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Infectious disease control using contact
tracing in random and scale-free networks
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Contact tracing aims to identify and isolate individuals that have been in contact with
infectious individuals. The efficacy of contact tracing and the hierarchy of traced nodes—
nodes with higher degree traced first—is investigated and compared on random and scale-free
(SF) networks with the same number of nodes N and average connection K. For values of the
transmission rate larger than a threshold, the final epidemic size on SF networks is smaller
than that on corresponding random networks. While in random networks new infectious and
traced nodes from all classes have similar average degrees, in SF networks the average degree
of nodes that are in more advanced stages of the disease is higher at any given time. On SF
networks tracing removes possible sources of infection with high average degree. However a
higher tracing effort is required to control the epidemic than on corresponding random
networks due to the high initial velocity of spread towards the highly connected nodes. An
increased latency period fails to significantly improve contact tracing efficacy. Contact
tracing has a limited effect if the removal rate of susceptible nodes is relatively high, due to
the fast local depletion of susceptible nodes.
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1. INTRODUCTION

Recent development of the theory of complex net-
works has been rapid, as their applicability to a wide
range of practical problems becomes recognized.
These include complex systems such as the Internet,
the World-Wide Web, ecological webs, biochemical
networks (for a review see Albert & Barabási 2002),
and in epidemiology social networks (Liljeros et al.
2001; Jones & Handcock 2003; Hufnagel et al. 2004)
and livestock networks (Christley et al. 2005). The
frequent occurrence of complex networks in nature
raises the question of how infectious disease trans-
mission and its control are affected by the underlying
contact structure.

A network can be described by a combination of its
nodes and links, which respectively represent individ-
uals, population of individuals or organizations and the
interactions amongst them. The degree of a node is its
total number of links k. The theory of random
networks, where the probability that a randomly
chosen node has k links, P(k), and follows a binomial
distribution with mean KZhki, is well established
(Erdős & Rényi 1959). Random networks have been
and are used to model many real networks (Keeling
1999; Huerta & Tsimring 2002; Eames & Keeling
2003). While there are problems with interpreting
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empirical data describing real networks (Jones &
Handcock 2003; Stumpf et al. 2005), it has been
recognized (Albert & Barabási 2002; Christley et al.
2005) that the degree distributions of many empirically
measured networks do not follow a Binomial distri-
bution (Poisson distribution in case of large networks),
but can be approximated by a scale-free (SF)
distribution PðkÞfkKg, with 2%g%3. SF networks
(Albert & Barabási 2002) have very different features
when compared with standard random networks, and
are characterized by high heterogeneity in node
connectivity, with most of the nodes having a small
number of links, while a relatively small number of
nodes have a very large number of connections.

It is well known that an epidemic can spread on an
infinitely large SF network, if the power law exponent
of the distribution lies between 2 and 3 and the
connections amongst nodes in the network are com-
pletely random, even for infinitesimally small trans-
mission rates (Anderson & May 1991; Pastor-Satorras
& Vespignani 2001), due to the diverging second
moment of the nodes’ degree distribution. However,
May & Lloyd (2001) have shown that in finite size SF
networks infections cannot spread for arbitrarily small
transmission rates; nevertheless, the epidemic
threshold in the transmission rate is much lower than
in corresponding random networks.

Empirical studies have also shown the relevance of
SF contact structures for epidemiological networks in
the case of social contact networks (Liljeros et al.
2001; Jones & Handcock 2003; Hufnagel et al. 2004)
and in the case of the cattle movement network within
J. R. Soc. Interface (2006) 3, 55–62
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Figure 1. Possible transitions among the five different classes
and the corresponding rates of transitions.
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Great Britain (Christley et al. 2005), even where
determination of the exponent in the power law is
problematic (Jones & Handcock 2003; Stumpf et al.
2005). Even though some diseases spread on networks
with different characteristics such as small-world
properties or any other non-trivial clustering or
correlations, the role of high heterogeneity in the
number of contacts of different individuals has long
been recognized (Anderson & May 1991; Pastor-
Satorras & Vespignani 2001) and deserves further
consideration.

Contact tracing is a widely used epidemic control
measure that aims to identify infected cases as early as
possible (e.g. before clinical signs are observed) by
following the contacts of individuals that are known to
be infectious. While contact tracing was mostly
successful for SARS (Lipsitch et al. 2003; Riley et al.
2003) and is useful for STDs (Clarke 1998; FitzGerald
et al. 1998; Macke & Maher 1999), contact tracing
failed to make a real impact in the recent 2001 foot-and-
mouth disease epidemic (FMD) in the UK (Ferguson
et al. 2001a,b; Keeling et al. 2001; Kao 2003), most
likely due to inexperience in identifying dangerous
contacts, and insufficient resources to remove them
quickly (Haydon et al. 2004). Individuals that are
identified by tracing can be isolated and quarantined
with the possibility of recovery (e.g. SARS) or removed
and culled (e.g. 2001 FMD epidemic in the UK). These
different scenarios are all identical for the purpose of the
model; however, they have very different implications
for the traced individuals.

Real-world implementation of contact tracing may
result in a high proportion of removed nodes actually
being susceptible rather than infected. The proportion
of susceptible nodes removed by tracing will depend on
the disease (i.e. how easy it is to define what a truly
dangerous contact is), the availability and quality of
early diagnostic tests, and logistical constraints such as
number of qualified personnel involved in contact
tracing. Contact tracing where only infectious nodes
are traced has been considered in the context of
randomly distributed networks (Huerta & Tsimring
2002) and randomly distributed clustered networks
(Eames & Keeling 2003). Recently Kiss et al. (2005)
have considered the effect of removing susceptible
nodes by tracing on random and clustered networks.
Surprisingly, no study has yet directly compared
disease control on SF and random networks for given
epidemiological parameters. This is done here, first for a
simple disease model with no control, and then allowing
for the identification and removal of nodes that are at
risk of becoming infected—i.e. ‘contact tracing’—is
considered.

Targeting control at those nodes that are most
responsible for disease spread is an attractive way of
reducing the effort required to control it. The import-
ance of highly connected ‘superspreaders’ has been
discussed in detail for more abstract models (Anderson
& May 1991), and more recently the role of highly
connected nodes for SF networks has been noted
(Albert et al. 2000; Barthélemy et al. 2004). Optimal
preventive control measures have received the most
attention thus far, in particular related to vaccination.
J. R. Soc. Interface (2006)
The most widely discussed are the targeting for
immunization of random nodes, and immunization of
random acquaintances of random nodes (Madar et al.
2004). However, if an epidemic has already become
established in a population and the turnover time
(i.e. the time interval between consecutive generations
of infectious individuals) of the disease is relatively
small (such as SARS, FMD, etc.), then the main control
measure that can be used is disease contact tracing.
This targets the nodes thought to be at risk of becoming
infected with the aim of reducing the infectious period,
preferably to zero.
2. MODEL

2.1. Disease transmission model and individual-
based stochastic simulation

Each node in the network is classified according to one
of five different states (classes): susceptible nodes (S );
exposed nodes (E ), i.e. incubating the disease without
being infectious; infectious nodes (I ); triggering nodes
(T ), which are identified as being infectious, immedi-
ately isolated, and initiating tracing; and finally,
removed nodes (R), which are no longer infectious
and do not initiate tracing. The possible transition
between states are depicted in figure 1 and presented in
detail below.

– Infection S/E. The epidemic is seeded with one
or more infected nodes. Thereafter, infection
progresses as a simple contact process: the
probability of a secondary infection depends on
the state of the neighbouring nodes. rSE is the
infection rate which represents the probability per
unit time of a susceptible node acquiring infection
upon contact with an infectious node. The exposed
state represents the delay between becoming
infected and being infectious.

– Becoming infectious E/I. This is the natural
transition of the exposed nodes to the infectious
class after the latency period has elapsed, with
rate rEI. This is a network-independent process.

– Direct identification of infectious nodes I/T.
Disease detected at an infectious node will trigger
tracing. rIT is the transition rate of the infectious
nodes to class (T ), and is a network-independent
process.

– Removal of class (T ) nodes T/R. This is the
network-independent removal of the class (T )
nodes with a given rate rTR. We assume that no
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further tracing occurs from a removed node.
While this is not strictly true, the assumption
simplifies the system, and the effect of continued
tracing can be approximated by increasing the
tracing rate from class (T ) nodes. Further, late
tracing is likely to be less important for diseases
with short turnover time, as many infected nodes
would likely become positively diagnosed via
I/T.

– Tracing ‘errors’ S/R. Contact tracing often
identifies some contacts that were not truly
infectious (e.g. through human error, logistical
constraints compromising testing accuracy, or a
lack of rapid and conclusive diagnosis tests). It is
assumed that a node identified through contact
tracing cannot initiate further tracing; i.e.
‘secondary’ tracing is suppressed. Therefore, a
direct contact between a class (T ) node and a
susceptible node, detected through tracing,
results in the direct transition of the susceptible
node into the removed class (R). The rate of this
process is rSR.

– Tracing and removal of exposed nodes E/R.
Exposed nodes in direct contact with class (T )
nodes may be identified as potentially infectious
and are removed with rate rER.

– Tracing and removal of infectious nodes I/R. As
with tracing of susceptible and exposed nodes,
tracing of infectious nodes does not trigger second-
ary tracing. This process happens at a rate rIR.

While in principle traced nodes might trigger
further tracing, in this model we assume that
secondary tracing (i. e. tracing form traced E and I
nodes) does not occur. The absence of the secondary
tracing is an appropriate assumption in various
situations, such as for livestock diseases where disease
control policies only allow for the tracing and removal
of those premises where contact with an infectious
premises can be proven. This is a difficult task even in
the first step contact tracing, therefore further
contact tracing is very rare. Another impediment is
the difficulty in determining the status of the traced
premises due to the absence of a quick and reliable
diagnostic test for some diseases (e.g. FMD). Mul-
tiple-stage contact tracing is usually carried out
where traced individuals are isolated and can be
monitored for signs of infection. This is not the case
for livestock diseases where traced premises are
usually culled. Müller et al. (2000) also concludes
that tracing a very small number of steps from the
index case may already practically maximize the
effect that can be reached by tracing. In the event of
logistical constraints, it is likely that effort will be
concentrated on primary tracing, and so the question
of the conditions under which primary tracing alone is
useful, is an important one.

Computer-generated random and SF networks are
used to simulate disease propagation based on a
synchronous updating scheme. The state of a node at
time t0CDt is based solely on the state of its neighbours
at time t0 and the rates defining the transitions between
the states.
J. R. Soc. Interface (2006)
2.2. Network structure and parameter values

Random networks are generated by considering all
N(NK1)/2 possible links, and, for each link, comparing
random numbers to the threshold probability p. Any
link whose random number is greater than p is
discarded. The expected value of the average number
of connections per node K is then p(NK1).

SF networks are generated according to the
method described by Newman et al. (2001). The degree
distribution of the SF graph is given by
PðkÞZCkKgexpðKk=LÞ, where C is the normalizing
constant, g is the power law exponent and L is the
natural cut-off present in any finite-size natural
system. The generation of such a network is done as
follows: for each node a random integer kR3 is
generated, as a potential degree, from a distribution
proportional to exp(Kk/L) using the transformation
kZceilðKL lnð1KrÞÞ, where r is a uniformly distri-
buted random number in the range 0!r!1 and ceil( )
is a function that returns the closest integer number
bigger than its argument. Only nodes with kR3 are
chosen, to support a realistic epidemic where K must
exceed the number of new infections in the first
generation. The value of k is accepted as a node degree
with a probability kKg. If k is not accepted then it is
discarded and a new k is generated. The procedure is
repeated until a value for k is accepted for every node
in the network and the sum of the degree of all the
nodes is even. References to each node are placed in a
set such that the number of references to each node is
equal to the node degree. Thereafter, two members are
chosen at random from the set and a link is formed if
these nodes are not already connected. Self-loops are
not considered as possible links. This operation is
repeated until all the members of the set are exhausted.
The even number of members ensures that after
repeated link forming operations all the nodes will
have a number of links equal to their degree. All the
random and SF networks generated in this paper have
NZ2000 nodes and the average number of connection
per node KZ6. All the SF networks are generated
using gZ2.5, LZ100.

If Inf_P is the average time spent by nodes in the
infectious class in the absence of network related
tracing then rITZ1=Inf _P. Similarly, if Lat_P and
Tr_P are the average time periods in days spent by
nodes in the exposed and traced classes, respectively,
then rEIZ1=Lat_P and rTRZ1=Tr_P. Following
from Kiss et al. (2005), throughout the paper
Inf_PZ3.5 and Tr_PZ2.0 are used. In the numerical
simulations the transmission rate, the network depen-
dent tracing rates and Lat_P are varied in order to
investigate how contact tracing impacts on disease
spread. These parameter values are similar to the
latency, infectious and tracing periods for diseases
such as SARS (Lipsitch et al. 2003; Riley et al. 2003)
and FMD (Ferguson et al. 2001a,b; Keeling et al.
2001; Kao 2003), and are also similar to the
parameters used in other epidemiological network
studies (Huerta & Tsimring 2002; Eames & Keeling
2003; Green et al. in press).
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Figure 2. Time evolution of the proportion of infectious
nodes for random (a) and scale-free (SF), (b) networks in
the absence of tracing with rSEZ0.015, 0.0215,., 0.08 and
Lat_PZ3.5.
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3. RESULTS

3.1. Epidemic threshold in random
and scale-free graphs

The time evolution of the proportion of infectious nodes
is given for random networks in figure 2a and SF
networks in figure 2b for different values of rSE and no
tracing. For both cases Lat_PZ3.5. The results are
averaged over 50 different network realizations and 50
different epidemics on each individual network realiza-
tion. Each individual epidemic on each network
realization is seeded with 10 randomly placed infectious
nodes. An increase in any of the two numbers presented
above or a finer resolution in time than DtZ0.02
produced effectively the same results. As expected the
threshold value of rSE for disease persistence is higher
on random networks than on corresponding SF net-
works. In the case of SF networks, due to the diverging
second moment (hk2 i) of the nodes’ degree distribution
the bigger the network size N, the smaller the threshold
for rSE is. In the limit of infinite-size SF networks, an
infinitesimally small but non-zero rSE will result in a
well-established epidemic in the population (Anderson
& May 1991; Pastor-Satorras & Vespignani 2001). As
expected, the initial spread of the disease on SF
networks, driven by the highly connected nodes, is
more rapid than for random networks.

In figure 3 the final epidemic size, representing the
final proportion of the nodes that became infectious
during the epidemic, is given as a function of rSE for
random and SF networks with no tracing applied. For
smaller values of rSE, the final epidemic size for SF
networks is considerably higher than that for random
networks. However, as rSE increases, there is a critical
value of rSE where the final epidemic sizes are the same
for both types. From there on, final epidemic size for
random networks approaches its asymptote (total
population size) more rapidly than for SF networks.
As rSE increases, resulting in a higher total epidemic
size, the disease depletes the population of highly
connected nodes, and must propagate to the poorly
connected nodes, which are less accessible. Since the
random networks have a more homogeneous degree
distribution than SF networks, this depletion occurs
more slowly, so the final epidemic size is larger than on
equivalent SF networks for large rSE .
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Figure 3. Final epidemic size representing the number of
nodes that became infectious during the whole epidemic,
plotted as a function of rSE in the absence of tracing.
Continuous line corresponds to random networks and dashed
line to SF networks. The latency period is Lat_PZ3.5.
3.2. The effect of contact tracing in random and
scale-free networks

The role of contact tracing is considered on different
network architectures for a wide combination of rSR,
rER and rIR tracing rates. We consider only equal
tracing rates of exposed and infectious nodes: rERZrIR.
The primary aim of tracing is the removal of as many
infected (exposed or infectious) nodes as possible, since
only these can transmit disease. However, as mentioned
above, the removal of susceptible nodes is unavoidable,
and therefore the interaction between the tracing rate
of susceptible nodes (rSR) and the tracing rates of
infected nodes (rERZrIR) is investigated to establish
the overall effect of tracing. Only the rERZrIRRrSR
case is investigated because is unlikely that susceptible
J. R. Soc. Interface (2006)
nodes are traced at a higher rate than exposed and
infectious nodes.

In figure 4 the proportion of the total number of
infected nodes removed by tracing is given as a function
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Figure 4. Proportion of infected nodes removed by tracing
for random (a) and SF (b) networks for rSEZ0.15 and
Lat_PZ3.5.
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Figure 5. Proportion of infected nodes removed by tracing
for random (a) and SF (b) networks for rSEZ0.15 and
Lat_PZ10.0.
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of the different tracing rate combinations for random
(figure 4a) and SF (figure 4b) networks with rSEZ0.15
andLat_PZ3.5.Thevalueof rSEZ0.15was chosen, as at
this value, the transmission potential r0ZrSE K Inf_P
as defined by May & Lloyd (2001) is similar to the
values that were estimated from the recent SARS
epidemic (Lipsitch et al. 2003) and the 2001 UK FMD
epidemic (Ferguson et al. 2001a).

Consider the case when rSR is fixed and rER(ZrIR)
is varied. If the epidemic is out of control, an increase
in rER(ZrIR) results in more infected nodes being
removed. While the current reproduction ratio of the
epidemic remains above one, the epidemic incidence
will on average continue to increase, and the trend of
increasing numbers of removed infected nodes can be
expected to continue, as long as the total number of
susceptible nodes is not depleted. However, should
higher rates of tracing rER(ZrIR) be sufficient to
reduce the reproduction rate below one, the pro-
portion of infected nodes removed by tracing will
start to decrease; i.e. tracing will be considered to
have effectively controlled the epidemic. Thus,
although rER(ZrIR) is high, the proportion of infected
nodes removed by tracing is small since the pro-
duction of new infected nodes is reduced. Therefore,
for a fixed value of rSR, the maximum in the surface
for a specific value of rER(ZrIR) represents the
threshold for the minimum level of tracing capable
of controlling the epidemic.
J. R. Soc. Interface (2006)
According to figure 4 contact tracing on random
networks is effective for values of rER(ZrIR) that are
lower than those needed on the corresponding SF
networks, if the same constant rSR is considered for
both networks. This is shown by the decline in the
proportion of infected nodes removed by tracing at
lower tracing rates rER(ZrIR) in random networks, as
compared to SF networks. This observation suggests
that on SF networks a tracing effort higher than that on
similar random networks is required to control and stop
an epidemic spreading. Individually, the proportions of
exposed and infectious nodes exhibit the same quali-
tative behaviour as their sum.

An important role in the control of an epidemic is
played by the length of the latency period Lat_P
(Fraser et al. 2004; Kiss et al. 2005). Intuitively, a
longer latency period favours contact tracing by
allowing a longer time for the identification of possible
new infectious cases, especially for nodes that are
exposed and spend a considerable period in the latent
state without being infectious. However, a short latency
period will make contact tracing difficult due to the
quick turnover time of the newly infected generation
of nodes. Figure 5 is the same as figure 4 but with
an increased latency period from Lat_PZ3.5 to
Lat_PZ10.0. In this case, on random networks contact
tracing performs considerably better than in the
Lat_PZ3.5 case. For SF networks however, only a
comparatively limited improvement is noticeable.
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(rERZrIRZ0.5 and 1.6). Results obtained using SF networks
for rSEZ0.15, Lat_PZ10.0 and rSRZ0.5.
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Contact tracing is more effective on random networks
and manages to control the epidemic with smaller
tracing rates rER(ZrIR). The proportion of nodes that
become infectious by the end of the epidemic and the
proportion of nodes removed by the end of the epidemic
(RN) are also plotted in figures S1, S2, S3 and S4
(see electronic supplementary material) for the same
parameter values as figures 4 and 5.

With higher tracing rates, both the proportion of
nodes that become infectious by the end of the epidemic
and the proportion of nodes removed by the end of the
epidemic decrease monotonically. However, the
presence of maxima in the proportion of infected nodes
removed by tracing (figures 4 and 5) illustrates a change
in the epidemic behaviour for higher tracing rates; here
the number of infected nodes that are traced decreases
despite the increased tracing rates. This suggests that
tracing is becoming effective on a local neighbourhood
level at higher tracing rates (Kiss et al. 2005).

Barthélemy et al. (2004) have shown that the initial
exponential growth time-scale t of epidemics is
inversely proportional to the network degree fluctu-
ations, hk2i/hki. In networks with a Poisson distribution
(such as large random networks) hk2i/hkiZhkiC1,
however in SF networks and in general in networks
with highly heterogeneous connectivity, hk2i/hki[hki.
This implies an extremely small time-scale t for the
outbreak and a very rapid spread of the epidemic in
networks with highly heterogeneous connectivity.
Barthélemy et al. (2004) have also shown that the
disease spread follows a precise hierarchical order, with
the highly connected nodes becoming infected first, and
the epidemic thereafter cascading towards groups of
nodes with smaller degree. This can be seen in figure 6b,
where the average degree of new infectious nodes is
plotted in the presence of tracing.

To better understand the effect and the mechanism
of tracing, the average degree of new infectious nodes,
and the average degree of susceptible and infected
nodes removed by tracing are plotted in figure 6. We
note that in the absence of tracing the change in the
average degree of new infectious nodes follows a similar
pattern. In random networks (figure 6a) the average
degree of all the different categories of nodes are similar
throughout the epidemic time course. All types start at
hk2i=hkiZhkiC1ZKC1 which is the average degree
of nodes that can be reached from a randomly selected
node in any network. The average degree of newly
infected nodes and nodes traced from a given (T ) class
node reflect only this network property (as in the
‘acquaintance sampling’ described by Madar et al.
(2004)) and thus they are of the same degree. This is
seen in figure 6a for random networks, and figure 6b for
SF networks. However, the average degrees of both
exposed and infectious nodes removed by tracing are
considerably higher than the former categories of nodes.
This is a finite size effect; nodes of high degree tend to be
infected first and as these are depleted the average
degree decreases. Thus the ‘age’ of traced nodes must
be considered. The average duration that nodes spend
in state E and state I, considered from when the node
became infected in the absence of network related
tracing, are 1/rEI and (1/rEIC1/rIT) respectively.
J. R. Soc. Interface (2006)
Traced nodes arising from these classes reflect the
average degree of nodes infected at an earlier time
(figure 6).

To further investigate the mechanism of tracing, in
figure 7 the daily average degree and number (inset) of
new infectious nodes is plotted for a constant tracing
rate rSR of the susceptible nodes and different levels of
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tracing of infected nodes rER(ZrIR) for SF networks. In
the case without control, the disease preferentially
spreads towards the highly connected nodes. Due to
depletion of highly connected nodes, proportionately
more nodes with lower connectivity are infected
towards the end of the epidemic. When effective control
is applied, depletion of highly connected nodes occurs
more slowly, and therefore the average degree of new
infectious nodes remains high. Thus, the average degree
of the new infectious nodes at higher levels of tracing
will be more evenly distributed over the duration of the
epidemic, in contrast to the highly skewed distribution
when disease is spreading without control. The inset of
figure 7 shows that the daily average number of new
infectious nodes falls sharply as the rER(ZrIR) tracing
rate is increased. Therefore, the higher daily average
degree of new infectious nodes that corresponds to
higher levels of tracing rER(ZrIR) later is indicative of
superior but still ineffective control.
4. DISCUSSION

While epidemic spread on SF networks has recently
been the subject of much interest, to our knowledge
there has been no quantitative comparison of the
differences in disease control efficacy on SF and random
networks. Our analysis confirms that in random
networks, epidemic spread is much slower, and the
average degree of new infectious nodes is close to the
average degree KZhki (figure 6a). The relatively slow
time-scale of the disease, and the virtually degree-
independent spread of the disease help contact tracing
to follow the disease closely and to control it if the
tracing rate is high enough.

In SF networks the disease turnover time is fast and
the disease preferentially spreads to nodes with high
degree (figure 6b); however, highly connected nodes are
also typically traced at a later disease stage (equiva-
lently, the average degree of exposed and traced nodes
is delayed with respect to the degree of traced and
infectious nodes). This is directly connected to the
latency period, since infectious nodes traced at a given
time in the epidemic represent a set of nodes that were
infected on average a time Lat_P earlier in the
epidemic, and therefore are of higher average degree
than the traced and exposed nodes.

Unlike for random networks, even a substantial
increase in the latency period has only a limited effect
on the efficacy of contact tracing on SF networks.
Examination of figure 6 suggests that while acquain-
tance sampling (Madar et al. 2004) may be an effective
way of targeting proactive vaccination on a SF
network, at least for the parameter regimes studied
here, it is not an effective strategy for reactive control.
Contact tracing never catches up sufficiently to
eliminate the highly connected nodes before they
become infectious, and only ‘intelligent’ tracing (for
example through prior knowledge of who may be most
highly connected) would be effective.

Figures S3 and S4 (see electronic supplementary
material) show, for the same networks and parameter
values as figures 4 and 5, that RN is insensitive relative
to changes in rSR. Therefore unless tracing of exposed
J. R. Soc. Interface (2006)
and infected nodes happens quickly and accurately the
loss encountered at the population level is virtually
constant with regards to changes in rSR. Disease
contact tracing can make a real difference on both
random and SF networks when the tracing rate of
susceptible nodes is low. Otherwise, the depletion of
susceptible nodes is the dominant effect and the disease
burns itself out due to the lack of new targets.

An epidemic controlled by contact tracing can end
either due to the early and precise identification of most
infected nodes, or due to the depletion of available
susceptible nodes where the disease could have propa-
gated. A control policy that results in removal of many
susceptibles can be the result of many factors, including
human error, time constraints in determining whether a
node is truly infected, an insufficiently specific diagnosis
test, or deliberate policy. There may be significant
economic or moral cost associated with removal of
susceptible nodes; the main advantage in this case is a
shorter epidemic duration. Ideal control measures;
however, should stop an epidemic early or while there
are still many unaffected susceptible nodes. Should
contacts between nodes be highly clustered, the
removal of susceptible nodes can reduce the local
susceptible neighbourhood surrounding infectious
nodes (Eames & Keeling 2003; Kiss et al. 2005),
rendering it an effective means of disease control. This
is often acceptable, for example when removal by
tracing actually means quarantine or isolation (such as
SARS), or if the consequences of transmission are
severe, but is much more debatable when traced nodes
are destroyed, especially when there is some contro-
versy over how seriously the disease problem is viewed
(such as 2001 FMD epidemic in UK; Haydon et al.
2004). Robust estimations of the clustering coefficient
are critical for evaluation of any such policy.

A major role in infectious disease spread is played by
the underlying contact structure. However, in most
cases, the exact contact structure is difficult to
determine. It is, therefore, imperative to understand
how to best use the available data about a network on
which disease can spread in order to better prevent or
control epidemics. By analysing disease transmission
on different network topologies, one can hope to
identify trademark signatures of different disease
models spreading on different network architectures.
Such results might help solve the inverse problem of
what network or disease parameters can be recovered
from data collected during an epidemic, which can be
critical in deciding amongst different control policies.

R.R.K. and I.Z.K. are funded by theWellcome Trust. D.M.G.
is funded by DEFRA.
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