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Abstract

Successful control of livestock diseases requires an understanding of how they spread amongst
animals and between premises. Mathematical models can offer important insight into the dynamics
of disease, especially when built upon experimental and/or field data. Here the dynamics of a range
of epidemiological models are explored in order to determine which models perform best in
capturing real-world heterogeneities at sufficient resolution. Individual based network models are
considered together with one- and two-class compartmental models, for which the final epidemic
size is calculated as a function of the probability of disease transmission occurring during a given
physical contact between two individuals. For numerical results the special cases of a viral disease
with a fast recovery rate (foot-and-mouth disease) and a bacterial disease with a slow recovery rate
(brucellosis) amongst sheep are considered. Quantitative results from observational studies of
physical contact amongst domestic sheep are applied and results from the differently structured
flocks (ewes with newborn lambs, ewes with nearly weaned lambs and ewes only) compared. These
indicate that the breeding cycle leads to significant changes in the expected basic reproduction ratio
of diseases. The observed heterogeneity of contacts amongst animals is best captured by full
network simulations, although simple compartmental models describe the key features of an
outbreak but, as expected, often overestimate the speed of an outbreak. Here the weights of
contacts are heterogeneous, with many low weight links. However, due to the well-connected
nature of the networks, this has little effect and differences between models remain small. These
results indicate that simple compartmental models can be a useful tool for modelling real-world
flocks; their applicability will be greater still for more homogeneously mixed livestock, which could

be promoted by higher intensity farming practices.

Keywords: sheep flocks; disease transmission; weighted contact-network; compartmental models;

stochastic simulation.
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1 Introduction

Livestock diseases present a challenge to global food security and are of socioeconomic importance
both in industrialized nations (e.g. Paarlberg et al., 2008) and the developing world (Perry and Grace,
2009; Rushton, 2009). It is important to understand the spread of pathogens amongst animal hosts
both for livestock heath and productivity and potentially for human health directly, since the
majority of emerging infectious diseases are of zoonotic origin (Taylor et al.,, 2001; Jones et al.,

2008).

Mathematical models are an established tool in epidemiology, offering qualitative and often
guantitative insights into the possible dynamics of diseases. Their potential for helping to
understand livestock diseases is particularly strong because of the relatively structured lives of

domestic animals (in comparison to, for example, studying wildlife or human interactions).

Epidemiological models have already been applied to a number of important diseases, such as foot-
and-mouth disease (e.g. Ferguson et al., 2001; Keeling et al., 2001; Keeling, 2005; Tildesley et al.,
2006; summary in Schley, 2007; Jewell et al., 2009), Bluetongue (Gubbins et al., 2008; Hendrickx et
al., 2008), brucellosis (England et al., 2004) and classical swine fever (Backer et al., 2008). Most,
however, only consider disease transmission explicitly on a large scale i.e. between premises, making
use of livestock movement data and holding records, while actual transmission data is generally
restricted to small scale experiments between a few animals. Although infection between
individuals is therefore reasonably well understood for a number of pathogens, it is fallacious to
assume that groups of animals will respond in the same way; key temporal factors such as the latent,
incubation and infectious periods are likely to be different for herds and flocks than for individual

animals.

Group level dynamics will be driven by the pattern of interactions between susceptible and
infectious hosts, as well as intrinsic properties of the pathogens. How these relate to individual

dynamics can be non trivial, especially if behaviour is not homogeneous. The number and relative
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strength of connections between individuals impacts on the basic reproduction number for an
outbreak (Keeling and Grenfell, 2000). These properties, as well as factors such as group size and
heterogeneity, determine what theoretical structures (mathematical models) are appropriate in
different settings. For example, human contact patterns have been found to be more
heterogeneous than assumed by classic homogeneous-mixing models, but “not as variable as some

have speculated” (Bansal et al., 2007).

While well parameterized network models can provide an accurate description of populations with
complex contact structure, they are analytically intractable and less transparent compared to
compartmental models. In many situations output from network models is compared to output from
low dimensional ODE models, to see if compartmental models could provide an acceptable
substitute for full-network simulations. This could significantly reduce computation time for regional
simulations in which group models are only one component, and also potentially increase the

transparency of complex simulations.

It is of practical value to determine what level of model complexity is required to adequately
describe realistic scenarios, and where approximating assumptions do not undermine the validity of
results. Here field data on physical contact between domestic sheep is applied to a series of models
to identify the most suitable mathematical structure for representing disease transmission in flocks.
Domestic sheep were selected since they are probably the least intensively farmed animals in the UK
and most of Europe, and consequently have the potential to be the least homogeneously mixed,
with much less enforced direct or indirect contact than, for example, indoor reared pigs or dairy

cattle.

2 Methods

There exist a number of detailed studies on the nature and composition of flocks — for a review see
for example Fisher and Matthews (2001) and Nowak et al. (2008) — and previous observations have

found age-dependent behaviour amongst sheep, as well as that driven by parenthood. It is
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therefore appropriate to consider distinct age classes, which in turn necessitates consideration of
flocks at different times in the breeding cycle. The models developed here are based upon the
amount of physical contact between all individuals within a flock. In addition to generic analytic and
numerical results, explicit examples are then derived using data from observational field studies of
conventionally managed UK domestic flocks; three different data sets were modelled (from flocks
with: young (newborn) lambs and their mothers; older (nearly weaned) lambs and their mothers;

mature ewes only) — for details see Supplementary Information section S1 and Table 2.

2.1 Contact rates

Data for each flock is in the form of an adjacency matrix C = {Cij}Ki N : this records the frequency

of physical contacts between individuals, where N is the total number of sheep. The resulting
matrix is symmetric since a contact between sheep | and sheep | contributes to both C; and C;
i.e. contacts are not considered directional, with no distinction made between which animal initiated

or received the contact. This is an appropriate assumption when considering disease transmission,
since it is the contact alone that is important. Where there is no contact between two sheep, the
entry is zero (including C; for i =1,...N ). This is not uncommon between ewes, which are known to
separate from the flock to give birth (Fisher and Matthews, 2001). For dyads involving lambs we
might expect an eventual link if animals are observed for long enough, although in some cases this
timescale may be longer than the flock classification, involving growing lambs, is valid for; however,
over this time many additional contacts are likely to be made across existing links so that nature of

the weighted network would not be significantly altered.
This matrix of weighted contacts can be interpreted as a weighted network, where the strength of a
link C; is simply equal to the frequency of contacts between individual iand j. For the purpose of

the analysis, all rates have been scaled to units corresponding to the expected number of contacts

per day. Figure 1 shows the degree distribution of the within-flock networks by considering every
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non-zero entry in the contact matrix as a link in the network. Also shown are the per-link weight
distributions for each of the three different flocks considered. The networks, in all three situations,
are relatively well connected with individuals having a high number of links and with a per-link
weight distribution that is skewed towards smaller weights. The implications of these network

properties are discussed below.

The contact matrix C ={Cij} \ will be the building block for all the within-flock models and will

1<, j<
contribute to defining both (i) individual based models that are accurate and account for all the
detailed information in the contact matrix and (ii) compartmental models constructed at a group
(i.e. ewes and lambs) or whole population (i.e. the entire flock) level. The latter require only
group/population metrics that can be obtained by appropriate averaging of all the rates in the full
contact matrix. How the data feeds into the stochastic simulation and approximate ODE models is

illustrated clearly below.
2.2 Disease dynamics

As there is significant variability in the dynamics of different sheep diseases, results derived here are
kept as general as possible. Where appropriate foot-and-mouth disease (FMD), a viral disease with a
fast recovery rate of 7-8 days in sheep (Alexandersen et al., 2002), and Brucellosis, a bacterial
disease with a slow recovery rate of approximately 3 weeks in sheep (The Center for Food Security
and Public Health, 2009) are considered as exemplars: in all cases the parameter ranges presented

encompass the respective expected values for both diseases.

To provide estimates of the transmission probability between animals for the exemplar FMD, the
experimental data of Orsel et al.(2007) is considered. This provides the infection status, at the end
of a 14-day trial period, of six groups of four unvaccinated lambs, two of which were initially infected
(by inoculation), the other two being susceptible individuals (for details see Orsel et al., 2007).
These results are fitted to a stochastic model, together with an estimated recovery time of 7-8 days

(Alexandersen et al., 2002) to derive the force of infection, from which the probability of
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transmission is estimated using the contact data described above — see Supplementary Information

section S3 for full details.

In all the models that follow, both stochastic simulations on networks, stochastic and deterministic
ODEs, the simple SIR paradigm is considered. In this case, an individual moves from being susceptible
(S) to being infected and infectious (| ) at a rate proportional to the number of infectious contacts
it has (in compartmental models this may be formulated in a number of ways; see for example
(Begon et al., 2002)). Infectious individuals move to a recovered state ( R ), where they are immune
to further infection (possible because they are dead), at a rate that is independent of the network or
state of the population. The SIR dynamic is suitable diseases such as FMD and Brucellosis, and have
been previously used in this context — see for example (Keeling et al., 2001; Moutou and Durand,

2002) and (England et al., 2004) respectively.
2.3 Individual-based network models

The most comprehensive model makes full use of the contact network data. A network
representation of the contact matrix is used, in which each individual (i.e. sheep) is a node in a
network. Susceptible individuals are at risk of becoming infected when in contact with at least one
infectious individual, with a higher frequency of contact (here given by a higher weighted link
between nodes) resulting in a higher transmission rate. For example, in a small time interval ot the

probability of a susceptible individual I becoming infected is:

jeA

1—exp [—z pcijdtj

Where Az{k:sheep inclass I; 1<k < N} and P is the probability that an individual contact

between a susceptible individual and an infectious individual results in transmission. It follows that
higher contact rates lead to a higher probability of transmission. Similarly, in the same small time

interval, infectious individuals have a probability of recovery equal to:
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Stochastic simulations of the network are updated asynchronously, following the Gillespie algorithm,
whereby the time to next event, T, is an exponentially distributed random variable chosen from an

exponential distribution with rate R, , where R; is the rate of all possible transitions given the

current infectious status of all sheep. It follows that working out R; amounts to summing all the

infection and recovery rates across the whole network. The inter-event time is directly related to the
total rate, with large rates resulting in small inter-event times. Once the time to next event is

determined, a single event out of all possible is chosen at random but proportionally to its rate.

The large heterogeneity or variance in frequency of contacts across links as well as in the number of
links that individuals have (see Figure 1) is investigated by setting up network simulation models
where the contact rate across the network is conserved but weights are distributed equally either
per group (lambs and ewes) or per flock, either over existing links or over a fully connected flock.
The closest approximation to true-life behaviour is assumed to be given by the most complex model,

namely:

I.  The fully weighted heterogeneous network, as defined by the matrix C = {Cij}]si <N

In addition to the above, the following scenarios are also considered:

I. A network with all link conserved but with all contact rates across links being constant and

equal to the average of all contact rates over the number of existing links:

1 <N N
e ZMZHZHC” L:{Cij Gy # 0}

where

[l A semi-homogeneous two-class fully connected network, with all contact rates replaced by

the group-level means for the daily contact rate between: two ewes (C,); between two

lambs (C, ); and between a ewe and a lamb (C_, ):
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Ce = N (N 1) ZZ ij? G = N (N 1) ZZ ij? Cn = ZZCU’

jeG, IEG J€GieG, | JeG i€G

Where N, is the number of ewes, N, the number of lambs in each flock (with N, =0 in the

mature flock), giving N = N, + N, sheep in total, and G, and G, are the set of indices for

ewes and lambs in each matrix respectively (so that|Gi| = Ni fori=¢g,l).

IV. A completely homogeneous one-class fully connected network, with all contact rates equal
to the flock mean c:

N(N -1) PRI

j=li=l
In practice 5 /¢ =N (N —1)/|L|.

Comparison of these network models allows us to determine the impact of heterogeneity in contact
and contact weight distribution, as given by the data, on the spread of an epidemic. Of significance
here are the degree and per-link weight distributions for each of the three different flocks being
studied, as shown in Figure 1. The semi- and completely-homogeneous networks also provide

benchmark results for assessing the validity of compartmental models.

2.4 Compartmental ODE models

The flock networks described above lend themselves to being modelled using a two-class SIR
ordinary differential equation (ODE) system. Building on work by Kiss et al. (2009), where a two-
group preferential mixing model was formulated from a contact network point of view, a two-class
SIR model representing ewes and lambs is constructed. The force of infection the product of: the
rate of contact Kk an individual has with the rest of the group; the probability that any given contact

is between a susceptible individual and an infectious individual — here assumed to be frequency
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dependent i.e. equal to | /N ; and the probability P that such a contact successfully results in

transmission (Begon et al., 2002). The model takes the form:

where the subscripts € and | refer to the ewe and lamb populations and k., , k, , Kk, and k, are

ee’ el

the average contact rates between a ewe and other ewes, a ewe and lambs, a lamb and ewes and a

lamb and other lambs respectively. In the absence of one or other population (e.g. N, =0) the

system collapses down to the standard single-class model:

dsS

|
O k—s
a - PN

dl |

O ks —yl
a NS
aR_

a7

with transmission rate (pk/ N) IS (where e.g. the total population N = N, and there is only a

single contact rate K =k This simpler ODE model may also be applied to mixed flocks (consisting

ee)'

of ewes and lambs, with N = N_ + N, and contact given by the flock-level averagek ), but at the

cost of neglecting much of the structure that is present in the individual to group mixing.

10
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This group-model is a simplification of the full network description, much more amenable to
analysis, rapid computation and real-life parameterization: below its potential to approximate the

output from the full individual-based simulation is assessed.

Note that the mean contact rates k,, are different (but related to) the mean contact rates c, : for
compartmental models it is the total contact an individual has with all members of each group that
determines transmission, rather than the pair-wise contact rates. These group-level rates are

derived from the full weighted contact matrix C by:

1 1

kee=NiZZcij, ke|=N—ZZCi,-, kle=NiZZCu, ku=WZZCw

e i€G, jeG, e i€G, jeG | i€G jeG, | i€G, jeG

where G, and G, are defined as above. For the whole flock average we have

k =%iicij =(N-Jc.

i=1 j=1

Within each flock most contact rates are also significantly different to each other (see
Supplementary Information Table 3 for full details), suggesting that the assumption of homogeneous
contact required by a single class model is not appropriate for breeding flocks. These rates k,, are
also all significantly different between the three different flock types (see Supplementary
Information Table 4 for details), apart from the rate of contact a ewe has with other ewes while she

has lambs, which does not change significantly with the age of the lambs.
The following models are considered numerically, for each of the three flocks:

V. two-class ODE compartmental model, differentiating ewes and lambs, with group level

contact rates k., Kk, , k,, and k;, :

ee’ el

i deterministic solution;

ii. stochastic realization;

11
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VI.  one-class ODE compartmental model, combining all sheep, with group level contact rate k :
i deterministic solution;
ii. stochastic realization;

with analytical results presented for V.i and VLi. Obviously for the ewe-only flock models V and VI

are identical.
2.5 Numerical simulations

Although it is assumed that parameters derived from the contact data are applicable to all flock sizes
of more than three or four animals (see discussion for limitations), the underlying assumptions of
the deterministic model are only truly valid in the limit of large N . Since here disease dynamics are
firstly considered amongst a conventional sized flock of only about 30 animals, it is appropriate to
qguantify the effects of stochasticity on results. Stochastic network and stochastic ODE simulations
were implemented through Matlab (MathWorks, 2010), with all results based on 5000 replicates
unless stated otherwise. Numerical solutions of the deterministic system were derived using the

Matlab routine ode45, but are only considered in relation to analytical results.

Disease is seeded in one individual i.e. | (0) =1 and S(O) =N —1; in the case of networks the
individual is chosen at random from the N nodes in the network for each replicate, while for the
ODE models a class is chosen at random weighted by the size of each class (i.e. N,/ N and N,/N).

In practice the contact between the ewe and lamb groups is sufficiently strong that there is no

significant difference in results on whether it is a ewe or lamb that is initially infected.; an epidemic

may result even if K, K,, or both are zero, provided that k, >0 (and hence k, >0), since this is

sufficient to connect all members of the flock.

12



249 2.6 Mathematical analysis

250 Following the methodology of Van den Driessche and Watmough (2002), which notes that only the
251 rate at which the number of infectious individuals changes influences Ro , it can be shown that the
252 rates at which new infections appear and are removed when the system is in the disease free

253  equilibrium (Ne, N,,0, 0) are given by

kee keI &
N, y 0
254 F=p N and V = 0
kle_I ku 4
N

255  respectively. R, is given by the leading eigenvalue of FV .

_ p kee + I(II + \/(kee - kII )2 + 4kel kIe

256 R,
14 2

257 For the ewe-only flock the conventional form: R, = Bk is applied.

258  The final epidemic size r” is the proportion of the flock that become infected i.e. does not remain in

259  the susceptible population. For the mixed-model this is given implicitly by:

e )
. o7 =$(ke (1-exp(-7))+k, (1—exp(—¢,°")))
o = g(km (1— exp (-7 )) +k, (1— exp (- )))

263 For the ewe only flock the standard implicit formula:

13
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holds. Although the final proportion infected individuals does not depend on the total population
size N , it is if affected by the fraction of the population that is ascribed to each group if the rates of

within-group or between-group contact are different.
3  Results

3.1 Analytical results from deterministic models

The estimated values of R, as function of the recovery rate yand the probability of a contact
(between and infected individual and a susceptible one) resulting in transmission P for each of the

trials are given in explicitly in Table 1, but of greatest interest is the relative magnitude of the basic

reproduction number within the flock at different times of the year. This is independent of P
and 7, and shows that the presence of lambs significantly increases physical contacts and that this is

worst when lambs are young:

with newborns with weaned
—— =161, ——=4.6.
Rewes only Rewes only

0 0

Using the conventional (single class) form for R, these ratios would be less (13.7 and 4.0

respectively). It is important to note that the increased number of contacts in flocks with ewes is not
purely a result of parent-offspring contacts, but increased interconnectivity overall between and

within the age classes (see Table 2 in Supplementary Material for explicit details), so that the

calculation of R; is relevant.

The final epidemic size as a consequence of physical contact, as a function of the probability of
successful transmission P is shown in Figure 2. Results indicate that an epidemic is much more
likely to take off in a flock with lambs (increasingly so with younger lambs) and that only in an all

adult flock is it likely that some individuals will remain uninfected. Note that unless the recovery

14
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rate ¥ is exceptionally high, only a very low probability of successful transmission per contact is

required to sustain the disease.

Epidemic length t° is the time of recovery of the last case, since the start of the first case, while the

time of peak infectiousness t~ is defined as the time when the largest number of animals are

infectious: these may be extracted from simulations by considering the duration for which

I =1,+1, 20 (or, more precisely for the continuous model, some strictly positive threshold value)

and the time when max{l} are attained respectively. For the single-class model an analytical
t>0

solution exists (see for example House and Keeling, 2011 and references therein). Figure 3 presents
the median of 1000 stochastic replicates (where these in no ambiguity in the definition of to),

although numerical simulations of the deterministic system are similar (i.e. near-identical for t).
Differences in the rates of contact within each flock impact on the length of the outbreak, although
the interaction between the probability of infection and the rate of recovery is perhaps more
significant. For flocks with lambs infection is predicted to die out without a minor outbreak (or full
epidemic) only if the probability of successful transmission on contact P is very low, while for the
ewe only flock the parameter landscape is dominated by self-limiting outbreaks unless the disease

recover rate is very slow.
3.2 Numerical results from stochastic simulations and model comparisons

Results indicate a strong effect of breeding cycle (i.e. differences between flock types) that appears
to hold for both highly pathogenic and low virulence diseases — see Figure 4 for results for a realistic
range of P . The presence of lambs facilitates a much quicker spread of the disease and such flocks
have a much higher chance of experiencing an epidemic. This is to be expected, given the presence
of lambs that are more highly connected and who have a much greater frequency of repeat contacts
(see Figure 1), which more than compensates for the reduction in connection between ewes that is

seen in breeding flocks compared to ewe-only groups. The number and strength of links decreases

15
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as lambs grow older, and amongst mature animals a per contact probability of transmission of an
order of magnitude bigger is required in order to achieve an outbreak similar to that observed in a
flock with newborn lambs (see Figure 4). Explicitly, for our estimated parameter values for FMD (see

Supplementary Information section S3) the system results in die-out amongst mature ewes

(S(t)zS(O)Vt), a partial outbreak amongst ewes with nearly-weaned lambs(

S(O) > S(t) >0Vt) and an epidemic amongst ewes with new-born lambs (S(t) —0,t >) on

the full weighted network. Figure 4 also shows the predicted epidemic from compartmental
systems: results from the ODE models lie well within the 95% confidence intervals for all

combinations of flock demographics and the full range of p. There is no significant difference

between the one- and two-class models for these parameter values, which represent a highly
virulent disease, and so only the two-class solution is shown in Figure 4. Results from and stochastic
realisations of the ODEs are closer to the (stochastic) networks than deterministic solutions, as one

would expect.

The two-class model provides a framework to describe a flock of sheep that contains distinct groups,
i.e. both ewes and lambs. Figure 5 gives results for models | — VI (both deterministic and stochastic
ODE systems, and the four alternative network models) for a flock of ewes with nearly weaned lamb
(the median group in terms of connectivity). This case was chosen as it had the greatest difference
between results from the full weighted network simulations and the ODE models i.e. results for
flocks at other times in the breeding cycle are much more consistent. All the group-wise
approximated networks (models II-IV) predict very similar results, and are all much closer to the ODE
outputs (models V-VI) than to the output from the full weighted network simulation (model I): in fact
there is little difference between the one- and two-class networks and the stochastic realisation of
their counterpart compartmental ODEs, but more so with the deterministic solutions as would be
expected. This suggests that the heterogeneity in the contact rates acts to somewhat slow the

spread of diseases. The lack of difference between the one-class and two-class ODEs (models V-VI) is

16
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due to the very high rates of mixing between the groups and probability of transmission combining

to give a strong force of infection.

Results for smaller and larger flocks (e.g. derived for 6 to 300 animals) remain consistent with these

conclusions.
4 Discussion

Results for a two-class frequency-dependent SIR model, representing ewes and lambs in sheep
flocks, have been presented (and compared to the one-class model), including important
epidemiological parameters such as the basic reproduction ratio and the final outbreak size, in terms
of the disease recovery rate, the contact rates between groups and the probability that transmission

occurs following contact between a susceptible and an infectious individual.  Application of the

models to observational field data indicates that the basic reproduction ratioR, increases

dramatically in the presence of lambs, an effect that decreases with their age as might be expected.

Furthermore, this increase is underestimated if a conventional (single class) formulation of R is

used. Flock demographics influence not only how quickly a disease spreads, but also the final
epidemic size. It has previously be shown that when the basic reproduction number is kept constant,
the final epidemic size in the heterogeneously mixed population is always smaller than in an
equivalent homogeneously mixed population (Andreasen, 2011). It is clear here, however, that the
absence of lambs contributes significantly to reducing the overall size of the outbreak as a result of
their contact dynamics (see Figure 2). These results suggest that variability in the structure (and
resultant connectivity) of conventionally managed sheep flocks as a result of the breeding cycle can

have a significant impact on the potential spread of directly-transmitted ovine diseases.

The output from the ODE models was compared to the output from simulations run on weighted
networks derived from observed field data. Although individual based simulations on networks are
usually regarded as the most accurate type of model, there are a number of considerations that

need to be taken into account when assessing their appropriateness. Firstly, networks are very good
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at describing situations in which contact patterns between individuals are well defined. For this to be
the case, what constitutes a contact as well as who contacts whom needs to be well defined. In this
case the level of physical contact between individual animals is appropriately defined by the
observational data, although what constitutes a successful transmission is less clear. For example,
during data collection, each observed contact was weighted equally, regardless of the type of
contact (e.g. head but, rub etc) or duration, although the vast majority were short lived contacts.
This means that the rates given in the full contact matrix are the approximations for the expected
number of individual short lived contacts between two sheep, regardless of type. This differs from,
for example, a sexual contact network, in which the contact between individuals is such that there is
a more clearly defined possibility of disease transmission. For the short lived contacts recorded here
it is less clear if disease transmission, given contact, is possible. Modelling using networks assumes
frequency dependent contact which is independent of population size (Begon et al., 2002). Whether
a frequency or density dependent approach should be used depends heavily on the flock setup and
how it is managed: for example, if the flock is roaming on open hillside then a frequency dependent
approach seems suitable. However, if the flock was rounded up and kept in a tight pen, then a
density dependent approach would seem more suitable, as each the number of contacts would
depend upon how many were in the pen (see Supplementary Information section S4 for further

details justifying the formulation adopted here).

In general, as graphs become more densely connected, the results from stochastic simulations on
graphs tend to approach the mean-field approximation, given by ODE models (Simon et al., 2010),
which is exactly the situation shown in Figure 4 and Figure 5. As expected, for a very high
(potentially unrealistically) probability of transmission per contact the differences are less significant,
since in this case almost all individuals become infected rapidly. It is interesting to note that the full
network simulation is markedly more different from the mean-field result than the homogeneous or
semi-homogeneous network models. Since the main difference between the various network

models lies in the distribution of contacts, the observed differences shown in Figure 5 must be
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driven by it. The difference between the output from homogeneous and heterogeneous networks
can be explained intuitively as follows. Links with high weight are relatively rare (as detailed in Figure
1) and hence they will play a minor role in the overall dynamics, which is going to be dominated by
links with low weights. This leads to slower dynamics and smaller epidemics. However, when the
contribution of highly weighted links is spread evenly across all links, the previously numerous low-
weight links become more potent in transmitting the infection and this leads to both faster and

larger epidemics.

It appears that differences in contact structure and frequency can always be compensated for in this

network by adjustments in the per-contact probability of infection P, to produce similarly behaving

outbreaks in different flocks. A close inspection of the subplots on the main diagonal of Figure 4
shows a very similar time evolution of the epidemic, which suggests that the fundamental structure
of the networks is similar, despite the huge variability in the weight of the contacts that are present
(both in degree and per-link weights). While the full network simulation best captures the observed
heterogeneity of contacts amongst animals, the simpler compartmental models describe the key
features of an outbreak. Deterministic solutions over-predict the speed and scale of an outbreak,
but fall well within the 95% confidence intervals predicted by the full simulation, with stochastic

realisations considerably closer still.

Full network simulations of observed flocks indicate that the differences in the predicted disease
dynamics between the single-class and two-class models are small when the group as a whole is
strongly connected, as appears to be the case for grazing sheep. Furthermore, conventional sized
flocks of the size modelled here are sufficiently small for stochastic effects to be important, with
stochastic realisations as opposed to deterministic solutions of compartmental models comparing
favourably with the network simulations. Although the actual flock sizes simulated here were small,
the modelling and the use of data are applicable to flocks of different sizes, at least where contact is

optional (as opposed to a result of overcrowding), given the known social behaviour of sheep and
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the conditions under which data was collected (see summary in Supplementary Information Section
S1, or Norton et al. (2011) for full details). Unless space is restricted and resources are limited,
group size does not have a large impact on social behaviour (Fisher and Matthews 2001) or grazing
(Penning et al., 1993) provided there are not less than four animals. Sheep place social bonds above
food preferences (Sibbald et al., 2008), with distance between individuals is not correlated with

range size provided there is sufficient grazing (Crofton, 1958).

These results indicate that simple compartmental models can be a useful tool for modelling real-
world flocks; their applicability will be greater still for more homogeneously mixed livestock, such as

might be expected with higher intensity farming practices.
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Tables

Table 1.Estimated R, of whole flock based on the average number of physical contacts per day for
ewes and lambs; here ¥ is the recovery rate and P is the probability of a contact (between and

infected individual and a susceptible one) resulting in transmission.

Flock Ro

Ewes with newborn lambs 1171 ply
Ewes with nearly weaned lambs 34aply
Ewes only 8aply
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Figures

Figure 1. The degree distribution (top row) and per-link weight distribution
(bottom row) for the three flocks: (a & d) ewes and newborn lambs (blue); (b & e) ewes
and nearly-weaned lambs (green); and (c & f) ewes only (red). The mean degree for
each scenario is (a) 14.5; (b) 6.9; and (c) 6.3; the mean per-link weight for each flock is

(d) 74.3;(d) 49.0 and (f) 13.4.
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522

523 Figure 2. Final epidemic sizer”, as a function of the transmission probability P
524  for physical contacts amongst a flock with (top) a fast recovery rate similar to FMD
525 (y=2/15) and (bottom) a slower recovery similar to brucellosis (y =1/21) for: ewes

526 with newborn lambs (blue), ewes with nearly weaned lambs (green) and ewe only (red)

527  flocks in a conventional group with two lambs per ewe on average.
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540

Figure 3. Epidemic length t°(left column) and time of peak infectiousness t"(right

column) in days, as a function of the recovery rate yand the transmission probability
P for physical contacts amongst a flock of 30 sheep consisting of: 10 ewes with 20

newborn lambs (top), 10 ewes with 20 nearly weaned lambs (middle) and 30 ewes only
(bottom), based on initial infection of a single ewe. Results are derived from the
median of 1000 replicates of the stochastic two-class (or one-class where appropriate)

ODE system, and distinguished according to whether infections die out (blue:

S(t)ZS(O) Vt), result in partial outbreaks (green: S(O)ZS(t)ZOVt) or cause
epidemics that infect the entire flock (red: S(t)—)O,t—)oo). When infection dies out,

peak infectiousness occurs at the outset of the outbreak (1" =0) by definition.

0.02

i — — —_—
e e
e e e e

e

0.0001 i
p o025 04

200

e
0 s

200

27



541

542
543
544

545

546
547
548
549
550
551
552
553
554
555

556

Figure 4. The time evolution of a potential outbreak amongst the three different
flocks (top row: ewes with new-born lambs; middle row: ewes with nearly weaned

lambs; bottom row: ewes only). Herey=2/15, appropriate for FMD, and results are
presented for three different values of P (the probability of transmission occurring

during contact): the estimated value for FMD (middle column) and values an order of
magnitude smaller (left column) and larger (right column) than this. The total number
of susceptible S (blue), infected | (red) and recovered R (green) individuals is plotted
as a function of time: the solid lines show the median values from stochastic
simulations of the full weighted network, with the shaded bands showing confidence
intervals in steps of 5%. The dashed line shows results from stochastic simulations of
the two-class ODE (or one-class where appropriate) system, while the dotted line gives
results from the deterministic equations. Note that the number of ewes and lambs is
as in the field trials, and varies slightly for each flock (see Supplementary Information

section S1 for details).
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Figure 5. Time evolution of the number of infected for ewes with nearly-weaned
lambs (here N =25) for y=2/15 and p=1.789x10", the estimated recovery rate and

probability of transmission per contact respectively for FMD (see text). For all
network models, the median number of infected individuals is shown: the black line
shows the results from simulations on the full weighted network (model I), with the
grey shaded bands showing confidence intervals in steps of 5%, the white line
represents simulations on a network that is heterogeneous in the number of contacts,
but homogeneous in contacts rates (model Il); the magenta line shows results a semi-
homogeneous two-class fully connected network, with the contact rates being the
appropriate group averages (model 1ll); the cyan line shows results from a
homogeneous fully connected network, with the contact rates being the population
average (model 1V); the blue and red lines represent results from the two-class ODE
(model V) and one-class ODE (model VI) respectively, with a solid line for the
deterministic solution, a dashed lined for the median of the stochastic results and a

dotted line for the mean of the stochastic results.
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Supplementary Information

S1. Flock data

Data is taken from the observational field studies of sheep flocks in the UK (Norton et al., 2011).
Three distinct flocks were considered: eleven ewes with eighteen young lambs (the latter only a
couple of weeks old); the same flock less fallen stock some time later, consisting of ten ewes with
fifteen older lambs (just prior to weaning); and a mixed-age flock of thirty mature breeding ewes
only. Sheep were a mixture of Dorset and Dorset-cross and grazed in 1.7-2.3 hectare paddocks,
which is representative of conventional farming practice. Data was collected using focal animal
sampling, which is recommended for relatively unbiased data (Altmann, 1974). This has been found
to be accurate for livestock behaviour observations provided a sufficient proportion of all animals is
observed (Mitlohner et al., 2001), and was applied to the whole group. Each flock was observed for
approximately six hours per day for fifteen days over a three to four week period, with each
individual animal in the flock the focus of observations for a randomly allocated ten minute window
per day. Thus only a subset of dyads could be observed at any one time (specifically those involving
the focus animal) but every animal was part of at least one observed dyad at any time and any
animal could record a contact at any time. All physical contacts between individuals (consisted of
sniffing, head-butting, suckling or attempted suckling, mounting, pawing, standing astride, rubbing
or resting on) were recorded, irrespective of which animal initiated the contact. Results, scaled to

the expected number of physical contacts per day for each dyad, are given in Table 2.
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594  Table 2. Weighted contact matrices for physical contact amongst different flocks, from (Norton et al., 2011); here letter-number combinations (e.g. G1, B3)

595  refer to individual ewes with suffix letters (a, b) referring to their respective lamb(s).

2A Expected number of physical contacts per days in a flock of ewes with newborn lambs
Gl Gla Glb G2 G2a G2b G3 G3a G3b G4 Gd4a G4b G5 G5a G5b Bl Bla Blb B2 B2a B3 B3a B4 Bda

@
o

B5a

@
0o

B8a B8b

G1 0 585.6 384 0 0 288 0 9.6 0 0 0 0 0 0 0 0 19.2 19.2 0 9.6 0 0 0 9.6 0 0 0 0 0

Gla |585.6 O 2496 384 9.6 576 288 48 2838 0 19.2 0 96 9.6 384 19.2 288 1056 O 0 48 192 O 0 0 19.2 0 0 9.6
Glb | 384 2496 O 57.6 19.2 672 9.6 288 9.6 0 48 9.6 0 192 48 192 96 576 0 84 0 768 19.2 19.2 0 0 0 76.8 38.4
G2 0 384 576 0 3456 6816 96 9.6 0 0 9.6 0 0 19.2 48 0 0 0 0 19.2 0 0 0 9.6 0 0 0 0 28.8
G2a 0 9.6 19.2 3456 0 3072 O 0 0 3744 288 384 0 76.8 288 0 9.6 9.6 0 0 192 96 9.6 0 0 0 0 9.6 9.6
G2b | 28.8 57.6 67.2 681.6 307.2 O 96 96 576 0 28.8 28.8 0 67.2 19.2 0 9.6 0 0 576 0 384 96 384 192 576 O 9.6 19.2
G3 0 288 9.6 96 0 9.6 0 758.4 4416 O 0 9.6 0 28.8 0 0 0 9.6 0 1824 96 192 96 288 0 9.6 0 0 19.2
G3a | 96 48 288 96 0 9.6 7584 0 3168 96 48 384 67.2 48 288 9.6 1056 96 288 288 192 288 9.6 48 0 0 0 9.6 9.6
G3b 0 28.8 9.6 0 0 57.6 4416 3168 0 384 O 96 96 76.8 19.2 0 9.6 19.2 0 0 0 192 0 9.6 0 19.2 0 0 9.6
G4 0 0 0 0 3744 0 0 96 384 0 547.2 624 0 9.6 0 0 9.6 0 0 0 0 9.6 0 384 0 0 0 0 9.6
G4a 0 19.2 48 9.6 288 288 O 48 0 5472 0 2304 O 9.6 9.6 0 9.6 48 9.6 19.2 0 384 96 768 0 9.6 0 0 28.8
G4b 0 0 9.6 0O 384 288 96 384 96 624 2304 O 0 28.8 9.6 0 0 0 19.2 0 0 0 0 19.2 192 96 288 O 0

G5 0 9.6 0 0 0 0 0 672 096 0 0 0 0 355.2 288 0 96 288 O 0 0 288 0 0 0 9.6 9.6 0 0

G5a 0 9.6 19.2 192 76.8 672 288 48 768 96 96 288 3552 O 480 0 288 576 0 19.2 0 384 0 28.8 57.6 9.6 0 0 0

G5b 0 384 48 48 28.8 19.2 0 288 19.2 0 9.6 9.6 288 480 0 0 28.8 1056 O 19.2 0 0 0 28.8 0 0 0 0 864
B1 0 19.2 19.2 0 0 0 0 9.6 0 0 0 0 0 0 0 0 268.8 288 0 0 0 9.6 0 0 0 9.6 0 0 384
Bla | 19.2 288 9.6 0 9.6 9.6 0 1056 96 96 9.6 0 96 288 288 2688 0 5184 0 384 0 144 0 0 0 48 0 0 672
Blb | 19.2 1056 576 O 9.6 0 9.6 9.6 19.2 0 48 0 28.8 57.6 105.6 288 5184 O 19.2 288 192 48 96 48 0 0 576 576 288
B2 0 0 0 0 0 0 0 288 0 0 9.6 19.2 0 0 0 0 0 19.2 0 384 0 0 9.6 19.2 0 0 0 0 9.6
B2a | 9.6 0 864 19.2 0 57.6 1824 288 O 0 19.2 0 0 19.2 19.2 0 384 288 384 0 9.6 19.2 288 19.2 96 288 384 O 9.6
B3 0 48 0 0 192 0 9.6 19.2 0 0 0 0 0 0 0 0 0 19.2 0 9.6 0 2304 O 0 0 0 0 0 0

B3a 0 192 768 0 9.6 384 192 288 192 96 384 0 288 384 0 9.6 144 48 0 19.2 2304 O 9.6 288 192 48 288 96 76.8
B4 0 0 19.2 0 96 96 96 96 0 0 9.6 0 0 0 0 0 0 96 96 288 O 9.6 0 499.2 O 9.6 0 9.6 9.6
B4a | 9.6 0 19.2 96 0 384 288 48 9.6 384 76.8 19.2 0 288 288 O 0 48 19.2 19.2 0 28.8 499.2 O 0 2496 96 0 576
B5 0 0 0 0 0 19.2 0 0 0 0 0 19.2 0 576 0 0 0 0 0 9.6 0 192 0 0 0 2112 O 0 0

B5a 0 19.2 0 0 0 57.6 9.6 0 19.2 0 96 96 96 9.6 0 9.6 48 0 0 288 0 48 9.6 2496 2112 O 19.2 182.4 163.2
B8 0 0 0 0 0 0 0 0 0 0 0 288 9.6 0 0 0 0 576 0 384 0 288 0 9.6 0 19.2 0 4128 336
B8a 0 0 768 0 9.6 9.6 0 9.6 0 0 0 0 0 0 0 0 0 576 0 0 0 9.6 9.6 0 0 1824 4128 0 2112
B8b 0 96 384 288 96 192 192 96 96 96 288 O 0 0 864 384 672 288 96 96 0 768 9.6 576 0 1632 336 2112 O
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596

2B Expected number of physical contacts per days in a flock of ewes with nearly weaned lambs

Gl Gla Glb G3 G3a G3b G4 G4a G4b G5 G5a G5b Bl Bla Blb B2 B2a B3 B3a B4 Bd4a B5 B5a B8 BS8b
G1 0 57.6 96 0 0 0 0 9.6 0 0 9.6 19.2 0 0 0 0 0 0 0 0 0 0 0 0 0
Gla |576 0 1728 O 0 0 0 19.2 9.6 0 0 0 0 0 1056 O 19.2 0 0 0 76.8 0 0 0 19.2
Glb | 96 1728 O 0 0 0 0 19.2 9.6 0 9.6 19.2 0 48 0 0 0 9.6 0 0 0 9.6 0 0
G3 0 0 0 0 48 105.6 19.2 9.6 0 0 0 0 28.8 19.2 0 0 19.2 384 0 0 0 576
G3a 0 0 0 48 0 1728 0 9.6 0 0 28.8 0 9.6 0 0 0 0 0 96 144 192 O 19.2 19.2
G3b 0 0 0 1056 1728 0 0 0 9.6 0 0 0 9.6 0 0 0 0 0 0 0 0 0 0 9.6 0
G4 0 0 0 19.2 0 0 0 172.8 240 0 0 0 0 0 192 0 0 0 0 0 0 0 0 0 0
G4a | 96 192 192 96 9.6 0 1728 0 9.6 0 0 0 0 9.6 9.6 0 8.4 O 9.6 0 9.6 0 0 0 9.6
G4b 0 9.6 0 0 0 9.6 240 9.6 0 0 0 0 0 0 0 9.6 19.2 0 0 0 19.2 0 0 0 9.6
G5 0 0 9.6 0 0 0 0 0 0 1152 96 0 0 0 0 0 0 0 0 0 0 0 0
G5a | 9.6 0 0 0 0 0 0 0 0 1152 O 67.2 0 0 0 9.6 0 0 0 0 0 0 0 0
G5b | 19.2 0 9.6 0 28.8 0 0 0 0 9% 67.2 0 0 0 48 0 384 O 0 0 0 0 9.6 9.6 0
B1 0 0 192 0 0 9.6 0 0 0 0 0 0 0 240 1152 O 0 0 28.8 0 0 0 9.6 0 0
Bla 0 0 0 0 9.6 0 0 9.6 0 0 0 0 240 0 9.6 0 19.2 0 0 9.6 0 0 0 0 9.6
Blb 0 105.6 48 0 0 0 19.2 9.6 0 0 0 48 1152 9.6 0 0 576 0 0 0 19.2 0 0 0 0
B2 0 0 0 288 0 0 0 0 9.6 0 0 0 0 0 0 0 2304 O 19.2 0 0 0 0 0
B2a 0 19.2 0 19.2 0 0 0 864 19.2 0 96 384 0 19.2 576 2304 O 0 9.6 0 288 0 0 0 9.6
B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2112 O 0 0 0 0 0
B3a 0 0 9.6 0 0 0 0 9.6 0 0 0 0 288 0 0 19.2 9.6 2112 O 0 0 0 9.6 0 9.6
B4 0 0 0 19.2 9.6 0 0 0 0 0 0 0 0 9.6 0 0 0 0 0 192 0 0 0 0
B4a 0 76.8 0 38.4 144 0 0 9.6 19.2 0 0 0 0 0 192 0 28.8 0 0 192 0 0 0 9.6 48
B5 0 0 0 0 19.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1056 O 0
B5a 0 0 9.6 0 0 0 0 0 0 0 9.6 9.6 0 0 0 0 9.6 0 1056 0 0 96
B8 0 0 0 0 19.2 9.6 0 0 0 0 9.6 0 0 0 0 0 0 0 9.6 0 144
B8b 0 19.2 0 57.6 19.2 0 0 9.6 9.6 0 0 0 9.6 0 0 9.6 0 9.6 0 48 0 96 144 0
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2C Expected number of physical contacts per days in a flock of mature ewes only
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598  S82. Contact rates

599 Table 3.Significance level for rejection of the null hypothesis that group level average physical
600 contact rates come from identical continuous distributions with equal median under the Wilcoxson
601  rank test. Rates which are not significantly different at the 5% level are highlighted in bold: these are

602 as might be expected assuming lamb-initiated contacts.

603

Flock Total physical contacts p
ewe with ewes ewe with lambs <10
ewe with ewes lamb with ewes <10’
ewe with ewes lamb with lambs <10°

Ewes with newborn lambs
ewe with lambs lamb with ewes <0.05
ewe with lambs lamb with lambs <0.66
lamb with ewes lamb with lambs <0.02
ewe with ewes ewe with lambs <10°
ewe with ewes lamb with ewes <10™
ewe with ewes lamb with lambs <10™
Ewes with nearly weaned lambs
ewe with lambs lamb with ewes <0.05
ewe with lambs lamb with lambs <0.39
lamb with ewes lamb with lambs <0.37
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604  Table 4.Significance level for rejection of the null hypothesis that group level average physical
605  contact rates come from identical continuous distributions with equal median under the Wilcoxson
606  rank test. All rates between flocks are different with the exception of the contact between ewes

607 when they have lambs.

Physical contacts Flocks ¢]
Ewes with newborn lambs Ewes with nearly weaned lambs <0.88
ewe with ewes Ewes with nearly weaned lambs Ewes only <10*
Ewes only Ewes with newborn lambs <10*
ewe with lambs Ewes with newborn lambs Ewes with nearly weaned lambs <10°
lamb with ewes Ewes with newborn lambs Ewes with nearly weaned lambs <10
lamb with lambs Ewes with newborn lambs Ewes with nearly weaned lambs <10
Ewes with newborn lambs Ewes with nearly weaned lambs <10®
any with all Ewes with nearly weaned lambs Ewes only <107
Ewes only Ewes with newborn lambs <10™

608
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S3. Disease dynamics

The stochastic single-class ODE model was run with N =4 for 0< pk <1, with the optimal value

(based upon a million replicates) chosen as that which generated a final epidemic size distribution
that most closely matched that of the six experiments. Based upon absolute differences (see Figure

6) the best fit is given by the product pk ~ 0.15. This is similar to the transmission rate f =0.105

(95% Cl: 0.044,0.253) estimated by Orsel et al.(2007).

Figure 6. Shaded regions represent the distribution of the number of uninfected
individuals expected after 14 days following the protocol of (Orsel et al., 2007), based
on a million replicates, compared to the proportion of actual experiments in which this
occurred (horizontal lines). The dashed line is a measure of the discrepancy, based
upon the absolute difference in all three classes — hence generating two local minima

(the most appropriate value is considered to be the median of these).

1 :
S(14)=2
0.9 S(14)=1
I S(14)=0

Survival fraction

‘. \IH \

p.k
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Estimates of P require this product to be scaled by a suitable contact rate, which is difficult given

the artificial conditions of the experiment. Since the lambs were approximately ten weeks old (Orsel
et al., 2007) but separated from their mothers, it is unclear as to whether data for nearly weaned
lambs or from non-parental (ewe only) flocks is the most appropriate. Results are presented for the
full range of estimated possible p — based upon the highest and lowest contact rates recorded,

with the best available estimate considered to be that based on the uniform animal group: k =83.3

yields p=1.789x107° for FMD in sheep.
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S4. Compartmental models

The assumption of the frequency-dependent model is that the total number of contacts an animal
has in a given day does not change with flock size; rather, there is a reduction in the average number
of contacts between any two individuals as the number of animals increases. This is generally
accepted as the most reasonable approximation, especially for larger groups, as it is not expect that
animals rush around in a large group maintaining the same number of contacts with all other
individuals as they have in a small group, although at present there is no clear data for sheep to
confirm this. An alternative formulation is to assume that individuals maintain a certain level of
contact between each other, irrespective of the number of animals in the group. The standard

(single-class) model then becomes:

ds
— =—pclS
dt P

dl

— = pclS —yI
dt
R_,
dt

where C is the average number of contacts per timestep between two individuals (as opposed to k,
the average number of contacts in total that an individual has with all other individuals). This
formulation may be more appropriate as the number of animals decreases, since it is unlikely that
individuals will try to maintain the same number of total contacts in a small group that they
experience in a large group, without some upper limit on the amount of contact between two
individuals. It should be remembered, however, that as N — 0 the underlying assumptions of the
compartmental model are undermined, and stochasticity (including die-out) becomes increasingly

important. A frequency-dependent formulation is therefore more appropriate for compartmental

models.
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S5. Network Analysis Glossary
Adjacency matrix: for a network of N individuals, the (i,j) entry of the NxN adjacency matrix indicates

how individual i is connected to individual j. If contact is undirected the matrix will be symmetric.

Degree: the number of connections a given node has to all other nodes. In a weighted network, the

weighted degree is the sum of the connection weights.

Dyad: two individuals regarded as a pair.

Weight: the strength attached to each link. In an unweighted network all links are represented by

either 0 (no contact) or 1 (contact) in the adjacency matrix.
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