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The effects that applying constant electric fields have on the buoyant instability of reaction fronts propagat-
ing vertically in a Hele-Shaw cell are investigated for a range of electric field strengths and fluid parameters.
The reaction produces a decrease in density across the front such that upwards propagating fronts are buoyantly
unstable in the field-free situation. The reaction kinetics are modeled by cubic autocatalysis. A linear stability
analysis reveals that a positive electric field increases the stability of a reaction front and can stabilize an
otherwise unstable front. A negative field has the opposite effect, making the reaction front more unstable.
Numerical simulations of the full nonlinear problem confirm these predictions and show the development of
cellular fingers on unstable fronts. These simulations show that the electric field effects on the reaction within
the front can alter the fluid density so as to give the possibility of destabilizing an otherwise stable downward
propagating front.
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I. INTRODUCTION

Propagating reaction-diffusion fronts develop in autocata-
lytic chemical systems from localized initiation sites. In such
fronts, the unreacted state ahead is converted into a fully
reacted state at the rear with the reaction being confined to a
relatively narrow region. This change in reactant composi-
tion can change the density of the reactant mixture as the
front propagates, thus giving rise to density gradients within
the reaction zone. These density differences, though small,
can set up buoyancy-driven convective flows, which, in turn,
can destabilize the planar nature of the reaction front, leading
to cellular fingering.

Systems based on the iodate-arsenous-acidsIAA d reaction
have been shown to exhibit front waves and have been ex-
tensively studied experimentally in this context, see Ref.
f1–3g for example. This reaction produces a decrease in den-
sity during the course of the reaction and hence upward-
propagating fronts can become unstable to buoyancy effects.
This has been observed experimentally in capillary tubes, see
Ref. f4–6g for examples. An alternative way that has been
proposed for visualizing buoyancy-driven instabilities is to
use reactors based on the Hele-Shaw cellf7–10g. In these,
the reaction takes place between two glass plates separated
by a small gap of widthh0 stypically 1 mm or lessd and
mounted vertically in the present context. The region be-
tween the plates is filled with the reactant mixture and the
reaction normally initiated by a horizontal line source along
the reactor, usually in the form of a small current being ap-
plied to a strip electrode. Such a geometry allows for an easy
experimental visualization of the spatially extended dynam-
ics.

The advantage in using these Hele-Shaw reactors is that,
for h0→0, the fluid dynamics can be described by a two-
dimensional flow derived from the standard thin-film ap-
proximation to the Navier-Stokes equations, effectively Dar-

cy’s law, together with equivalent equations for the reactants.
This simplifies the modeling and the analytic description of
any buoyancy-driven instabilities. This simplification has
been exploited recently using a reduced model for the iodate-
arsenous-acid reactionf11,12g and for the chlorite-
tetrathionatesCTd reactionf13,14g. In both cases the effect
of the convective flow was characterized by a Damköhler
number and, for increasing values of this parameter, a planar
reaction front became more unstable to transverse perturba-
tions sidentified through a linear stability analysisd with cel-
lular fingers developing as the reaction proceeded.

Previous studiesf15–19g have shown that applying an
electric field to an ionic autocatalytic system alters both the
propagation speed of the reaction front and the final outcome
of the reaction. This latter effect changes the density from
what it would otherwise have been both within the reaction
region and at the rear of the wave. This, in turn, has the
effect of modifying the induced convection flow and thus the
stability of the reaction fronts. In this paper, we consider the
effect of applying constant planar electric fields to reaction
fronts propagating vertically within a Hele-Shaw reactor.
This work is motivated by an experimental study of this
system f20g which used the iodate-arsenous-acid reaction
with the arsenous acid being in excess. These experiments
showed that applying an electric field through plate elec-
trodes mounted at the top and bottom of the reactor could
either increase or reduce the buoyant instability, depending
on the polarity of the electrodes. The ability of applied elec-
tric fields to radically change the propagation of reaction-
diffusion waves by changing the density gradients has been
clearly demonstrated in Ref.f21g for pulse waves propagat-
ing horizontally in a Belousov-ZhabotinskysBZd system.

Our aim here is to describe how constant electric fields
influence the buoyant stability of vertically propagating
fronts by considering a simplified generic model of reaction-
diffusion front. We use cubic autocatalysis for the kinetics.
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We have already shown that this is a good approximation for
the full Dushman-Roebuck scheme in the arsenous-acid ex-
cess casef22g. We assume a high ionic strength for the reac-
tion mixturesconsistent with the experimentsd and a constant
electric field enabling simplifications to be made in modeling
the electric field effects. For the fluid flow in the Hele-Shaw
cell we use Darcy’s law including a term representing the
buoyancy forces. Based on this model, we perform a linear
stability analysis of our model to show that applying constant
electric fields can have opposite effects, both stabilizing an
otherwise unstable configuration as well as strengthening the
buoyant instabilities. This is borne out in our numerical
simulations of the full model.

Reaction fronts in systems based on cubic autocatalysis
can also sustain diffusional instabilities, provided the mass
transfer of the autocatalyst is somewhat less than that of the
substratef23g. This is not the case for the iodate-arsenous-
acid reactionsand so will not be part of our modeld unless
some complexing agent is used to bind with the autocatalyst,
starch f24g and a-cyclodextrin f25g being used in experi-
ments. The effect of applying an electric field to these diffu-
sional instabilities has been examined in Refs.f26,27g, where
it was shown that electric fields can either stabilize or mag-
nify the instability in this situation as well.

This paper is organized as follows. First we define the
system studied and derive a dimensionless mathematical
model for it. Then we consider the planar traveling wave
solutions to our model in the absence of hydrodynamical
flow in order to assess the effects of constant electric fields
on the velocity and the concentration profile of pure reaction-
diffusion fronts. These traveling wave solutions are subjected
to a linear stability analysis in the next section. The effects of
both the buoyant and electric forces on upward-propagating
fronts are determined through dispersion relations giving the
dependencies of growth rates on wave numbers. Finally, we
solve the full mathematical model numerically in order to
test the predictions of the linear stability analysis and to fol-
low the nonlinear development of front instability from an
originally flat front. In our numerical studies, the develop-
ment of both upward- and downward-propagating fronts is
analyzed.

II. MATHEMATICAL MODEL

Our model is based on the experiments on the effects that
constant electric fields can have on the buoyant stability of
reaction fronts in the IAA system in a Hele-Shaw cellf20g.
We have previously established that, in the arsenous acid
excess case, the iodate-arsenous acid reaction can be repre-
sented to a good approximation by cubic autocatalysisf22g.
This leads us to take

A− + 2B− → 3B− ratek0ab2 s1d

for our kinetics, whereA− and B− represent, respectively,
IO3

− and I−, with concentrationsa andb, andk0 is the rate
constant.

The Hele-Shaw reactor is mounted vertically, with thex
axis measuring distance in the upward vertical direction and
y horizontally across the cell. The electric field is taken to be

planar acting in thex direction with the polarity, for positive
field strengths, as indicated in Fig. 1, i.e., the effect of a
positive electric field is to increase the transport of the nega-
tive ions in the positivex direction. The equations for our
two-dimensional model system are derived from the standard
thin-film equationsslubrication theoryd f28g for the fluid flow
together with reaction-diffusion-advection equations for the
concentrations, also derived using the thin-film approxima-
tion, namely
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together with an “equation of state”

rsa,bd = r0 + g1a + g2b, s7d

wherer0=rs0,0d is the fluid density without the reactantsA−

and B− and g1,2 are the positive solutal expansion coeffi-
cients of speciesA and B. In the above, the pressurep is
independent of the distance across the gap. The velocity
componentsu andv sin the x andy directions, respectivelyd
and the concentrationsa and b are their values averaged
across the gap, following the standard derivation of the equa-
tions for a Hele-Shaw cell.r is the density,g is the accelera-
tion due to gravity,m is the viscosity of the fluid, andK the
permeability, related to the thicknessh0 of the cell by K
=h0

2/12.DA andDB are the diffusion coefficients of reactants
A− and B− andE is the sconstantd electric field strength, on
making the constant field approximation, the validity of
which is discussed in Ref.f19g.

We make Eqs.s2d–s7d dimensionless by introducing the
time T0, lengthL0, and velocityU0 scales

FIG. 1. Schematic representation of the system.
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T0 =
1

k0a0
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, U0 =
gDrK

m
, s8d

with a0 being the initial concentration ofA−, Dr=srr −rpd,
whererr =r0+g1a0 andrp=r0+g2a0 are thefield-freedensi-
ties of the reactant and product solutions, respectively, i.e.,
Dr=sg1−g2da0. We then write

su,vd = U0sū,v̄d, sx,yd = L0sx̄,ȳd,

t = T0t̄, p =
mU0L0

K
p̄, sa,bd = a0sā,b̄d. s9d

In addition, we scale the density asr̄=r /Dr and define

g1 =
g1a0

Dr
, g2 =

g2a0

Dr
Sso that
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This leads to the dimensionless equations for our model as,
on dropping the bars for convenience,
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where we have introduced the stream functionc, defined in
the usual way, and eliminated the pressure from the equa-
tions. Here

D =
DB

DA
, b =

T0U0

L0
=

gDrK

msDAk0a0
2d1/2,

s14d

E = S DA

k0a0
2D1/2

E.

Initially a=1, b=0, andc=0 sno flowd with a local input
of B− applied horizontally across the reactor to start the re-
action. When the density jumpDr across the front is zero,
b=0 and we recover the pure reaction-diffusion system in
the presence of the electric field. WhenDr is increased,b
increases and we can then analyze the influence of
buoyancy-induced convective flows and their coupling with
the applied electric field. For the iodate-arsenous acid reac-
tion, the density of the product after the passage of the wave
is less than the initial reactants, at least when no electric field
is applied f4,5g. From this it follows thatg1.g2 and the
change in density resulting from the reactionsDr.0d means
that upward-propagating waves can become buoyantly un-
stable through a Rayleigh-Taylor instability.

Reactions1d converts allA− ahead of the front toB− be-
hind the front leaving the product at the concentrationb
=bs. This concentration is dependent on both the electric

field strength and the ratio of diffusion coefficientsD f29g,
with, in general,bsÞ1.

III. TRAVELING WAVES

To consider the planar propagating reaction fronts, we in-
troduce the traveling coordinatez=x−ct, where c is the
sconstantd wave speed. This leads to the traveling wave equa-
tions, in the absence of flowsb=0d,

a9 + sc − Eda8 − ab2 = 0,
s15d

Db9 + sc − DEdb8 + ab2 = 0

swhere primes denote differentiation with respect tozd sub-
ject to

a → 1, b → 0 asz → `,
s16d

a → 0, b → bs asz → − `,

wherebs is a constant to be determined and will depend onE
andD. The reaction terms can be eliminated by adding Eqs.
s15d with the resulting equation integrated to get

a8 − sc − Eds1 − ad + Db8 + sc − DEdb = 0. s17d

Expressions17d enables us to determine a relation between
bs and the wave speedc,

bs =
c − E

c − DE
= 1 +

sD − 1dE
c − DE

s18d

with c having to be determined from the solution of Eqs.s15d
and s16d.

Equationss15d–s17d have been examined in detail in Ref.
f29g, where it was shown that, forDÞ1, the existence of a
solution is limited by the field strength, by positive fields for
D,1 and by negative fields ifD.1. For D=1, the equa-
tions have an analytic solution, givingc=1/Î2+E and no
limit on the field strength for the existence of traveling
waves. A typical plot of the wave speedc againstE for D
.1 is shown in Fig. 2sin this case forD=2.0d. Also shown
in the figure isbs. Note that, from Eq.s18d, bs.1 for E
.0 and bs,1 for E,0. A value of the field strengthE
=E0=−1/DÎ2 was also found at which the reaction front
became stationary, i.e.,c=0. There is also, forD.1, a lower
boundEc on E for the existence of waves. ForD=2, Ec=
−0.355 withc,0 for Ec,E,E0. There is no restriction on
positive field strengths for the existence of waves with, for
D=2,

c , 2E + 1.140E1/3 + ¯ ,

bs , 1 + 0.877E2/3 + ¯ asE → `.

In Ref. f29g it was shown that, when traveling waves did not
exist, i.e.,E,Ec whenD.1, complete electrophoretic sepa-
ration ofA− andB− developed, with then no reaction between
these species.

IV. LINEAR STABILITY ANALYSIS

To consider the stability of the reaction fronts to a
Rayleigh-Taylor instability, we put
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asz,y,td = a0szd + Asz,y,td,

bsz,y,td = b0szd + Bsz,y,td, s19d

wherea0szd and b0szd are the traveling wave solutions dis-
cussed in the previous section and takeA,B and c
=csz ,y,td to be small perturbations. We substitute Eqs.s19d
into Eqs.s11d–s13d and look for a solution in the form

Asz,y,td = est+ikyA0szd,

Bsz,y,td = est+ikyB0szd, s20d

csz,y,td = est+ikyc0szd.

This leads to an eigenvalue problem forsA0,B0,c0d in terms
of the growth rates and the wave numberk as

A09 + sc − EdA08 − sb0
2 + k2 + sdA0 − 2a0b0B0 − ba08u0 = 0,

s21d

DB09 + sc − DEdB08 − sDk2 − 2a0b0 + sdB0 + b0
2A0 − bb08u0 = 0,

s22d

u09 − k2u0 − k2sg1A0 + g2B0d = 0, s23d

where we have putu0= ikc0, subject to

A0 → 0, B0 → 0, u0 → 0 asuzu → `. s24d

Equationss21d–s24d were solved numerically using the
technique described in Refs.f13,14g. The method involves
discretizing Eqs.s21d–s23d together with Eqs.s15d using
central-difference approximations for the derivatives. This
enables the system to be written as a matrix eigenvalue prob-
lem, which was solved using theLAPACK solver DGEEVX

f30g. From these calculations, the largest eigenvalues is
determined for increasing values of the wave numberk and
these are the values plotted on the dispersion curves pre-
sented below. A large number of grid points for the compu-
tational domain and accurate representations of the traveling

wave solutions at their front and rear, where the perturba-
tions from the corresponding boundary conditions are expo-
nentially small, are required for an accurate calculation of the
largest eigenvalues. The number of grid pointsN used in
these calculations was dependent on the context, essentially
the width of the planar reaction front.N varied from N
=420 toN=750, with a grid spacingDz=0.1 being used in
each case.

Without an electric field, our model system can have a
purely diffusional instabilitysno flow, b=0d. This requires
D,1 following the argument given in Ref.f23g. Our nu-
merical calculations of the eigenvaluess with b=0, E=0
confirm that this is the case. We find that there is a critical
value of D betweenD=0.5 andD=0.4 for the onset of a
diffusional instability f32g, which is in agreement with the
critical value ofD=0.435 reported previouslyf26,33g.

Our study is motivated by experiments with the iodate-
arsenous acid reaction for whichD.1 f31g, and so we will
not get a diffusional instability in our case. We tookD=2.0
as being a representative value. The aim of our linear stabil-
ity analysis from Eqs.s21d–s24d is to consider how the hy-
drodynamic flowsthrough the parameterbd and the electric
field E affect the transverse stability of the traveling waves.
For this we take a value for the ratiog2/g1=0.5 as being
representativef34g. Here we are concerned with the stability
of upward-propagating fronts. For downward-propagating
fronts, the sign of the buoyancy force term in Eq.s11d has to
be changed to perform the linear stability analysis. We
started by considering the field-freesE=0d case. The results
are shown in Fig. 3 with dispersion curves for different val-
ues ofb. The figure shows thats,0 for all k.0 whenb
=0, as expected, and that the strength of the instability
slarger values for the maximum value ofs and a greater
range of unstable wave numbersd becomes more pronounced
asb is increased.

To assess the effect that applying an electric field has on
the buoyant stability of the reaction fronts, we took given
values ofb=1.0, D=2.0, g1=1, andg2=0.5 and computed
the dispersion curves for a range of field strengthsE. The
results are shown in Fig. 4sad for upward-propagating fronts.

FIG. 2. Speedc of the traveling fronts and autocatalyst concen-
tration bs at the rear of the front, againstE for D=2.0, obtained
from a numerical integration of Eqs.s15d and s16d.

FIG. 3. Dispersion curves for the field-freesE=0d case for a
range of values ofb with D=2.0, g1=1, andg2=0.5.
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This figure shows that the effect of applying a positive field
sin the sense defined in Fig. 1d is to make the reaction fronts
more stablesdecrease the maximum value ofs and the range
of unstable wave numbersd and, for a sufficiently strong
field, to stabilize the wave. In Fig. 4sad we see that, forb
=1.0, the wave is marginally unstable withE=0.5 and fully
stable atE=0.6. The effect of negative fields, where the in-
duced transport of the negative ions is in the opposite sense
to the direction of propagation, is to make the reaction front
more unstable. For example, Fig. 4sad shows a considerable
increase in the maximum value ofs sand an increase in the
range of unstable wave numbersd for E=−0.3 over what it
would be forE=0. Note that there are no traveling waves for
negative field strengths greater thanuEu=0.355 and this is the
limit of the stability analysis.

To consider the effect of the flow parameterb on the
stability of the traveling waves, we took a larger valueb
=5.0 for this parameter and computed the dispersion curves
for the same field strengths as used in Fig. 4sad. The results

are shown in Fig. 4sbd. This figure shows that a stronger flow
makes the waves much more unstable, with all the waves
being unstablesfor both positive and negative field strengthsd
in this case. The maximum value fors and the range of
unstable wave numbers is at least an order of magnitude
greater forb=5 than forb=1.

V. NUMERICAL SIMULATIONS

To test the predictions of the linear stability analysis and
gain insight into the nonlinear dynamics of the system, we
solved Eqs.s11d–s13d numerically using a pseudospectral
code as described in Refs.f12–14,35g. The modification to
this program was to add inslineard terms to account for the
transport of the negative ions in the applied electric field.
This numerical scheme is based on Fourier expansions for
the stream functionc and concentrationsa andb. The result
is sets of time-dependent ordinary differential equations for
the Fourier coefficients, which are integrated using the
Adams-Bashforth method. The integration was performed on
a uniform spatial grid of sizeDx=Dy=1 and a time step
typically of orderDt=0.04. The numerical simulations were
started witha=1 andb=0 everywhere except in a central
horizontal strip wherea=0 while b was set tob=1 to start
the reaction. Noise of 0.1% amplitude was added to the front
to initiate the instabilities. This procedure allows both an
upward- and a downward-propagating wave to develop and
directly follows the experimental proceduref20g. The course
of the reaction is monitored by gray-level plots of the con-
centrations of reactantA− and the autocatalystB− ranging
from 0 swhited to 1 orbs sblackd for a andb, respectively. We
first checked that, in the absence of any flow, the numerical
procedure recovers the reaction-diffusion traveling waves as
well as the correct influence ofE both on the shape and
speed of the waves as described in Ref.f29g. We then inves-
tigated the Rayleigh-Taylor instability of such fronts. To do
so, we tookb=5.0, so as to get a strongly developing insta-
bility, still with D=2.0 and tookg1=1, g2=0.5.

We started with the field-free casesE=0d. The results are
shown in Fig. 5 by gray-level plots ofa at increasing times in
a system of dimensionless width 512. The aspect ratio be-
tween thex andy directions is preserved in the plots. Small-
amplitude disturbances develop on the upward-propagating
front, initially having small wavelengths. These disturbances
grow in size, coalescing as they do so, to produce large-
amplitude cellular fingers seen previouslyf12,13g. Our re-
sults are consistent with those reported in Ref.f12g for the
IAA system and in Ref.f13g for the CT system, except in this
latter case it is the downward-propagating front that becomes
unstable rather than the upward-propagating front in the IAA
system because of the different change in density resulting
from the reaction.

We next considered the effect of applying a given positive
or negative electric fieldsin the sense described in Fig. 1d. To
check the linear stability analysis, we compared the most
unstable mode observed in the nonlinear simulation with the
one predicted by the dispersion curves. To do so, we inte-
grated the nonlinear model for various values ofE in wide
systems such that at least 20 fingers appear at onset. We then

FIG. 4. Dispersion curves for upward-propagating fronts forD
=2.0,g1=1, andg2=0.5 for the positive and negative field strengths
indicated in the figure, withsad b=1.0 andsbd b=5.0. The squares
indicate the most unstable mode as obtained from the nonlinear
simulations.
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computed the most unstable wave numberkm=2p /l and its
growth rates=2p /T wherel is the wavelength of the pat-
tern andT the time when fingering becomes visible on the
gray scale plots of concentrationa. These values are shown
in Fig. 4sbd sby the solid squaresd and can be seen to be in
good agreement with the linear stability predictions.

With E= +0.3, both upward- and downward-scorrespond-
ing to havingE=−0.3d propagating fronts form. The results
are shown in Fig. 6 with gray-level plots ofa andb taken at
t=200. This figure shows that an instability develops on the
upward-propagating front, having a similar form to that seen
when E=0, though it takes a little longer for it to develop

and the resulting cellular fingers are a little less pronounced
scompare with Fig. 5 att=200d. Thus the nonlinear simula-
tions confirm that the upward-moving front is becoming sta-
bilized by the positive electric field as predicted by the linear
stability analysis. This can be understood by inspecting the
transverse averaged profiles of the concentrationsa,b and of
the dimensionless density excess of the solution with regard
to waterr−r0=g1a+g2b sshown in Fig. 7d. WhenE is posi-
tive, the reaction-diffusion front speedc is largerssee Fig. 2d
and so the upward-moving front travels faster than the purely
reaction-diffusionsE=0d case. The downward-propagating

FIG. 5. Gray-level plots ofa in the field-free casesE=0d at timest=50, 100, 150, and 200, withb=5.0,D=2.0,g1=1, andg2=0.5. The
horizontal lines indicate the initial position of the fronts. Gray levels range from whitesa=0d to blacksa=1d. In the absence of an electric
field, only the upward-propagating front is unstable.

FIG. 6. Gray-level plots ofa andb for E= +0.3 at timet=200,
with b=5.0, D=2.0, g1=1, andg2=0.5. The horizontal lines indi-
cate the initial position of the fronts. Gray levels range from white
sa=b=0d to black sa=1; b=bsd. For this positive value ofE, the
upward-moving front is more stable than in the field-free case.

FIG. 7. Transverse averaged profiles of concentrationsa,b and
of the density excessr−ro at time t=200 corresponding to the
gray-level plots shown in Fig. 6. The dotted curve is the initial
condition.
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front sfor which, in effect,E,0d has a smaller speed than
the purely reaction-diffusion case. This larger speed of the
upward-moving front more efficiently opposes the develop-
ment of the hydrodynamic instabilityf11g, making it more
stable.

We can also gain some idea as to why stabilization occurs
by considering thesdimensionlessd density jumpdr across
the upward-moving front in the presence of an electric field,

drsEd = g1 − g2bssEd, s25d

with a necessary condition for buoyant instability of the
upward-propagating front beingdr.0. As bs is an increas-
ing sdecreasingd function for positive snegatived electric
fields ssee Fig. 2d, it follows that applying a positive electric
field increases the value ofbs behind the upward-moving
front and thus reduces the effective density jump across the
front, effectively stabilizing the system. For the present case
bs=1.241, givingdr=0.379, less than the field-free case for
which dr=0.5. As a corollary, the density jump increases for
negativeE and so the descending fronts are made more
stable. This can clearly be seen in the density profilesfFig.
7scdg. In this figure, gravity is acting towards small values of
x and the top of the cell corresponds to largex. The upward-
moving front has a smaller density jump than the initial con-
dition splotted as a dotted lined. This explains why the
upward-moving front is more stable than in the field-free
case. The downward front still has less dense solution above
a heavier one, which is a stable situation. Note that the tiny
peak, for whichr.1, in Fig. 7scd results from the fact that
D.1 and sob diffuses more quickly thana. Hence the front
in b is slightly wider than that ina, leading to a small area of
higher r ahead of the front. This small excess is not large
enough to trigger any fluid motion.

Between the two reaction fronts, an electrophoresis front
in b also developsf29g through which the difference in the
concentration ofb at the rear of the upward- and downward-
propagating reaction fronts is adjustedfsee Fig. 7sbdg. This
gives a local change in densitydre across the electrophoretic
front,

dre = g2sbs
+ − bs

−d, s26d

wherebs
+ andbs

− are the concentrations ofb at the rear of the
upward- and downward-propagating fronts, respectively. In
the present case, this local change in density between the two
fronts does not lead to further instabilities. Figure 7 indicates
the formation of the electrophoresis front and shows that the
transition in the concentration ofb is smoother than in the
much sharper reaction fronts, consistent with the results
given in Ref. f29g. As smooth fronts are more stable than
sharp onesf11g, this could well account for why this density
change is not driving an instability.

We then considered negative fields, starting with
E=−0.3. With respect to just the reaction-diffusion fronts,
this change of sign has the effect only of changing the speed
of propagation of the fronts considered previously with now
the downward-moving front traveling faster. Gray-level plots
of a andb at t=200 are given in Fig. 8. The effect of the flow
is to make the upward-propagating front much more unstable
scompare with Fig. 5 at the same timed. This is due to the

fact that the front travels slower and now there is a greater
change in densitydr across the front. From the traveling
wave solutions,bs=0.638, givingdr=0.681 for this case.
Note that here there is a positive density change across the
electrophoresis frontssee Fig. 9d. This has the effect of “con-
fining” the stronger convection flow behind the upward-
propagating front and thus further enhancing its destabilizing
effect on the upward propagation of the reaction. This is
indicated in Fig. 9, where the transverse averaged profiles are
plotted, suggesting that the reaction takes place within a rela-
tively narrow region with the effects of the flow generated by
the buoyant instability being felt at considerable distances
sahead fora and behind forbd from the reaction zone.

We then took a higher value for the negative field, taking
E=−1.0. In this case, there is no upward-propagating reac-
tion front ssee Fig. 2d and the concentrations ofa andb form
distinct electrophoresis frontsf29g. The results of the nu-
merical simulation att=200 are shown in Fig. 10. The total
separation of the reacting species on the upper front is clearly
seen in the figure. The front ina becomes unstable with
large-scale cellular fingers having formed by this time. The
front in b is stable. The situation in this case is similar to
cellular fingers arising on an interface between nonreactive
fluids of different densitiesssee Refs.f36,37g for exampled
though here the density change is caused by the concentra-
tions of the reaction species and the interface is moving
downwards with a constant speedsuEu for a and DuEu for b

FIG. 8. Gray-level plots ofa andb for E=−0.3 at timet=200,
with b=5.0, D=2.0, g1=1, andg2=0.5. The horizontal lines indi-
cate the initial position of the fronts. Gray levels range from white
sa=b=0d to black sa=1; b=bsd. For this negative value ofE, the
upward-moving front is more unstable than in the field-free case.
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f29gd. Since there is a positive density change only for the
upper front ofa ssee the profiles in Fig. 11d, this is the only
front on which an instability can occur. Note also in Fig. 11
that the large-scale fingering is witnessed by the presence of
bumps in the transverse averaged profiles ofa f12g, which
leads to nonmonotonous changes in the density profile.

Eventually, for strongly negative electric field,E=−3.0
for instancesFig. 12d, we are still in the electrophoretic re-
gime but the value ofbs becomes sufficiently large for the
density jump to be positive both for the upper electrophoresis
front in a and for the lower reaction front ina and b sFig.
13d. As a consequence, both these fronts show the develop-
ment of density fingering, though with very different charac-
teristics. The cellular fingering seen in the electrophoresis
front is similar to that seen in Fig. 10sfor E=−1.0d but is
plotted here at a later timest=300d for which fingering is a
little more vigorous, as can be seen in the profile plots in Fig.
13, especially in the density plot. The instability on the
sdownward-propagatingd reaction front is relatively weak at
this field strength and cellular fingering has not become fully
established by this time.

So far we have considered the fixed values ofg1=1, g2
=0.5 and have seen that varying the intensity of the electric
field can alter the stability of both reaction and electro-
phoretic fronts. It is clear that the stability of a reaction front
depends essentially on the density jumpdr=g1−g2bs across
it. For a fixed value of the electric field, we can expect a

change of stability for the critical value of the ratiog2/g1
=1/bs. For fixed chemical species,g2/g1 is constant and a
change of stability can be triggered by the variation of the
electric field changing the final product concentration and
thus the density of the fluid after the passage of the front, as
we have shown. For a fixedE, depending on the relative
values ofg1 and g2, the stability characteristics can be dif-
ferent. Here all results have been presented forg2/g1=0.5. If
g2/g1 is decreased, the various stability changes we have
described above will be observed for smalleruEu. A change of
stability of electrophoretic fronts cannot be reached by
changes of the ratiog2/g1, as seen by considering expression
s26d for the density jumpdre. Only the magnitude of the
instability depends in that case on the expansion coefficients.

Finally, we note that we have focused on a reaction for
which the reactants are heavier than the productssg1.g2d
such as in the IAA reaction. Generalization of our results to
the case of reactions where the density increases in the
course of reactionsg1,g2d, as it does in the CT reaction, for
example, is straightforward.

VI. DISCUSSION

We have considered the effects that applying a constant
electric field can have on the stability of reaction fronts

FIG. 9. Transverse averaged profile of concentrationsa,b and of
the density excessr−ro at time t=200 corresponding to the gray-
level plots shown in Fig. 8.

FIG. 10. Gray-level plots ofa and b for E=−1.0 at time t
=200, withb=5.0,D=2.0,g1=1, andg2=0.5. The horizontal lines
indicate the initial position of the fronts. Gray levels range from
white sa=b=0d to blacksa=1; b=bsd. For this larger negative value
of E, there is a total separation of the reacting species on the upper
front. The upper electrophoretic front ina is the only one to be
unstable.
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propagating vertically within a Hele-Shaw cell in a cubic
autocatalytic system for which the density decreases across
the front. We have been concerned only with buoyancy-
induced instabilities arising from the natural convection flow
set up by changes in fluid density resulting from the passage
of a reaction front. We have seen that a positive electric field,
in the sense described in Fig. 1, has the effect of stabilizing
the upward-moving front, whereas a negative field magnifies
the instability by increasing the growth rate and the range of
unstable wave numberssFig. 4d. Numerical integrations of
the full nonlinear problem, starting with a localizedsstripd
input of autocatalyst, show the development of large-scale
cellular fingers from the initially small-scale perturbations in
concentration in cases when the system is unstable. The ex-
tent and rate of growth of these fingers is strongly influenced
by the electric field, compare Fig. 5 for the field-free case
with Fig. 6 for a positive fieldsweaker growthd and Figs. 8,
10, and 12 for negative fieldssmuch stronger growthd.

The decrease in fluid density resulting from the autocata-
lytic reaction s1d means that, in general, it is only upward-
propagating fronts that become unstable, with downward-
propagating fronts remaining stablesFigs. 5, 6, and 8d. This
is the case for relatively weak fields. For strongersnegatived
fields, upward-propagating fronts cannot formssee Fig. 2d
and separate electrophoresis fronts inA− and B− develop,
with the front in B− traveling faster than that inA−. This
leaves a region where there are no reactants and in this re-

gion the density is purely that of the solventswaterd, having
a lower density than the initial density when someA− is
present. This density changesheavy fluid above lighterd sets
up an instability on the electrophoresis front inA−. The op-
posite is the case for the electrophoresis front inB−, where

FIG. 11. Transverse averaged profile of concentrationsa,b and
of the density excessr−ro at time t=200 corresponding to the
gray-level plots shown in Fig. 10.

FIG. 12. Gray-level plots ofa and b for E=−3.0 at time t
=300, withb=5.0,D=2.0,g1=1, andg2=0.5. The horizontal lines
indicate the initial position of the fronts. Grey levels range from
white sa=b=0d to blacksa=1; b=bsd. For this large negative value
of E, both the upper electrophoretic front ina and the lower reac-
tion front are unstable.
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light fluid is above heavier, and this front remains stable, see
Fig. 12. These strong fields produce a high concentration of
B− at their rear and, from Eq.s25d, can makedr negative
swith bs sufficiently larged. This gives a situation where
heavy fluid is now above lighter fluid and an instability can
develop on the downward-propagating front. This change in
stability of a downward-propagating front is a novel feature
of our system and is a direct consequence of applying elec-
tric fields.

Finally, we assess the correspondence between the insta-
bility development in our model system and in the experi-
ments using the arsenous acid-iodate reactionf20g. In order
to do so, values of the relevant dimensionless parameters for
the experimental situation need to be determined. The repre-
sentative value ofg2/g1=0.5 used in the model analysis is
directly related to the values of the expansion coefficients
measured for arsenous acid-iodate reaction systemf34g. For
the calculation ofb from Eq. s14d, a value for the density
changeDr has to be chosen. There are several possibilities to
choose from:sid the estimated value ofDr=0.36 kg m−3 cal-
culated from measured values ofg1 and g2 f34g, sii d the
valueDr=0.2 kg m−3 suggested in Ref.f4g, andsiii d the ex-
perimental valueDr=0.1 kg m−3 measured by Ref.f34g as
the difference between the densities of the fully reacted and
unreacted reaction mixtures. Since the compositions of reac-
tion mixtures used in Ref.f34g and in f20g are very similar,
we took the last of these values forDr as the most probable

and determinedb=6. The values of the remaining quantities
in Eq. s14d areg=10 m s−2, m=10−3 kg m−1 s−1 swaterd, DA
=DIO3

−=1.4310−9 m2 s−1, DB=DI−=2.04310−9 m2 s−1, and
a0=fIO3

−g0=5.0310−3 M. The rate constantk0=k2fH+g2 re-
sults from the Dushman-Roebuck kinetic scheme assuming
the arsenous acid-excess casef22g which, for typical concen-
trations of fH+g=6310−3 M and using k2=108 M−4 s−1,
givesk0=3.63103 M−2 s−1. The dimensionlessE was calcu-
lated from Eq.s14d by considering that the quantityE is
related to the applied electric field intensityEexp throughE
=sF /RTdEexp f19g. HereF andR are Faraday’s and gas con-
stants andT is the absolute temperature. The experimental
values ofEexp, leading to the clearly observable changes in
finger development, ranged from 1.5 to 3 V/cm, which cor-
respond to values ofE between 0.75 and 1.5.

Although the values of parametersD, g2/g1, andb esti-
mated for the experimental system coincide well with those
used in our model, there are distinct differences in the elec-
tric field effects on the front stability depending on whether
smallsup to uEu.0.3d or larger fields are used. Weak positive
snegatived electric fields were found to have the same stabi-
lizing sdestabilizingd effects on the ascending front in both
the model and arsenous acid-iodate systemsf20g. As in the
model system, the effects on the arsenous acid-iodate front
stability were assessed through dispersion relations. These
curves, evaluated from experimental data, showed, as in the
model, the decreasesincreased in the range of unstable wave
numbers of upward-propagating fronts in a positivesnega-
tived electric field and the respective decreasesincreased in
the growth rates. Nevertheless, the electric-field-induced
changes in the growth rates in the experimental system were
found to be less pronounced than in the model.

The effects of larger negative electric fields in both ex-
perimental and model systems were found to diverge. While
in the model the stronger negative fieldssE,−0.355d cause
the ascending front to break up into two electrophoretic
fronts, see Figs. 10 and 12, this is not the case for the arse-
nous acid-iodate system. In this case, a front still propagates
as a reaction-diffusion front. However, the effect of the elec-
tric field is to alter the reaction stoichiometry within the front
and the final products of reaction, with now iodine arising as
a final productf16g. The cutoff field is approximatelyEexp
=−1 V/cm f16g, corresponding to the dimensionless value of
E=−0.5. Thus, at larger negative fields, the reaction within
the front changes from the arsenous acid excess case and the
kinetic scheme can no longer be approximated by cubic au-
tocatalysis. Consequently, the predictions obtained in our
model system cannot be applied to the behavior of the arse-
nous acid-iodate system in these larger electric fields.

In the model, larger negative fieldssin the sense defined
in Fig. 1d were found to destabilize descending frontsssee
Figs. 12 and 13d. It should be noted that, since descending
fronts propagate in this configuration towards the positive
electrode, cubic autocatalysis is still an appropriate approxi-
mation of the arsenous acid-iodate reaction kinetics within
the front f16g and the model predictions can be applied to
the experimental system. However, the destabilization of
descending fronts was not observed in the experimental
system. Since the electric field used in the experiments

FIG. 13. Transverse averaged profile of concentrationsa,b and
of the density excessr−ro at time t=300 corresponding to the
gray-level plots shown in Fig. 12.
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suEexpu=3 V/cm giving uEu=1.5d is weaker than the field pre-
dicted in the modelsE=−3.0d, the possibility of destabilizing
a descending front in the arsenous acid-iodate system by
large negative fields remains open.
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