Aug 2004 0.7135 K0.2443 0.0404 0.0047 0.0439 0.0356
8 Sep 2004 0.6005 K0.1039 0.0337 0.0015 0.0362 0.0275
6 Oct 2004 0.7089 K0.2884 0.0410 0.0027 0.0438 0.0310
3 Nov 2004 0.8379 K0.2159 0.0356 0.0019 0.0389 0.0252
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and out degrees of the nodes in the GSCCs were
quantified using the Pearson product-moment corre-
lation coefficient ðK1%r0%1Þ. Results are summarized
in table 1. The high positive correlation indicates the
presence of nodes that are both likely to become
infected and to transmit infection, facilitating disease
transmission. The above correlation describes the
behaviour of individual nodes and the covariance of
the nodes’ in and out degree plays a key role in
determining the epidemic outbreak threshold in net-
work based models (Diekmann & Heesterbeek 2000;
Kao et al. 2006).

We now turn to the higher-order relationships
between nodes. Most social networks show assortative
mixing: highly connected nodes tend to link to other
highly connected nodes and less well connected nodes to
other poorly connected nodes (Newman 2002, 2003). By
contrast, technological networks (e.g. WWW, Internet,
transport networks) often show disassortative mixing,
with highly connected nodes connecting to less well-
connected nodes. Assortatively mixed networks are
resilient to random and even targeted removal of nodes
and the GSCC size is unaffected unless a significant
proportion of highly connected nodes are removed
(Newman 2002). Therefore, control in such networks is
difficult unless precise and effective targeted control is
used. Disassortatively mixed networks are less resilient
to random and targeted removal, and therefore control
is easier to implement. On disassortative networks,
disease spread is at a disadvantage compared to the
assortatively mixed case, especially for small trans-
mission rates (Newman 2002). In undirected, infinite
networks with an infinite variance in node degree, with
or without degree correlations, epidemic outbreaks can
happen even for infinitesimally small transmission rates
(Boguna et al. 2003).

Newman (2003) proposed a measure of mixing for
directed networks:

r1 Z

P
i jikiKMK1

P
i ji

P
l klffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i j
2
i KMK1

P
i jið Þ2

� � P
i k

2
i KMK1

P
i kið Þ2

� �q :

ð3:1Þ
J. R. Soc. Interface (2006)
Here, ji and ki are the ‘excess’ in degree and out degree
of the nodes that the ith edge leads out of and into
respectively, and M is the number of edges. The excess
degree is the real degree of the node minus one, to
account for the edge that is considered. The values of r1
range from [K1,0) for disassortative networks, and
from (0,1] for assortative networks. For random
networks with no degree correlation r1z0. Values for
r1 are presented in table 1 for the GSCCs. All are
negative indicating disassortative mixing. This mirrors
the typical trading pattern where direct movement
between markets is illegal and highly connected
markets typically trade with less well-connected
farms. Frequent connections between highly and less
well connected nodes slow the spread of the disease
when compared to randomly or assortatively mixed
networks.

A network is clustered if any two nodes j and k
connected to a node i are in turn likely to be connected
to each other. A high degree of clustering can reduce the
extent of an epidemic (Eames & Keeling 2003) and can
increase the efficacy of control measures such as contact
tracing (Kiss et al. 2005). An upper estimate of the
clustering coefficients within the GSCCs is computed
by considering each directed link as being bidirectional.
Soffer & Vasquez (2005) showed that the value of the
classically defined clustering hci (i.e. the average of the
local clustering coefficient of each individual node
(Albert & Barabási 2002)) can diverge from the value
of C (i.e. the ratio of all possible triangles to all possible
triples in the network), even when both are computed
on the same network. The local clustering coefficient for
an individual node i is defined as ciZEi=ðkiðkiK1Þ=2Þ.
Here, ki is the number of nodes directly connected to
node i. The value of Ei is the number of edges between
the ki neighbours of node i and kiðkiK1Þ=2 is the
maximum number of potential edges among the
neighbours of node i (Albert & Barabási 2002). In
the kiðkiK1Þ=2 term, the degrees of the neighbours of
node i are not considered and it is assumed that each
neighbour can potentially have (kiK1) links connecting
it to all the other remaining neighbours. If the total
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Figure 5. The distributions of path lengths for the SMNs starting on (a) 19 May 2004 and (b) 8 September 2004 (continuous
lines). The dashed lines represent the path length distribution of random networks built by considering the same number of nodes
and the same in and out degree for the nodes as in the SMNs. In the insets, the link length distributions for the SMNs (continuous
lines) and for the equivalent random graphs (dashed lines) are plotted.

Table 2. Sheep movement network characteristics for
contrasting scenarios of low and high levels of activity
compared to the corresponding randomly rewired networks.

19 May 2004 8 Sep 2004

SMN
rewired
network SMN

rewired
network

average link
length (km)

47 265 41 267

average path
length

12.3 5.4 7.7 5.1

diameter 36 14 24 19
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possible number of edges between neighbours is based
on the degree of the neighbours the kiðkiK1Þ=2
expression changes and new clustering coefficients h~ci
and ~C can be computed. This method reconciles the
difference between the former two clustering coeffi-
cients and filters out degree correlations between
connected nodes. Clustering coefficients were typically
of order 0.01 (see table 1). Taking into account the
directionality of the links, which is relevant to disease
transmission, would further decrease the already small
clustering coefficient. These low levels of clustering
reflect the absence of market-to-market interactions
(banned by legislation following the 2001 FMD
epidemic; Bourn 2003), and relative rarity of farm-to-
farm connections compared to farm-to-market and
market-to-farm links. Higher-order clustering coeffi-
cients were also computed (i.e. ratio of connected loops
of four to all connected quadruplets); however, all
values were of the same order or smaller than those
presented in table 1.

Next, we considered the average and distribution of
the shortest path lengths between all possible pairs of
nodes (figure 5) within two SMNs, starting on 19 May
2004 and 8 September 2004, respectively, providing
contrasting scenarios of low and high levels of activity.
These were compared with randomly connected net-
works, generated using the same nodes and degrees as
in the SMNs but with r1z0. In the SMNs, even-path
length are more common; since most nodes represent
farms, there is limited trading directly between farms
and no trading directly between markets. This gives the
networks an almost bipartite structure, in contrast with
random network, where the distribution of path lengths
is smoother.

The geographical location of the majority of the
premises is known from census data. Based on the
coordinates, for both SMNs and the corresponding
randomly generated networks, the physical length of
each link within the network was calculated where the
coordinates of endpoints were known. The distribution
of link lengths (figure 5, insets) for both periods is very
similar. In the SMNs, there is much higher proportion
of short-distance interactions than in the random
J. R. Soc. Interface (2006)
networks. The average link length in the SMNs is
considerably lower than that for the random networks
(see table 2). This is consistent with the local network
structure found by Kao et al. (2006). Though the
average link length of the SMNs is considerably lower
than for the randomly generated networks, the average
path length of the SMNs was considerably closer to that
for the corresponding random networks (see table 2),
especially for the more densely connected SMN.
Clustering in both SMNs and random networks is
small, however, the geographically structured local
interactions and the higher proportion of even path
lengths are features unique to the SMNs that differen-
tiate these networks from random ones. Although
structurally the SMNs and random networks are
different, the SMNs are well connected with their
average path length being close to that computed using
random networks. This shows that the SMNs present
‘small-world’ type features.
3.2. Epidemic simulations

Many theoretical network models assume random
mixing with no correlation between the degrees of
connected nodes. We refer below to these types of
networks as random networks. As our networks are
disassortative, we further investigate how mixing
affects disease dynamics and spread by comparing
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epidemic simulations on a SMN with simulations on
randomly connected networks with the same number of
nodes and node degrees. For this purpose, the SMN
starting on 8 September 2004 with 47 047 active nodes
was chosen as a well-connected network on which
disease can spread to a large proportion of the nodes.
The size of GSCC in this SMN is 12 759 compared to an
average GSCC size of 11 200 for the randomly rewired
networks.

The severity of disease was measured as the average
proportion of infectious nodes (I) at the end of the four-
week period. In figure 6, the average proportion of
infectious nodes is plotted for both the SMN and the
corresponding random networks versus the trans-
mission rate t. The number of infectious nodes is
higher on random networks. Disassortative mixing
within the SMN slows the epidemic spread. In the
random networks, however, there are no correlations,
and therefore as the epidemic progresses, it is more
likely to find those nodes that have many connections.
An important factor here is the interaction between the
limited time for which the epidemic can spread (four
weeks) and the contact network structure. A disease
that spreads on a disassortative network needs a longer
time to run its course and sample the network than the
same disease spreading on a random network. There-
fore, the average proportion of the infectious nodes
measured in time-limited epidemics does not accurately
reflect the natural long-term disease dynamics and
contact network structure.

Comparing the evolution of the average in and out
degree of the m(Z50) most recent nodes to become
infectious during the epidemic on the SMN and random
networks, figure 7 shows that on random networks the
epidemic preferentially spreads to nodes with high in
and out degree (Barthélemy et al. 2004). For the
simulated epidemics on the SMN, the average in and
out degree of new infectious nodes falls more slowly and
presents less variation over time compared to the
random network case, reflecting the connectivity
J. R. Soc. Interface (2006)
pattern where infection alternates between highly and
poorly connected nodes.

In random networks, targeted removal of highly
connected nodes is an effective epidemic control
measure (Albert et al. 2000; Cohen et al. 2000; Newman
2002; Madar et al. 2004). Here, where the network is
dissortative, targeting highly connected nodes may still
be effective, as they may act as bottlenecks in the
transmission process. The movement data allows
identification of suitable control targets. We ranked
nodes in the SMN starting on 8 September 2004 based
on the product of the nodes’ in and out degree. This
product reflects the likelihood of the node of both
becoming infected and transmitting infection. Out of
the top 400 most highly connected nodes, all were
unique market-days except seven show grounds, three
farms and one veterinary premises. In figure 8, we
compare targeted versus random removal of nodes by
re-computing the size of the GSCC for both cases.
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The size of the GSCC is plotted against the number of
removed nodes, showing that, as expected, targeted
removal—highest-ranked nodes removed first—is
much better at reducing the size of the GSCC and
limiting the extent of a possible epidemic. Random
removal has a less significant effect with only a small
reduction in the size of the GSCC.
4. DISCUSSION

In this analysis, we have reconstructed the networks of
contacts within the GB sheep industry, based on
livestock movement records. While there have been
several recent analyses on detailed networks, the
explicit characterization of GB livestock movement
data is exceptional, particularly among epidemiologi-
cally relevant datasets.

The clear seasonality in the sheep trading pattern as
highlighted by figures 1, 3 and 4, identifies periods of
intense trading around August and September. There-
fore, an epidemic that starts during this period has the
potential to be widespread and reach many different
parts of the livestock network. Thus, enhanced
biosecurity and surveillance during this period is likely
to benefit disease prevention and control. It is
encouraging to note that most time of the year there
is a reasonably low risk for a wide spread epidemic
within the sheep industry. This most likely reflects
policy changes implemented after the 2001 epidemic
(Bourn 2003) as the widespread, rapid movement of
older ewes in February was widely held to be the
culprit behind the early characteristics of the epidemic
(Kao 2002).

Small-world contact structures (Watts & Strogatz
1998) have previously been found in livestock contact
networks in the GB. Webb (2005) investigated contact
within the GB sheep industry based on geographical
proximity and attendance at agricultural shows and
found that a small number of long-range links was
consistent with small-world effects. Christley et al.
(2005) identified small-world network structures in the
GB cattle movement network, with high heterogeneity
in the number of contacts per node. The presence of a
very small number of shortcuts in small-world type
networks with highly localized structure ensures good
connectivity between nodes and such networks are
prone to disease spread. The comparison between the
SMNs and randomly generated networks reveals a
geographically local structure within the sheep indus-
try. While the clustering in both the SMNs and random
networks is small, there are important structural
differences as shown by figure 5. Despite these, the
average path length for the different networks is
comparable (see table 2), especially for the periods of
intense trading, and the SMNs are well connected.
Thus, our analysis is indicative of a small-world type
behaviour in the network of sheep trading in GB in the
sense that the average length of possible paths between
the nodes of the SMNs is small despite the clear
structural differences when compared to random
networks.

The comparison of SMNs to random networks
conserved the degree distribution and the in and out
J. R. Soc. Interface (2006)
degree of nodes. This allowed us to investigate the
effect of the connectivity pattern (disassortative
mixing) on disease spread by using an individual-
based model to simulate epidemic spread on the two
different networks. Targeting control (e.g. surveil-
lance, tighter biosecurity measures) at highly con-
nected nodes proves to be a very effective way of
controlling disease (figure 8). The highly connected
nodes are potential ‘super-spreaders’ (Hethcote &
Yorke 1984) with many in and out connections and
these nodes are therefore likely to become infected
and to transmit the disease. Most of these nodes are
markets and they require extra attention during
periods of intense activity.

Assortativity and disassortativity in network
connections represent a departure from proportionate
mixing (Barbour 1978). Under proportionate mixing,
the probability of connection from a node with i
outward connections to a node with j inward
connections is purely proportional to i!j. Non-
random mixing can occur at a variety of levels,
from preferential movement between particular pre-
mises types through local clustering, up to large-scale
community structure. Identifying the network
features responsible for the departure from propor-
tionate mixing and their implications for disease
dynamics is a key step when the efficacy of different
epidemic prevention and control measures has to be
evaluated.

While the livestock movement dataset is excep-
tional, the ability to electronically identify and
record information is increasing and thus well-
described real networks will inevitably become more
common. Here, we have concentrated on the proper-
ties of static and unweighted directed networks
corresponding to the livestock movements over
fixed time-periods and identified key patterns in the
sheep network that differentiate it from random
networks. While both the well-known scale-free and
small-world properties are relevant, the network
shows clear seasonal changes in behaviour and
unusual clustering and node correlation properties.
Further analyses will consider the effect of the timing
and weighting of movements and relate changes in
the patterns of movements to potential changes in
the effective transmission rates per movement. For
example, the marked change in the proportion of
bidirectional links over the year (see figure 4) may
reflect a possible temporal variation in the types of
trading of sheep over the year. These trading
characteristics may alter the likelihood of trans-
mission at different periods in the year, thereby
changing the characteristics of the epidemiological
network of truly infectious contacts (Kao et al. 2006)
even if the social network of potentially infectious
contacts is well known. Identifying how these two
interpretations of network data differ will be a
critical part to translating theoretical results into
practical control measures.

R.R.K. and I.Z.K. are funded by theWellcome Trust. D.M.G.
is funded by DEFRA.
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Barthélemy, M., Barrat, A., Pastoras-Satorras, R. &
Vespignani, A. 2004 Velocity and hierarchical spread of
epidemic outbreaks in scale-free networks. Phys. Rev. Lett.
92, 178 701. (doi:10.1103/PhysRevLett.92.178701)

Boguna, M., Pastor-Satorras, R. & Vespignani, A. 2003
Absence of epidemic threshold in scale-free networks with
degree correlations. Phys. Rev. Lett. 90, 028 701.

Bollobás, B. 1980 A probabilistic proof for the number of
labelled regular graphs. Eur. J. Comb. 1, 311–316.

Bourn, J. 2003 Identifying and tracking livestock in England.
National Audit Office, UK.

Christley, R. M., Robinson, S. E., Lysons, R. & French, N. P.
2005 Network analysis of cattle movement in Great
Britain. In Proc. Soc. for Veterinary Epidemiology and
Preventive Medicine, Nairn, Scotland, 30 March–1 April
(eds D. J. Mellor, A. M. Russell & J. L. N. Wood),
pp. 234–244.

Cohen, R., Erez, K., ben-Avraham, D. & Havlin, S. 2000
Resilience of the internet to random breakdowns. Phys.
Rev. Lett. 85, 4626. (doi:10.1103/PhysRevLett.85.4626)

Davies, G. 2002 The foot and mouth disease (FMD) epidemic
in the United Kingdom 2001. Comp. Immunol. Microbiol.
Infect. Dis. 25, 331–343. (doi:10.1016/S0147-9571(02)
00030-9)

Diekmann, O. & Heesterbeek, J. A. P. 2000 Mathematical
epidemiology of infectious diseases (model building analysis
and interpretation). Chichester, UK: Wiley.

Eames, K. T. D. & Keeling, M. J. 2003 Contact tracing and
disease control. Proc. R. Soc. B 270, 2565–2571. (doi:10.
1098/rspb.2003.2554)

Gibbens, J. C., Sharpe, C. E., Wilesmith, J. W., Mansley,
L. M., Michalopoulou, E., Ryan, J. M. B. & Hudson, M.
2001 Descriptive epidemiology of the 2001 foot-and-mouth
disease epidemic in Great Britain: the first five months.
Vet. Rec. 149, 729–743.

Hethcote, H. W. & Yorke, J. A. 1984 Gonorrhea transmission
dynamics and control. Lectures Notes in Biomathematics,
vol. 56. New York, NY: Springer.

Hufnagel, L., Brockmann, D. & Geisel, T. 2004 Forecast and
control of epidemics in a globalized world. Proc. Natl
Acad. Sci. USA 101, 15 124–15 129. (doi:10.1073/pnas.
0308344101)

Hughes, G. J., Miouletb, V., Haydon, D. T., Kitching, R. P.,
Donaldson, A. I. & Woolhouse, M. E. J. 2002 Serial
passage of foot-and-mouth disease virus in sheep reveals
J. R. Soc. Interface (2006)
declining levels of viraemia over time. J. Gen. Virol. 83,
1907–1914.

Kao, R. R. 2002 The role of mathematical modelling in the
control of the 2001 FMD epidemic in the UK. Trends
Microbiol. 10, 279–286. (doi:10.1016/S0966-842X(02)
02371-5)

Kao, R. R., Danon, L., Green, D. M. & Kiss, I. Z. In press.
Demographic structure and pathogen dynamics on the
network of livestock movements in Great Britain. Proc. R.
Soc. B (doi:10.1098/rspb.2006.3505).

Kiss, I. Z., Green, D. M. & Kao, R. R. 2005 Disease contact
tracing in random and clustered networks. Proc. R. Soc. B
272, 1407–1414. (doi:10.1098/rspb.2005.3092)

Liljeros, F., Edling, C. R., Amaral, L. A. N., Stanley, H. E. &
Aberg, Y. 2001 The web of human sexual networks.Nature
411, 907–908. (doi:10.1038/35082140)

Madar, N., Kalisky, T., Cohen, R., ben-Avraham, D. &
Havlin, S. 2004 Immunization and epidemic dynamics in
complex networks. Eur. Phys. J. B 38, 269–276. (doi:10.
1140/epjb/e2004-00119-8)

May, R. M. & Lloyd, A. L. 2001 Infection dynamics on
scalefree networks. Phys. Rev. E 64, 066 112. (doi:10.1103/
PhysRevE.64.066112)

Meyers, L. A., Pourbohloul, B., Newman, M. E. J.,
Skowronski, D. M. & Brunham, R. C. 2005 Network
theory and SARS: predicting outbreak diversity. J. Theor.
Biol. 232, 71–81. (doi:10.1016/j.jtbi.2004.07.026)

Newman, M. E. J. 2002 Assortative mixing in networks. Phys.
Rev. Lett. 67, 026 126.

Newman, M. E. J. 2003 Mixing patterns in networks. Phys.
Rev. E 67, 026 126. (doi:10.1103/PhysRevE.67.026126)

Newman, M. E. J., Strogatz, S. H. & Watts, D. J. 2001
Randon graphs with arbitrary degree distribution and
their applications. Phys. Rev. E 64, 026 118. (doi:10.1103/
PhysRevE.64.026118)

Pastor-Satorras, R. & Vespignani, A. 2001 Epidemic spread-
ing in scale-free networks. Phys. Rev. Lett. 86, 3200–3203.
(doi:10.1103/PhysRevLett.86.3200)

Pollott, G. E. 1998 Sheep breeds and breeding in Britain
1996–97. In Meat and Livestock Commission Yearbook
1998, ch. 4. Milton Keynes, UK: Meat and Livestock
Commission.

Schwartz, N., Cohen, R., ben-Avraham, D., Barabási, A.-L. &
Havlin, S. 2002 Percolation in directed scale-free networks.
Phys. Rev. E 66, 015104(R).

Sedgewick, R. 2002 Algorithms in C, Part 5, Graph
algorithms, 3rd edn Reading, MA: Addison-Wesley.

Soffer, S. N. & Vasquez, A. 2005 Network clustering
coefficient without degree-correlation biases. Phys. Rev.
E 71, 057 101. (doi:10.1103/PhysRevE.71.057101)

Stauffer, D. & Aharony, A. 1992 Introduction to percolation
theory. Boca Raton, FL: CRC Press.

Watts, D. J. & Strogatz, S. H. 1998 Collective dynamics of
“small-world” networks. Nature 393, 440–442. (doi:10.
1038/30918)

Webb, C. R. 2005 Farm animal networks: unraveling the
contact structure of the British sheep population.
Prev. Vet. Med. 68, 3–17. (doi:10.1016/j.prevetmed.2005.
01.003)

http://dx.doi.org/doi:10.1103/RevModPhys.74.47
http://dx.doi.org/doi:10.1103/RevModPhys.74.47
http://dx.doi.org/doi:10.1038/35019019
http://dx.doi.org/doi:10.1016/0035-9203(78)90290-0
http://dx.doi.org/doi:10.1103/PhysRevLett.92.178701
http://dx.doi.org/doi:10.1103/PhysRevLett.85.4626
http://dx.doi.org/doi:10.1016/S0147-9571(02)00030-9
http://dx.doi.org/doi:10.1016/S0147-9571(02)00030-9
http://dx.doi.org/doi:10.1098/rspb.2003.2554
http://dx.doi.org/doi:10.1098/rspb.2003.2554
http://dx.doi.org/doi:10.1073/pnas.0308344101
http://dx.doi.org/doi:10.1073/pnas.0308344101
http://dx.doi.org/doi:10.1016/S0966-842X(02)02371-5
http://dx.doi.org/doi:10.1016/S0966-842X(02)02371-5
http://dx.doi.org/doi:10.1098/rspb.2006.3505
http://dx.doi.org/doi:10.1098/rspb.2005.3092
http://dx.doi.org/doi:10.1038/35082140
http://dx.doi.org/doi:10.1140/epjb/e2004-00119-8
http://dx.doi.org/doi:10.1140/epjb/e2004-00119-8
http://dx.doi.org/doi:10.1103/PhysRevE.64.066112
http://dx.doi.org/doi:10.1103/PhysRevE.64.066112
http://dx.doi.org/doi:10.1016/j.jtbi.2004.07.026
http://dx.doi.org/doi:10.1103/PhysRevE.67.026126
http://dx.doi.org/doi:10.1103/PhysRevE.64.026118
http://dx.doi.org/doi:10.1103/PhysRevE.64.026118
http://dx.doi.org/doi:10.1103/PhysRevLett.86.3200
http://dx.doi.org/doi:10.1103/PhysRevE.71.057101
http://dx.doi.org/doi:10.1038/30918
http://dx.doi.org/doi:10.1038/30918
http://dx.doi.org/doi:10.1016/j.prevetmed.2005.01.003
http://dx.doi.org/doi:10.1016/j.prevetmed.2005.01.003

	sheep movements within Great Britain: network properties and their implications for infectious disease spread
	Introduction
	Material and methods
	Network construction
	Network properties
	Network epidemic simulations

	Results
	Network properties
	Epidemic simulations

	Discussion
	R.R.K. and I.Z.K. are funded by the Wellcome Trust. D.M.G. is funded by DEFRA.
	References


