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Numerical solutions of the travelling wave equations that arise in the two-variable Oregonator model for the
BZ reaction are obtained for a wide range of parameter values. The main feature is the saddle-node bifurcation
in the solutions, giving upper bounds for the existence of travelling waves and indicating the change from the
excitable to the subexcitable regimes. The values of the upper bound fm of the stoichiometry factor f in the
model are determined in terms of the excitability parameter e for various values of the kinetic parameter q and
D, the ratio of the diffusion coefficients of HBrO2 and the oxidized form of the catalyst.

1 Introduction

Propagating pulses of reaction are basic to many spatially dis-
tributed chemical or biological systems and, in particular, are
an important feature of excitable media. In these systems the
pulse consists of a rapid reaction, the ‘excitory region ’, fol-
lowed by a much slower recovery to its original state. During
the recovery stage the system is refractory, being insensitive to
further stimuli. As a result, excitable systems subject to exter-
nal stimuli above the threshold required to excite the medium
usually form single pulses or trains of equally spaced waves
(target patterns). The excitable media, perhaps, studied in most
detail, both experimentally and theoretically, are based on the
Belousov–Zhabotinsky (BZ) reaction. The excitability of the
BZ reaction was predicted originally by Field and Noyes1

and later confirmed experimentally.2 As well as being of inter-
est in their own right, these systems are also used as paradigms
for the more complex excitable media that arise in the bio-
logical context.
Models for BZ systems are often based on Oregonator

kinetics,3,4 which involve the three active species, an autocata-
lyst HBrO2 , an inhibitor Br� and an oxidised form of the cata-
lyst Mox . Expressing this mechanism in dimensionless form5,6

shows that, to a good approximation, the concentration of
Br� can be regarded as varying quasi-statically in relation to
the concentrations of the other two active species. In this
reduced, two-variable form, the reaction dynamics are relatively
simple. There is only one (chemically acceptable) steady state,
with parameter values for which this is an excitable state. There
is also the possibility of oscillatory behaviour arising fromHopf
bifurcations. This two-variable reaction mechanism has been
used extensively as the kinetics in models of spatially-distributed
systems,7 both as a generic model for excitable media and, more
directly, to describe specific effects seen in BZ systems (effects of
electric fields8–10 and differential illumination on a light sensitive
version of the BZ reaction11–14 are two such examples).
Even though this kinetic model has been used very widely for

spatially distributed systems, one aspect that has not been trea-
ted fully is basic and concerns the travelling waves that can arise
in the model. These are waves, constant in form, propagating
with a constant speed and dependent only on a single travelling
co-ordinate. The problem lies in obtaining reliable numerical
solutions to the ordinary differential equations that describe

these waves. The main difficulty of which is having to account
accurately for the very different length scales of the excitory and
recovery regions. Progress towards understanding travelling
wave solutions has been restricted to asymptotic limits15–17

and to piecewise-linear representations of the kinetics.18,19

For the Oregonator scheme, the asymptotic solutions are
derived in the limit as e! 0, where the parameter e (see the
model described below) can be regarded as a measure of the
excitability of the system, and give the wave speed in this limit.
Recently we have derived a reliable numerical algorithm for

solving travelling wave equations, which can have very differ-
ent length scales for the reaction zones.20–22 This method
was developed originally for a series of combustion problems,
where the wave structure can have a qualitatively similar form
to that arising in the Oregonator model for the BZ reaction.
We have been able to adapt this technique successfully to deal
with the BZ system and we are able to determine numerical
solutions to the travelling wave equations for this system over
a wide range of parameter values.
A significant feature that emerges clearly from our numeri-

cal solutions is the limit on the existence of waves for non-zero
values of e; the asymptotic solution for e! 0 does not provide
such an upper bound. This effect has been recognised in
numerical solutions of corresponding initial-value problems
and has been referred to as the system becoming ‘subexcita-
ble ’.13,14 At this parameter boundary the system changes from
being excitable, where above-threshold inputs lead to propa-
gating pulses, to subexcitable, where there is propagation
failure. This effect has also been observed in experiments on
light-sensitive versions of the BZ reaction.13,23 The behaviour
of this excitable boundary has not previously been fully mapped
out in parameter space. Our numerical scheme allows us to
do this with this boundary then being seen as arising from a
saddle-node bifurcation in solutions to the travelling
wave equations. So the change from excitable to subexcitable
is seen as an ‘extinction’ effect with an abrupt change in nature
between these regimes.

2 Equations

In the Tyson–Fife dimensionless variables the two-variable
Oregonator model in a one-dimensional spatially distributed
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system leads to the equations

@u

@t
¼ @2u

@x2
þ 1

e
uð1� uÞ � fwðu� qÞ

uþ q

� �
ð1Þ

@w

@t
¼ D

@2w

@x2
þ u� w ð2Þ

where D ¼ Dw

Du
(ratio of diffusion coefficients) and the other

parameters are the standard Oregonator parameters, see refs.
5–7,24 for example. In eqns. (1) and (2), u and w are dimen-
sionless concentrations of HBrO2 and Mox , respectively. This
model assumes that v, the dimensionless concentration of
Br�, varies quasi-statically with u and w as

v ¼ fw

uþ q

To obtain the corresponding travelling wave equations we
introduce the travelling co-ordinate y ¼ x� ct, where c is the
(constant) wave speed (without any loss in generality we can
assume that c� 0), and look for a solution in the form
u ¼ u(y), w ¼ w(y). This results in the travelling wave
equations

u00 þ cu0 þ 1

e
uð1� uÞ � fwðu� qÞ

uþ q

� �
¼ 0 ð3Þ

Dw00 þ cw0 þ u� w ¼ 0 ð4Þ

(where primes denote differentiation with respect to y). The
boundary condition is (for a single pulse)

ðu;wÞ ! ðus;wsÞ as jyj ! 1 ð5Þ

where (us ,ws) is the steady state of the kinetic system, given by

us ¼ ws ¼
1

2
1� f � qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f � qÞ2 þ 4qð f þ 1Þ

q� �
ð6Þ

Before examining the solutions to the travelling wave eqns.
(3)–(5), it is useful to consider briefly the temporal stability of
the kinetic system. If we put u ¼ us +U, w ¼ ws +W and
linearize the kinetic equations (essentially eqns. (1) and (2) with-
out the spatial derivative terms), we obtain the linear system

dU

dt
¼ 1

e
ðaU � bWÞ; dW

dt
¼ U �W ð7Þ

where

a ¼ 1� 2us �
2 fqus

ðus þ qÞ2
; b ¼ f ðus � qÞ

ðus þ qÞ

Note that b > 0 and, for any values of the parameters,
b� a > 0. A solution of eqn. (7) in the form (U,W)/ elt leads
to an equation for l as

l2 þ 1� a
e

� �
lþ b� a

e

� �
¼ 0 ð8Þ

From eqn. (8) we see that the temporal stability of the
kinetics is determined by the function a ¼ a( f,q). There is a
Hopf bifurcation at a ¼ e, with the kinetics being stable for
a< e and unstable for a > e. Graphs of a against f for a range
of values of q are shown in Fig. 1a. This figure shows that there
are values f1 and f2 of f (which depend on q) at which a ¼ e,
with the system being oscillatory for f1< f< f2 and stable
and excitable for f > f2 . This situation is more clearly seen
in the sketch shown in Fig. 1b. Fig. 1a shows that f2 increases
as e or q are decreased.
Using the approximate expression us ’

ð f þ 1Þq
ð f � 1Þ for q small

(and f > 1) derived in ref. 25, gives

a ’ 1þ 2 f � f 2

2 f
; b ’ 1

from which it follows that, for q small,

f2 ’ 1� eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2eþ e2

p
ð! ð1þ

ffiffiffi
2

p
Þ as e ! 0Þ

3 Travelling waves

We now consider numerical solutions to the travelling wave
eqns. (3) and (4) subject to boundary condition (5). We start
with a brief description of our numerical method.

3.1 Numerical method

The numerical method we used is an adaptation of that
described in detail in ref. 21. The basic idea behind the method
is to approximate the original problem eqns. (3)–(5) with a
related problem on a finite interval [0,L]. The zero-flux bound-
ary conditions

u0ð0Þ ¼ w0ð0Þ ¼ 0; u0ðLÞ ¼ w0ðLÞ ¼ 0 ð9Þ

are applied at the ends of the domain. Since the problem is
translationally invariant we need an extra condition to fix
the position of the wave. To do so, we take

u0ðy0Þ ¼ 0 ð10Þ

(i.e. assuming that u takes its maximum value at y0), with
0< y0<L. Previously,21 this condition was taken at an end
of the domain, the form of the concentration profiles in the
present problem make it more suitable to apply it at an inter-
nal point. This constraint gives an additional equation, which
we use to determine the wave speed c. Eqns. (3) and (4) are dis-
cretized on the interval [0,L] and the algebraic equations that
result, together with those arising from the boundary condi-
tions (9) and the additional constraint (10), are sufficient to
determine c and the values of u and w at the mesh points.
The resulting nonlinear equations were solved by Newton–

Raphson iteration. As an initial starting guess we fed in a wave

Fig. 1 (a) Plots of a against f for a range of q, the kinetic system is
stable for a< e. (b) A sketch of a against e to show the change from
unstable (oscillatory), a > e, to stable (excitable), a< e, behaviour at
f ¼ f2 .
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profile obtained from a solution of the initial-value problem
[eqns. (1) and (2)] for one set of values of f,q,e,D. This estimate
was used to start the iterative procedure to obtain a solution of
[eqns. (3) and (4)], which was then continued in parameter
space by a standard pseudo-arc length continuation method.26

Checks were made on the value of L to ensure that the steady
state (u,w) ¼ (us ,ws) was achieved with sufficient accuracy at
the ends of the computational domain. We found that taking
L ¼ 60 (and y0 ¼ 40) was suitable for most of the parameter
ranges considered.

3.2 Results

We start by giving plots of the wave speed c against f for a
range of values of e in Fig. 2a, taking q ¼ 0.002, D ¼ 1.0,
and a plot of c against e for f ¼ 2.5, q ¼ 0.002, D ¼ 1.0 in
Fig. 3. The main feature to note about the curves shown in
Fig. 2a is the upper limit fm on f for the existence of a solution.
There is a saddle-node bifurcation in the solutions at f ¼ fm ,
with no travelling wave solutions for f > fm and two solutions
for f< fm . The value of fm increases as e is decreased (for given
values of D and q). This feature of the solutions can also be
seen in Fig. 3, for a given value of f (and D and q) there is
an upper bound on e for the existence of a travelling wave.
Fig. 2a shows that there are also lower bounds on f for the

existence of travelling waves. These appear on both the upper
and lower solution branches for the larger values of e. For the
smaller values of e this appears only on the upper branch, the
lower branch can be continued to c ¼ 0. This feature is
explained more fully in the Appendix. There we show that,

for given values of c, e, D and q, there exist two values of f,
f �1 , f

�
2 , such that for f values satisfying f �1 � f� f �2 there are

no travelling wave solutions (as single pulses). In Fig. 2b we
plot f �2 against c for e ¼ 0.05, q ¼ 0.002, D ¼ 1, together with
the corresponding ( f,c) curve (also shown in Fig. 2a). On the
left-hand side of the f �2 curve there are no travelling wave solu-
tions, and explains why the ( f,c) curve has the end points seen
in Fig. 2a. We note that in the domain lying on the left-hand
side of the f �2 curve there can be wave train solutions, the
existence of which we plan to investigate in the future.
An approach used previously to discuss travelling waves in

excitable media is to consider the high excitability limit. The
general approach to obtaining travelling wave solutions for
excitable systems in the limit of high excitability has been given
in ref. 15. In the present case this corresponds to obtaining
a solution to eqns. (3) and (4) valid for small e. For our
Oregonator kinetics this first requires the transformation

y�¼ e�1y; c ¼ e�1=2ðc0 þOðeÞÞ ð11Þ

The leading order wave speed c0 is then determined by the
problem

u00 þ c0u
0 þ uð1� uÞ � fusðu� qÞ

uþ q
¼ 0 ð12Þ

on �1< ȳ<1 (primes now denote differentiation with
respect to ȳ), subject to

u ! us as y�! 1; u ! u0 as y�! �1 ð13Þ

where u0 is a zero of the kinetics of eqn. (12) and is given by

u0 ¼
1

2
1� q� us þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q� usÞ2 � 4 fq

q� �
ð14Þ

Eqn. (12), subject to eqn. (13), has to be solved numerically.
This is most easily done by writing it as a first-order equation
for u0 in terms of u. An examination of the equilibrium points
(us ,0) and (u0 ,0) in the (u,u0) phase plane shows that they are
both saddle points. Thus the required solution is a saddle–sad-
dle connection, giving a unique value for c0 for given values of
the other parameters. The results for q ¼ 0.002 are shown in
Fig. 4 with a plot of c0 against f. The computations show that
c0 decreases slowly as f increases. No upper bound on f was
found (the computations were carried on to higher values
of f shown in Fig. 4). For f ¼ 2.5 we found that c0 ¼ 1.5651,
giving c�1.5651e�1/2 as e! 0. This expression is also plotted
on Fig. 3 (by the broken line), showing good agreement with
the numerical integrations for the full system even for moder-
ate values of e. The results for q ¼ 0.0008 are also given in Fig.
4, showing that c0 increases (for a given value of f ) as q is

Fig. 2 (a) Plots of the wave speed c against f for a range of e and for
q ¼ 0.002, D ¼ 1.0. (b) Plot of f�2, determined from condition (19), for
q ¼ 0.002, e ¼ 0.05, D ¼ 1. f�2 is the limit of travelling wave solutions
(also shown in the figure).

Fig. 3 Plot of the wave speed c against e for f ¼ 2.5, q ¼ 0.002,
D ¼ 1.0 (full line). The asymptotic expression for small e is shown
by the broken line.
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decreased. Finally, we note that these results for the asympto-
tic wave speed c0 are independent of D.
We can use this result to obtain an estimate of the wave

speed in terms of the initial concentrations of the reactants.
In dimensional terms, the asymptotic wave speed is given by

v ¼ c0fDk5½Hþ�½BrO3
��g1=2

where k5 is the rate coefficient for the autocatalytic step in the
FKN scheme.3,4 Substituting the appropriate values for k5 and
D, this gives

v ¼ 0:03c0
½Hþ�½BrO�

3 �
M

� �1=2

ð15Þ

where v is in cm s�1 and M is in mol dm�3. This result is con-
sistent with the simple ‘Fisher-type ’ analysis based purely on a
quadratic autocatalytic feedback of BZ waves (for which
c0 ¼ 2). The dependence of the coefficient c0 on q and f indi-
cates how this form is modified for the actual feedback pro-
cesses in the Oregonator model. In fact, c0 is a relatively
insensitive function of q and f, as shown in Fig. 4. Taking
c0 ¼ 1.6 as representative, eqn. (15) becomes

v � 0:5
½Hþ�½BrO�

3 �
M

� �1=2

:

3.3 Limit of travelling waves, the saddle-node bifurcation

The upper limit fm ¼ fm(q,e,D) on f for the existence of travel-
ling wave solutions is, perhaps, the most significant feature to
emerge from our numerical integrations. This feature, the sad-
dle-node bifurcation in the solutions to the travelling wave
equations, does not appear in the solutions obtained in the
small e limit. We now discuss this aspect in more detail. We
are able to compute fm for varying e by writing eqns. (1) and
(2) in terms of t and the travelling co-ordinate y, linearizing
about the travelling wave solution and looking for a solution
of the resulting equations, which has a zero temporal eigen-
value (giving the saddle-node bifurcation). This determines fm
in terms of the other parameters. The results for q ¼ 0.002,
D ¼ 1.0 are shown in Fig. 5a with a plot of fm against e. Also
shown in this figure (by the broken line) is f2 , the position of
the Hopf bifurcation in the kinetic system. This figure shows
that fm increases as e is decreased, with fm becoming large
for very small values of e. This is in line with the small e solu-
tion (described briefly above), which does not have an upper
bound on f for existence. For larger values of e, the curve
crosses the Hopf bifurcation curve (at e ¼ 0.0867 for these
parameter values). For higher values of e there are no
travelling wave solutions in the excitable parameter range.
We next consider the effect that changing the parameters D

and q has on the limit fm of the travelling wave solutions.

We start with the ratio of diffusion coefficients. The values
for the diffusion coefficients of HBrO2 and ferriin given in
ref. 27 for example, suggest a value for D’ 0.4. Some numer-
ical simulations assume that Mox is immobile, modelling it
being fixed in a gel, see refs. 7,12 and 14 for examples. This
corresponds to taking D ¼ 0 in eqns. (3) and (4). Both these
cases were considered and the corresponding plots of fm
against e are also shown in Fig. 5a (all for q ¼ 0.002). The fig-
ure shows that fm increases (for a given value of e) as D is
decreased. Thus the range of existence of travelling waves
increases as the diffusion coefficient of Mox is reduced relative
to that of HBrO2 .
Alternative values for the parameter q have been suggested

for the Oregonator model and, to examine the effect of chan-
ging this parameter, we calculated fm for q ¼ 0.0008 to com-
pare with the results for q ¼ 0.002 (both with D ¼ 1.0).
Plots of fm against e for these two cases are shown in Fig.
5b. The figure shows that fm is larger for the smaller value of
q, with the difference between the two cases becoming a less
significant as e is increased.

4 Discussion

The saddle-node nature of the bifurcation at fm is clearly seen
when we consider the pulses that arise in the initial-value pro-
blem, eqns. (1) and (2). We integrated these equations numeri-
cally starting with u and w in their spatially uniform states (6)
with u raised to an above-threshold value in a small region.
The pulses that formed were monitored by plotting their pro-
pagation speed c(t) against t. Results for q ¼ 0.002, e ¼ 0.05,
D ¼ 1.0 are shown in Fig. 6 for various values of f. In this case
fm ¼ 3.1946 and for f< fm (results for f ¼ 2.5 and f ¼ 3.0 are
shown in the figure) the wave speed rapidly approaches that
given on the upper branch in Fig. 2a, suggesting that this is
the stable branch. For f > fm , a pulse starts to develop, propa-
gates for a while with a slowly decreasing speed before dying
out rapidly as c(t)! 0. The length of time that a pulse exists
decreases quite quickly as f increases from fm . For values of

Fig. 4 The leading order wave speed c0 obtained from the asymptotic
solution for small e, given by eqns. (12) and (13), plotted against f for
q ¼ 0.002 and q ¼ 0.0008.

Fig. 5 Plots of fm , the maximum value of f for which travelling wave
solutions exist, against e for (a) D ¼ 0.0, 0.4, 1.0 with q ¼ 0.002. The
position of the Hopf bifurcation in the kinetic system at f2 is shown by
the broken line. (b) For q ¼ 0.0008, 0.002 with D ¼ 1.0.

Phys. Chem. Chem. Phys., 2003, 5, 5448–5453 5451



f just above fm , pulses can exist for relatively long times, much
longer times than are required for a pulse for f< fm to form,
compare the plots for f ¼ 3.0 and f ¼ 3.21 in Fig. 6. An inte-
gration with f ¼ 3.20 (not plotted in the figure) showed that a
pulse existed until t’ 7.71. This indicates the difficulty in locat-
ing fm exactly from numerical integrations of the initial-value
problem.
Further numerical integrations of eqns. (1) and (2) have

been performed for other values of e and f< fm and in all these
cases it was the pulses on the upper solution branch that deve-
loped at large times. This suggests that this is the stable branch
and that the lower branch solutions are temporally unstable.
As part of our numerical integrations of the travelling wave
eqns. (3) and (4) we computed the temporal eigenvalues (with
largest real part). These calculations confirmed that the upper
branch was stable and the lower branch unstable, at least for
the range of parameters considered. Coupled with this is the
possibility that the upper branch solutions may lose temporal
stability through a Hopf bifurcation. This change in stability
has been seen in piecewise linear models18 and might be
expected to arise in the present model. However, in our numer-
ical integrations of eqns. (3) and (4) we were unable to find this
bifurcation for the upper branch solutions. We did find solu-
tions with complex eigenvalues but their real parts were nega-
tive in all cases. This does not preclude a Hopf bifurcation
occurring but it does suggest that it will require a much fuller
numerical search. The numerical integrations we have per-
formed show that, when a single pulse exists on the upper
branch, i.e. f �2 < f< fm , this is a temporally stable solution
and will be the solution that develops in the initial-value pro-
blem eqns. (1) and (2) from a single, above-threshold initial
perturbation.
For all our numerical solutions we found that f �2 < f2 , i.e.

the lower bound on f for solutions on the upper branch to exist
was in the oscillatory region for the kinetics. We are unable to
establish this directly from eqns. (19) and (20), mainly because
these involve the wave speed c, which has to be computed. We
performed some integrations of the initial-value problem eqns.
(1) and (2) for f< f �2 (in the oscillatory region) and found that
in all cases a wave train developed from a single initial pertur-
bation. For smaller values of e we were able to continue the
lower branch to c ¼ 0 (and smoothly to negative values of c
since c ¼ 0 did not give a singularity in the solution). Thus
there are single stationary pulse solutions to eqns. (3) and
(4), though all these appear to be unstable solutions of the sys-
tem (1) and (2).
One application where Oregonator kinetics are extensively

used is to model the change from excitable to subexcitable
regimes seen experimentally in light-sensitive BZ systems, see
refs. 13, 14 and 23 for examples. The effect of applying light
of (dimensionless) intensity f results (ref. 14) in the modifi-
cation of eqn. (3) to

u00 þ cu0 þ 1

e
uð1� uÞ � ð fwþ fÞðu� qÞ

ðuþ qÞ

� �
¼ 0 ð16Þ

This changes the steady states (now determined from a cubic
equation) but does not give rise to any additional complica-
tions for our numerical method. To illustrate the effect of f
on the travelling waves that can form in this system, we took
q ¼ 0.002, f ¼ 2.5 and D ¼ 0 (following ref. 23) and computed
solutions for e ¼ 0.04 and 0.05. The results, plots of the wave
speed c against f, are shown in Fig. 7. These results show that
there is an upper limit fm on f for the existence of a solution,
with the change from excitable (pulses exist) to subexcitable
(propagation failure) again being through a saddle-node bifur-
cation. The range of f for which waves are possible increases
as e is decreased, fm ¼ 0.03401 for e ¼ 0.05 and fm ¼ 0.04332
for e ¼ 0.04. Our numerical integrations indicate that the
upper bound on f for solutions is quite sensitive to the choice
of e. In ref. 23 they considered the minimum light intensity
necessary to excite a wave from an initial perturbation of a
given radius in a two-dimensional system. Our results for fm

give a lower bound for this and correspond to excitation from
a region with a relatively large radius.
Finally, we comment on how the dimensionless parameters

in the model can be connected to experimental conditions. In
experimental terms, we can change the value of the parameter
e through the ratio of the initial malonic acid and bromate
ion concentrations and by varying the pH (e/ [MA]/
[BrO3

�][H+]). Systems with a higher ‘ reducing capacity ’ have
a higher e. The parameter q is simply a ratio of rate coefficients
and so cannot be varied by changing the initial reactant con-
centrations (although it can be varied by changing the operat-
ing temperature). The parameter f is defined in the Oregonator
model as the number of bromide ions produced in Process C
for every two oxidised redox catalyst ions reduced. It is not
easy to relate this parameter quantitatively to the initial reac-
tant concentrations, although it is related to the ratio of
bromomalonic acid to malonic acid. Systems with higher f
can be achieved by increasing the the initial concentration of
Br� ensuring a higher initial bromination of the oxidisable
organic species. It is also expected that f will increase during the
long-time course of the reaction.

Appendix

Here we show that, for f values in a certain interval, there are
no travelling wave solutions. To explain this feature, consider
the travelling wave eqns. (3) and (4) in (u,u0,w,w0) phase space.
The point (us ,0,ws ,0) is then an equilibrium point and a travel-
ling wave solution corresponds to a homoclinic orbit on this
point. A necessary condition for the existence of a homoclinic
orbit is that the stable and unstable manifolds of the equili-
brium point must both be at least one-dimensional, i.e. a

Fig. 6 Plots of the propagation speed c(t) of pulses arising in numer-
ical integrations of eqns. (1) and (2) for q ¼ 0.002, e ¼ 0.05, D ¼ 1.0
and f ¼ 2.5, 3.0, 3.21, 3.5. Here fm ¼ 3.1946.

Fig. 7 Plots of the wave speed c against the light intensity f
for e ¼ 0.004, 0.005 and q ¼ 0.002, f ¼ 2.5, D ¼ 0, obtained from
numerical integrations of eqns. (4) and (16).
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sufficient condition for the non-existence of a travelling wave is
that the four eigenvalues of the Jacobian evaluated at
(us ,0,ws ,0) all have a positive or a negative real part. From
eqns. (3) and (4) the equation for the eigenvalues l is, assuming
that D 6¼ 0,

Dl4þcð1þDÞl3þ c2þDa
e

�1

� �
l2þc

a
e
�1

� �
l

þ b�a
e

� �
¼0 ð17Þ

This reduces to a cubic in l when D ¼ 0.
Since the coefficient of l3 is non-negative, eqn. (17) must

have at least one root with a non-positive real part. Hence,
to determine conditions for non-existence we need to consider
the case when eqn. (17) has only roots with negative real parts.
From the Routh–Hurwitz criterion this can happen if and only
if all the following conditions hold.

c > 0; ðb� aÞ > 0 ð18Þ

c½c2ð1þDÞeþD2aþDða� eÞ � a� > 0; ð19Þ

c2½ða� eÞðc2ð1þDÞeþD2aþDða� eÞ � aÞ � ðb� aÞ
� ð1þDÞ2e� > 0 ð20Þ

Clearly the conditions in (18) always hold so that it is (19) and
(20) that give the conditions for non-existence of travelling
wave solutions. For given values of c, e, D and q we can plot
the left-hand side of inequalities (19) and (20) against f. These
graphs are similar to those shown in Fig. 1a, having two zeros.
Hence, for given values of the other parameters, there are
values f̄1 , f̄2 , f

�
1 , f

�
2 of f such that inequality (19) holds when

f2 ( f̄1 ,f̄2), and inequality (20) holds when f2 ( f �1 , f
�
2 ). For the

parameter ranges considered we found that ( f �1 , f
�
2 )	 ( f̄1 , f̄2),

so that it is condition (20) that gives the sufficient condition
for non-existence of a travelling wave solution. That is for f
values satisfying f �1 � f� f �2 there cannot be travelling wave
solutions.
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