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Using a novel interpretation of dynamic networks, we analyse the network of livestock movements in

Great Britain in order to determine the risk of a large epidemic of foot-and-mouth disease (FMD). This

network is exceptionally well characterized, as there are legal requirements that the date, source,

destination and number of animals be recorded and held on central databases. We identify a percolation

threshold in the structure of the livestock network, indicating that, while there is little possibility of a

national epidemic of FMD in winter when the catastrophic 2001 epidemic began, there remains a risk in

late summer or early autumn. These predictions are corroborated by a non-parametric simulation in which

the movements of livestock in 2003 and 2004 are replayed as they occurred. Despite the risk, we show that

the network displays small-world properties which can be exploited to target surveillance and control and

drastically reduce this risk.
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1. INTRODUCTION
The contact structure of a population can have con-

sequences for disease transmission, such as when the

variance in the number of potential contacts is high

(Anderson & May 1991; Albert et al. 2000), or when

transmission is localized but with occasional long-distance

jumps (Watts & Strogatz 1998). While there has been

significant progress in our understanding of disease

transmission on networks (Watts & May 1992; Eubank

et al. 2004; Meyers et al. 2005), good disease-relevant

network datasets are few. Here, we analyse the network of

livestockmovements inGreat Britain, forwhich the spatial,

temporal and demographic characteristics are especially

well described, in the context of foot-and-mouth disease

(FMD). Control of the 2001 epidemic of FMD cost an

estimated 8.5 million culled livestock and £4–6 billion

(Anderson 2002). Initial dissemination of disease was

facilitated by the rapid long-distance movement of sheep

via dealers and markets (Gibbens et al. 2001; Kao 2002),

suggestive of both small-world (Watts&Strogatz 1998) and

scale-free (Albert et al. 2000) networkproperties.Mainly in

recognition of the importance of these movements,

legislation was introduced requiring a mandatory 20-day

movement standstill (with a few clearly defined exceptions)

for all large livestock from agricultural premises, following

the on-movement of any other large livestock (Bourn

2003). Though the movement standstill was reduced for

sheep and cattle to 13 days from 18 February 2002 in

Scotland, and to 6 days from 4March 2003 in England and

Wales, it is expected that the new legislation will have
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greatly reduced the risk of a large FMD epidemic, should

the virus be reintroduced into Great Britain. As recorded

livestockmovement data includes source, destination, date

and batch size (described in appendix A in the electronic

supplementary material), a network analysis is ideal for

testing this expectation.Wepredict conditions underwhich

a large epidemic could occur and illustrate how it could be

efficiently prevented, and show that the network analysis is

robust when compared to an exact replay of the movement

record.
2. MATERIAL AND METHODS
(a) Network interpretations

Two issues that hinder the application of network theory to

epidemiology are the typical assumptions that all potentially

infectious contacts or links are the same (equally weighted),

and that the network is static, i.e. that potentially infectious

links are fixed over the course of an epidemic. A potentially

infectious link joining two individuals (nodes) i and j will have

a probability of transmission ( pij) that is more realistically

time-dependent and weighted by the characteristics of i and j,

the nature of the link and the direction of contact. However,

analyses of weighted networks are complicated (e.g. Barrat

et al. 2004), so here, we deconstruct the network of

potentially infectious contacts by considering a fixed time-

frame covering a single infectious period and discard active

links with probabilities (1Kpij), to create a static, directed

‘epidemiological network’ of truly infectious links. In this

way, all links can be treated equally. Stochastic variability

between realizations of the epidemiological network can be

accounted for by repeated deconstruction and analysis.

Since all links in an epidemiological network have the

same weight and the same meaning, standard network

analyses become useful. Importantly, the final epidemic size

for a susceptible–infectious–removed (SIR) model can be
q 2006 The Royal Society
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Figure 1. Comparison of giant strong component size over four-week periods from January 2003 to November 2004, with
epidemic simulations. (a) GSCC size (filled diamonds) compared to FMD epidemic (open diamonds) for sheep movements
only. Changes in GSCC size (w11.0!) and epidemic size (w13.9!) between June 2003 and September 2003 are similar
(vis-a-vis change in number of movements of 3.9! (see figure A5 in the electronic supplementary material). (b) Giant strongly
connected component (filled diamonds), giant weakly connected component (open diamonds) and difference between them
(dashed line) in sheep movements. (c) GSCC size (filled diamonds) compared to FMD epidemic (open diamonds) for all
livestock movements (cattle, pigs and sheep).
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interpreted directly in terms of the size of the epidemiological

network components. In a static network, an epidemic will

continue so long as an infected node can reach at least one

uninfected node. A strongly connected component or strong

component is a subset of a directed network in which all

nodes can reach each other. A weakly connected component

or weak component is a strong component plus all its sources

and sinks. In a static epidemiological network, any disease

starting in a strong component will infect all elements of the

strong component, and will infect all sink nodes as well.
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Similarly, any epidemic starting in a source node will infect

the strong component plus all sinks, but not necessarily all

sources. Thus, the largest or giant strongly connected

component (GSCC) is an estimate of the lower bound of

the maximum epidemic size, while the giant weakly

connected component is an estimate of its upper bound.

The distributions of strong and weak component sizes are

estimates of the distribution of the final epidemic size.

All components are determined using Tarjan’s algorithm

(Sedgewick 2002).
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Figure 2. The growth of the giant strongly connected
component (GSCC) for sheep and cattle movements. (a)
Growth of the GSCC for sheep movements as a function of
R0. Shown are sizes for infectious period of 28 days starting
from 19 May 2004 (filled diamonds), infectious period of
28 days starting from 5 November 2003 (open diamonds),
infectious period of 7 days starting from 19 May 2004 (filled
squares) and infectious period of 7 days starting from 5
November 2003 (open squares). Probabilities of transmission
in all four cases range from 0.1 per batch movement to 1.0 per
batch movement. (b) Establishing ergodicity: figure as in (a)
but infectious periods are varied in the same fashion for farms
and markets. The R0 values are generated by choosing
different combinations of infectious period and probability of
transmission per link. In all cases, similar R0 values produce
similar GSCC sizes when comparing within four-week
periods, but different sizes when comparing between them.
Above Rcrit

0 the behaviour can be described by a power law,
nGSCCf ðR0KRcrit

0 Þ3 where nGSCC is the size of the GSCC.
From 19 May 2004 (filled diamonds), Rcrit

0 Z4:8, 3Z4.1,
R2Z0.91 on a log–log plot and from 5 November 2003 (open
diamonds), Rcrit

0 Z12:7, 3Z5.1, R2Z0.93 on a log–log plot.
The value of Rcrit

0 is chosen by identifying the local maximum
in the R2 value, and power law exponent is chosen by linear
regression above that value.
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(b) R0 in the epidemiological network

The epidemiological network interpretation can be directly

related to the basic reproduction ratio, or R0. The persistence

threshold associated with R0 underpins modern theoretical

epidemiology (Anderson & May 1991). For R0O1, a

pathogen will be successful, in the sense that the introduction

of a single infected individual into a wholly susceptible

homogeneous population will on average infect more than

one other. An equivalent interpretation can be made in terms

of percolation theory for the epidemiological network. In

general, a network percolation threshold (Stauffer & Aharony

1992; Moore & Newman 2000; Schwartz et al. 2002) can be

defined by an increase in the average number of connections

per node, below which there are only finite-sized strong

components in an infinite network, and above which the

GSCC is infinite. In a finite network, this is approximated by

the ‘sudden’ appearance of a large GSCC as the number of

connections increases, by the joining of many prior strong

components. In the context of a randomly connected

epidemiological network (i.e. where the probability of

connection is defined by the relative node degrees), a

percolation threshold is defined when each node potentially

infected over the network can subsequently infect on average,

at least one other node. In an undirected network, this

requires two links per node, while in a directed network, it

requires that there be one outward link if a node has at least

one inward link; in both cases this is equivalent to R0Z1. In

the case of proportionate mixing,

R0 Z kinkouth i= kinh i: ð2:1Þ

(Schwartz et al. 2002 and see appendix D in the electronic

supplementary material), a result consistent with standard

epidemiological theory (Diekmann et al. 1990; Anderson &

May 1991). Other factors such as negative correlation (where

nodes of high out degree preferentially connect to nodes of

low in degree) will of course change the expression for R0. If

connections are not random, then the additional structure in

the network could lower the estimated final epidemic size. For

example, a network consisting only of sets of continuous

loops or necklace of nodes will have R0Z1, but the GSCC

will be equal to the length of the longest necklace. Comparing

R0 to the size of the GSCC can therefore be used to identify

network structures and a percolation threshold more

generally defined in terms of a value Rcrit
0 R1, which defines

when invasion by a novel pathogen can cause a large

epidemic. A percolation value of Rcrit
0 O1 implies localizing

structures, such as spatial or social clustering (i.e. higher

probabilities of links between nodes for reasons that are not

related to the degrees of the nodes).

(c) The role of ergodicity

Thus far, our description of epidemiological networks has

been static; a more realistic network structure would be

dynamic and unique to each epidemic, reflecting the links

that exist over the repetitive infectious period of nodes taken

from the respective infectious periods, from the times they

became infectious. Should the pattern of behaviour under-

lying the network structure be unchanged over the course of

an epidemic, then a network may be constructed simply by

considering all possible links over all time, and choosing a

subset of those links as being infectious. In this case,

snapshots of the epidemiological network covering a single

infectious period will give the same estimate of the GSCC and

component size distribution.
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A consequence is that the final epidemic size of the static

network is also an estimate of the final epidemic size in the

dynamic network; this can be interpreted in terms of

ergodicity. Ergodic theory is an extensive and complex area

of interest in statistical physics (e.g. Reichl 1980). Birkhoff’s

‘ergodic theorem’ states that if the average of thermo-

dynamic quantities over a statistical ensemble (or set) of

similar systems at equilibrium is the same as the time

average for a single system, then the systems are ergodic.

We can use the concept by considering an ensemble of

multiple realizations of the epidemiological network. For

our purposes, it is sufficient to note that a Markov chain, in

this case the changing network, is considered ergodic if

all possible states are accessible from any given state



Figure 3. Geographical distribution of strongly connected components (by colour) in sheep movements from 19 May 2004,
assuming all movements are infectious, showing all components of size greater than four, as the length of the infectious period
increases from 10 to 20 days. Component colours are only conserved across the three periods if the component is conserved; e.g.
if the ‘blue’ component is absorbed by the ‘red’ component, then blue may be re-used.

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18(a)

(b) (c)

50 100 150 200 250 300 350
epidemic size

fr
eq

ue
nc

y

Figure 4. (a)Distributionof number of IPs for epidemics seeded inNorthumberlandwith 10 sheep farms, simulating early conditions
during the 2001 epidemic, for movement of sheep only (open diamonds) and allowing for movements of all livestock (filled
diamonds). In both cases, random local transmission up to 10 km is allowed. Two hundred simulations of epidemics are run for
21 days, assuming transmission parameters for the 2001 epidemic, but starting in September 2004, when sheep movements are at
their highest. (b)Riskmap for all ofGBallowing forallmovementsof livestock, showingaveragenumberof IPsper simulatedepidemic
in 100 km2 grid squares. Maximum density of IPs is 0.25 per 100 km2 (red). (c) As in (b), but only allowing for movement of sheep.
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Figure 5. Community structures (by colour). Shown are (a) the six largest communities using all sheep movements in the four-
week period starting from 19May 2004, and (b) the result of applying the algorithm to the largest of the communities, to identify
subcommunities. In both cases, community structure is highly regional though with some community members widely
distributed.
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(e.g. Reichl 1980), clearly true for static networks. For a

dynamic network, the connection is less straightforward,

but can be visualized by considering an underlying

demographic network that is constructed by a set of fixed

rules that do not depend on the prior state of the network.

Since disease transmission depends only on local infor-

mation (i.e. what a single infectious node can infect over a

single infectious period), the unique dynamic epidemiolo-

gical network developed by tracking an evolving epidemic

will also have the same epidemiological properties as the

statistical ensemble, provided the system is ergodic. This

can be illustrated by considering the result of an epidemic

simulation via two routes—first, constructing a static

network and then running an epidemic over the already

constructed network, or second constructing the network

dynamically as the epidemic progresses by infecting a single

node, identifying its links and determining which nodes it

infects, then for each of those second generation infected

nodes, identifying their links and determining which nodes

they infect, and continuing this process until the epidemic

ends. If the two processes give the same estimates for

epidemiological quantities, e.g. the GSCC-based estimate

of the final epidemic size, in terms of R0, then the system is

ergodic. Conversely, if the system is not ergodic, then there

will be structural changes in different realizations of the

epidemiological network, and so these would have to be

considered when estimating epidemiological quantities such

as the final epidemic size.
(d) Simulations

We corroborate the predictions of the network analysis by a

‘non-parametric’ simulation of the movements, i.e. a direct

replay of the movements as they are recorded. A detailed

description of the simulations is given in appendix B in the
Proc. R. Soc. B (2006)
electronic supplementary material; in brief, simulations are

seeded with a single infected farm, active on a given day. The

movement record is then replayed day by day, assuming that

on farms all off-movements occur before all on-movements.

A farm is assumed to become infected when at least one

infected animal is moved onto the farm. The probability of a

farm becoming infected is weighted by the number of animals

and the species of animals moved. Weightings were chosen so

that the mean probability that a movement from an infected

premise (IP) contained at least one infected animal was

consistent with epidemiological estimates from the 2001

epidemic. Markets ceased to be infectious the day after the

first off-movement following infection, and re-enter the

susceptible state. While FMD virus transmission character-

istics are highly variable (Haydon et al. 2004), all epidemio-

logical parameters were chosen to be consistent with

experimental transmission data and movement-based trans-

mission during the 2001 epidemic, prior to the imposition of a

national movement ban on 23 February (Gibbens et al. 2001;

Gibbens &Wilesmith 2002; Hughes et al. 2002; Alexandersen

et al. 2003a,b; Gloster et al. 2003; Mansley et al. 2003;

Wilesmith et al. 2003). Further details are given in appendix C

in the electronic supplementary material. In order to consider

the impact of ‘breaking’ the network structure, additional,

random transmission is implemented, creating new IPs at a

rate and over a distance consistent with the local transmission

that occurred during the 2001 epidemic (Kao 2003).
3. RESULTS
The distribution of movements per premises and animals

per movement are shown in figure A1 in the electronic

supplementary material. Both show evidence of scale-free

properties (i.e. probability distributionfkKl, where k is the

number of on or off movements per premises, and l is
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of community sizes for all 24 four-week periods starting from
1 January 2003. The distribution of sizes is consistent across
all periods, suggesting that local patterns of movement
remain similar, even though the size of the GSCC changes
dramatically over the course of the year (figure 1).
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a constant). Because of the high variance of these

distributions (infinite in the limit of very large popu-

lations), high values of R0 are possible even when the

transmission rate is low (Albert et al. 2000). As expected,

markets are very active, with large numbers of animals

passing through them. While pig and cattle movements

may result in FMD transmission, the 6- and 13-day

movement standstills would allow for clinically infected

animals to appear in large numbers in any infected pig or

cattle herd, thus shortening the time to detection; in

contrast, because the disease is difficult to detect in sheep,

movements become much more important, as was the case

in 2001 (Kao 2002). Thus, we consider first the network of

sheep movements. The GSCC size for the network of

sheep movements varies considerably over the course of a

year. The pattern of GSCC variation shows evidence of

percolation behaviour, with changes in the size of the

GSCC (figure 1) varying by a factor of 11, qualitatively

different from changes in the number of movements,

which only differs by a factor of less than 4 (see figure A2

in the electronic supplementary material). Based on

GSCC sizes, under the current movement regime, the

network is relatively safe from disease propagated in the

sheep population in the winter, the principle species and

the timeframe for the 2001 epidemic of FMD in the UK

(Kao 2002). However, there is a substantially greater risk

from late spring to early autumn. We corroborate our

predictions using a non-parametric simulation of disease

spread, where infection is seeded on random farms, the

record of all livestock movements is replayed chronologi-

cally, and movements from infectious premises potentially

result in transmission (full descriptionof thenon-parametric

simulations are given in appendix B in the electronic

supplementary material). These simulations showed

threshold behaviour that is similar to the behaviour

revealed by the GSCC analysis (figure 1a), and they

corroborate the risk of a large epidemic in late summer and

early autumn. While transmission from or to the giant

weak component could potentially change this scenario, in

this case the giant weak component retains the threshold

behaviour (figure 1b). In contrast, consideration of

transmission across all movements (pigs, sheep and cattle)

show less seasonal variation, and no evidence of percola-

tion behaviour (figure 1c), though of course the epidemics

are also larger.

Using equation (2.1), we now compare R0 to the

GSCC size in the sheep movement data in more detail for

the four-week period from 19 May 2004, the critical

period when the sheep network first appears to exceed the

percolation threshold (figure 1). Though the formula of

equation (2.1) assumes proportionate mixing, higher

order correlations appear to have only a small effect on

the value of R0; the best estimate of R0 is found by directly

calculating the dominant eigenvalue of the full contact

matrix M (Diekmann et al. 1990), where the elements of

the matrix mij are 0 if there is no contact from node i to j,

and 1 if there is contact. While it is not feasible to calculate

this quantity in all cases (i.e. when the GSCC is very

large), during the periods of fewer movements and

therefore smaller GSCCs, the difference between the

two values is small (e.g. for the four-week period from

19 May 2004, the true value of R0 is 14.1 compared to

R0Z13.3 computed with equation (2.1)). This is generally

consistent for all the smaller GSCCs (i.e. less than 2000
Proc. R. Soc. B (2006)
nodes) throughout the timeframe of the data though there

are larger discrepancies when R0 is large.

For the sheep network, particularly important in the

2001 epidemic, there is no risk of a large epidemic until R0

is well above one (in this case, R0z4); the threshold

location is also dependent on the underlying disease

parameters (figure 2a). Markets are the most highly

connected nodes and therefore the greatest contributors

to R0, but have a fixed infectious period of 1 day, as they

are assumed to hold no resident livestock and therefore

rely on transient contact for transmission. As there is the

possibility of environmental contamination, this is a lower

estimate for the infectious period. However, direct move-

ment of sheep from single infected herds dispersed at

markets was the major source of long-distance spread

(Mansley et al. 2003). If the market infectious period is

scaled with the farm infectious period (figure 2b), the same

R0 gives a similar GSCC size over the four-week time-scale

(an ergodic scale, allowing comparison of the static

network properties with transmission dynamics), but not

when comparing between seasons (a non-ergodic scale,

where such a comparison is not valid). The components

are spatially clustered; the growth of the GSCC as R0

increases appears to follow a scale-free distribution,

and represents both accumulation of newly active

premises, and the absorption of smaller components

(figure 3), each typically centred on one or more markets.

The absorption of smaller components and scale-free

growth of the GSCC are consistent with a percolation

threshold (Stauffer & Aharony 1992).

The correspondence between the GSCC and epidemic

size is robust when allmovements and local transmission are

added at levels appropriate for FMD in 2001; of epidemio-

logical concern is that FMD virus introduced in sheep

during the peak risk time (September 2004) have similar size

and geographical extent to the 2001 epidemic prior to the

imposition of the nationwide livestockmovement ban,when

seeded in a fashion similar to2001, andallowed to spread for

a similar length of time (figure 4). The pattern of spread is

typified by many short-range transmission events, with

occasional long-distance jumps resulting in many trans-

mission events from a single node, usually a market.
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Figure 7. Targeted control of disease transmission on the sheep movement network. Comparison of GSCC size with no removal
of links ( ) to GSCC size under the effect of random removal of links (filled diamonds) and targeted removal of farm-to-market
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2004, total linksZ24 589, of which 1539 are the targeted farm-to-market following market–farm links.
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While a serious national emergency is possible, network

properties could be exploited for efficient surveillance or

disease control. Community structures, i.e. groups of

premises more closely connected to each other in the

network, are identified using an algorithm that maximizes

the difference between the true network, and an equivalent

randomly connected network (Newman 2004), with the

algorithm modified for directed networks (see appendix D

in the electronic supplementary material). The identified

communities are highly regionalized, corroborating the

way that individual components of the epidemiological

network grow as R0 increases (figure 5). Community size

distributions taken in four-week snap shots over the whole

timeframe (figure 6) are consistent for all periods,

suggesting that localized movements retain the same

pattern, but greater number of bridging contacts between

communities exist to create a larger GSCC during the late

summer to mid-autumn period. Considering only the

subsystem of farm-to-market, market-to-farm and farm-

to-farm movements which are most likely to be respon-

sible for transmission, direct farm-to-farm movements

contribute only 6123 of 52 637 movements in the four-

week period from 19 May 2004, suggesting a largely

bipartite structure to the network, with the majority of

other moves either farm-to-market (35 115 moves), or

market-to-farm (11 129 moves). We hypothesize that

farms linking together different markets are largely

responsible for percolation. To test this, we selectively

delete farm-to-market moves where the immediately prior

movement onto that farm was from a different market.

These movements are few, for example representing only

3825 of the 52 637 sheep movements (1539 of 24 589 in

the demographic network GSCC). However, preventing

transmission via these movements collapses the GSCC.

The dramatic effect of removing ‘bridging’ links compared

to the removal of random links (figure 7) is reminiscent of

small-world effects (Watts & Strogatz 1998), and suggests

that increased surveillance, awareness and biosecurity

enforcement targeted at community-bridging movements

would be valuable, particularly during the critical months.
Proc. R. Soc. B (2006)
4. DISCUSSION
The cattle data have been extensively audited (Bourn

2003), and similar analyses of the sheep and pig move-

ments are ongoing. However, some inaccuracies are

inevitable. Nevertheless, unless there are underlying biases

in which movements are recorded, the observed patterns

of behaviour are unlikely to change. As the majority of

discrepancies are probably the result of under-reporting or

mis-reporting rather than over-reporting, our analysis

would probably underestimate the timeframe of risk for

FMD since additional movements can only increase the

risk of passing over the percolation threshold.

We have considered the stochastically generated

epidemiological network of contacts, and related this

network to R0, showing via the ergodic hypothesis when

structural considerations are epidemiologically important.

While there have been other studies on the effect of spatial

heterogeneity on epidemic success (e.g. Kao 2003; Boots

et al. 2004), to our knowledge, this is the first detailed

analysis of the relationship between disease epidemiology

and contact structure on such a well-characterized net-

work. While prior extensive analyses have often provided

detailed results, they have used largely inferred datasets for

actual contact, since it is notoriously difficult to find more

detailed data for most populations. Here, with precisely

defined contact, we can compare directly the replayed

series of potentially infectious movements as they

occurred, and show that the simpler static network

analyses still provide meaningful predictions. Both the

network analysis and simulations show overall patterns of

spread that are consistent with the 2001 epidemic, with

widespread dissemination driven by markets and a few

individuals trading between them (i.e. dealers). That the

changes in legislation have decreased the risk of a large

epidemic is encouraging, as is the prediction that good

targeted surveillance could reduce the size of any possible

epidemic.

Prior analyses of networks in epidemiology have

analysed the characteristics of the social or demographic

network (e.g. distribution of contacts per node and

clustering of contacts) separately from epidemiological
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factors such as the transmission rate and incubation

period (e.g. Meyers et al. 2005). However, such an

approach leads to conceptual and technical problems.

Disease and network characteristics cannot always be

easily separated—for example, social behaviour of indi-

viduals may be related to their health status (e.g. the

relationships amongst drug use, needle sharing and an

individual’s health), or in the case of FMD, probability of

transmission depends on both the nature of the connected

nodes (commercial versus purebred sheep flocks, or farms

versus markets) and the links (different species and

number of livestock moved) and thus their susceptibility

and transmissibility. While the demographic contact

structure is important when ascertaining the viability or

efficiency of intervention strategies (e.g. Kiss et al. 2005,

2006), what matters for evaluating the efficacy of control is

the number of new infections caused. Reducing the social

or demographic network to an epidemiological network

means that all nodes can be treated in the same fashion,

and then a statistical analysis of underlying demographic

and physiological risk factors used to determine the

relative importance of all node types.

While we have analysed the network of livestock

movements, the use of the epidemiological network is

more generally relevant. Network models are more

common for diseases with well-defined contact character-

istics such as sexually transmitted diseases, but less so

where the number of potentially infectious contacts is

large. However, for all transmissible diseases, epidemio-

logical contacts are sparse and therefore epidemiological

network analyses are applicable. For a contact structure

with random mixing, R0Z1 is the percolation threshold.

Otherwise, heterogeneities in network structure may result

in another threshold for R0[1. Estimates of R0 for

various infectious diseases from measles to poliomyelitis

have an average value of order 10, and a minimum of 4

(Anderson & May 1991). While R0 estimates are

notoriously model dependent, one would expect that

there would be more estimates with low R0. One possible

explanation is the effect of community structure; while

R0!1 is a robust condition for the failure of an invading

pathogen, community structure complicates the relation-

ship between R0 and pathogen success.
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