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Abstract

Heterogeneity in the number of potentially infectious contacts amongst members of a population
increases the basic reproduction ratio (R0) and markedly alters disease dynamics compared to traditional
mean-field models. Most models describing transmission on contact networks only account for one specific
route of transmission. However, for many infectious diseases multiple routes of transmission exist. The
model presented here captures transmission through a well defined network of contacts, complemented
by mean-field type transmission amongst the nodes of the network that accounts for alternative routes
of transmission. The impact of these combined transmission mechanisms on the final epidemic size is inves-
tigated analytically. The analytic predictions for the purely mean-field case and the transmission through
the network-only case are confirmed by individual-based network simulations. There is a critical transmis-
sion potential above which an increased contribution of the mean-field type transmission increases the final
epidemic size while an increased contribution of the transmission through the network decreases it. Below
the critical transmission potential the opposite effect is observed.
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1. Introduction

Homogeneous random mixing is a common assumption of many epidemiological models [1].
If we assume a single closed population of N identical individuals, homogeneous random
mixing implies that all individuals are equally likely to contact each other, and therefore if
infected, are equally likely to infect susceptible members of the population. In a
compartmental SIR model for disease transmission, the individuals in the population are di-
vided into different compartments denoted by S (susceptible), I (infectious) and R (recovered
and immune, or removed). Let us define a transmission rate b to be the number of infectious
contacts per individual per unit time. Infectious nodes recover and become immune at rate g.
In this case, the threshold for disease persistence is given by b/g = 1. This quantity is identified
as the basic reproduction number or R0 and is commonly defined as the number of secondary
infections generated by a single infectious individual introduced into a totally susceptible pop-
ulation [1].

If there is a well-defined contact structure [2–4], then contact between any two individuals is
not equally likely. Heterogeneity in the contacts amongst individuals has an important effect
on R0 and disease dynamics [1,5–7]. Let us assume that the population is divided into n
distinct groups of sizes Nk (k = 1,2, . . . ,n) such that each individual in group k has exactly
k contacts. If the population size is N (N = N1 + N2 + � � � + Nn), then the probability that a
uniformly chosen individual has k contacts is p(k) = Nk/N. Empirical studies have shown that
many real networks have scale-free (SF) degree distributions p(k) � k�c with 2 6 c 6 3 (see
Ref. [2] for a review). While there are problems with interpreting empirical data describing real
networks [8,9], and scale-free properties are only approximately relevant for finite populations,
nevertheless the relevance of scale-free contact structures has been highlighted in different con-
texts, such as in the case of human sexual contacts [8,10], and for livestock trading networks
within Great Britain [11,12]. Recently, interest in individual-based network models that incor-
porate the effect of contact heterogeneity has increased, at least partially due to increasing
amounts of data describing real networks [10,13,14] and available computational power
[7,14–18].

When comparing theoretical contact networks to real disease transmission, the definition of a
potentially infectious contact or link between two individuals is crucial. If the contact network is
imprecisely identified, or there are multiple modes of disease propagation (e.g. blood transfusion,
shared needle use and sexual contact in the case of HIV [8,19]), then these factors must be con-
sidered by changing the contact structure and therefore the disease dynamics. To account for
these factors, we study the effect of transmission that occurs through a combination of a well-
defined contact structure (in this case, a scale-free network) and mean-field-type transmission
amongst the network nodes that is independent of the number of network contacts. This may rep-
resent either two complementary transmission mechanisms, or a single transmission mechanism
that is only approximated by the assumed scale-free contact structure. A control parameter k is
used to vary the contribution of the two different transmission mechanisms to the overall trans-
mission. The impact of this alternative transmission mechanism on the final epidemic size in a
simple SIR model is explored using analytic and numeric calculations. Theoretical predictions
for the final epidemic size are validated using simulations in the cases of homogeneous and
scale-free networks when transmission occurs through the links of the networks only.
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2. Disease transmission model

If the members of a population are considered to be nodes in a network each with their own degree
(i.e. the number of potential contacts with other members of the population), an undirected network
of size N with node degree distribution p(k) is obtained. The value hki ¼

P
llpðlÞ is the average num-

ber of contacts per node. In general hf ðkÞi ¼
P

lf ðlÞpðlÞ. The network structure may not capture all
transmission between individuals. This may be because the network is imprecisely defined, or be-
cause there are other transmission routes not captured by the network structure. In order to explore
this, we consider additional transmission that can be approximated by mean-field terms.

In the context of the SIR model, each node in the network at any time can be either susceptible
(S), infectious (I) or removed (R). If Sk and Ik represent the number of susceptible and infectious
individuals within group k, respectively (where Sk + Ik + Rk = Nk) the following system of differ-
ential equations captures disease spread for arbitrarily large networks (N!1), for both trans-
mission through the network and the mean-field type transmission
_SkðtÞ ¼ �ð1� kÞskSkðtÞ
P

l
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8><
>: for k ¼ 1; . . . ; n.

ð1Þ

Here b and g are as defined above and s is the transmission rate across a network contact between
an infected and a susceptible node. The parameter k (0 6 k 6 1) varies the contribution of the two
different transmission mechanisms to the overall transmission. The first term describing the crea-
tion of new infections through the network is proportional to the transmission rate s, the degree k
of the susceptible nodes being considered, the number of susceptible nodes with k connections,
and the probability that any given neighbour of a susceptible node with k connections is infected.
The second term describes a simple mean-field transmission, independent of node degree. The
term p(ljk) is the probability that a node of degree k is connected to a node of degree l, andP

lpðljkÞ ¼ 1.
The formulation for heterogeneous contact follows that of Anderson and May for transmission

of sexually transmitted diseases [1], however it replaces p(ljk) in the transmission term with
l�1

l pðljkÞ, since here we assume the network is static, and thus infection over the network results
in loss of one susceptible partner. For intermediate k, this correction slightly underestimates the
number of infections, since nodes infected via the mean-field route are unlikely to have lost a
potentially infectious connection when they themselves are infected, as is also the case when
the network connections change over time.

If the network of contacts is neither assorative nor disassortative [3,4] (i.e. there are no corre-
lations between the degree of connected nodes), then p(ljk) simply depends on the degree of node l
and p(l), and is given by p(ljk) = lp(l)/hki. Therefore Eqs. (1a) and (1b) can be rewritten to give
_skðtÞ ¼ �skðtÞ
P

l
ð1� kÞs kðl�1Þ

hki þ kb
� �

ilðtÞ; ð2aÞ

_ikðtÞ ¼ skðtÞ
P

l
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hki þ kb
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>>: for k ¼ 1; . . . ; n; ð2Þ
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where sk = Sk/N and ik = Ik/N. Using Eqs. (2a) and (2b) the overall R0 can be calculated as (see
Appendix A for details)
R0 ¼
1

2
qr þ q0

hk2i
hki2
� 1

hki

 !" #
þ 1

2
qr � q0

hk2i
hki2
� 1

hki

 !" #2

þ 4qrq0 1� 1

hki

� �8<
:

9=
;

1=2

; ð3Þ
where qr = kb/g and q0 = (1 � k)shki/g are the transmission potentials of the two different trans-
mission mechanisms. These both represent the number of secondary infections generated through-
out the infectious period of an infectious node chosen uniformly at random within an entirely
susceptible population. The value of R0 has a similar definition to that of qr and q0, but differs
in that the node is not chosen entirely at random, but weighted according to the probability of
it itself being infected. Both are important, however the value of R0 = 1 remains the threshold
for disease invasion [1,20].

If k = 1 then q0 = 0, and the purely mean-field case is recovered with R0 = qr = b/g. In the
k = 0 case qr = 0, and the threshold for epidemic outbreaks is given by R0 = q0(hk2i/hki2 �
1/hki) = 1 [20]. If the network of contacts has a scale-free degree distribution, p(k) / k�c, then
for values of c > 3 the second moment of the degree distribution (hk2i) is finite. If c 6 3, then
the second moment of the nodes’ degree distribution diverges (hk2i !1) and according to Eq.
(3) R0 diverges too (R0!1). For sufficiently high heterogeneity, even infinitesimally small trans-
mission rates can result in an epidemic [6,7].
3. The final epidemic size

The final epidemic size ðrð1Þ ¼ 1�
P

lslð1ÞÞ, defined as the total number of individuals af-
fected by the disease by the end of the epidemic, is an important indicator of the severity of an
epidemic outbreak or of control strategy efficacy. Following Anderson and May [1], we identify
a set of parametric equations defining r(1) in terms of the transmission potentials of the two dif-
ferent transmission mechanisms (see Appendix B for details). The equation for r(1) is
rð1Þ ¼ h1� expð�ka� arÞi; ð4Þ

where qr and q0 are determined by
qr ¼ ar=h1� expð�ka� arÞi; ð5Þ
q0 ¼ ahki2=hðk � 1Þð1� expð�ka� arÞÞi. ð6Þ
The averages in the parametric Eqs. (4)–(6) are evaluated for various values of a and ar by approx-
imating the sums with integrals. The following calculations assume a scale-free network of con-
tacts corresponding to the preferential attachment model of Barabási and Albert [2,21] with
probability density p(k) = 2m2/k3 (k P m), for continuous k, and an average of hki = 2m contacts
per node. If the transformations x = k/m and U = ma are applied to the resulting integrals the
following family of parametric equations are obtained
rð1Þ ¼ 2

Z 1

1

1� expð�Ux� arÞ
x3

dx; ð7Þ
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q0 ¼ 2U
Z 1

1

mx� 1

mx3
½1� expð�Ux� arÞ�dx:

�
ð9Þ
For each fixed value of m(=hki/2) a contour plot of r(1) (not shown) as a function of qr and q0

can be obtained if the integrals are numerically evaluated for various values of U and ar. The qual-
itative behaviour of r(1) does not changes with m. Moreover as m is increased, r(1) converges
towards the contour plot given by Eqs. (7)–(9) where Eq. (9) is modified to
q0 ¼ 2U
Z 1

1

1� expð�Ux� arÞ
x2

dx
�

. ð10Þ
Eqs. (7), (8) and (10) define a unique contour plot since m only appears through the U(=ma) term.
The contour plot of the final epidemic size r(1) (solid lines), as given by Eqs. (7), (8) and (10), is
presented in Fig. 1 as a function of qr and q0. Eqs. (7), (8) and (10) correspond to the case where
the (l � 1)p(ljk)/l term is replaced with the p(ljk) term in Eqs. (1a–2b). The former formulation is
especially important if most of the transmission occurs through the links of a network with a small
hki value, however even these two extreme cases have very similar qualitative behaviour.

The intersection of fixed overall transmission potential lines (qr + q0 = qtotal, where qtotal is a
constant; dashed lines in Fig. 1) with the r(1) contour lines illustrates the effect of changing
the contributions of the different transmission mechanisms on the final epidemic size. A critical
value, qcrit � 1.4, of the overall transmission potential separates two distinct regimes. For trans-
mission potential higher than qcrit, an increased contribution of mean-field type transmission will
increase the final epidemic size, while an increased proportion of transmission through the
network decrease it. For transmission potentials lower than qcrit, the opposite response is
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I.Z. Kiss et al. / Mathematical Biosciences 203 (2006) 124–136 129
observed. Fig. 1 also shows that for fixed qtotal no intermediate value of k results in a higher final
epidemic size than the higher r(1) value of the two extreme cases k = 1 or 0.

The extreme cases of k = 1 and 0 are considered in detail. If k = 1 then Eqs. (4)–(6) reduce to
Fig. 2
final e
case (
limit.
rð1Þ ¼ 1� expð�R0rð1ÞÞ ¼ 1� expð�qrrð1ÞÞ; ð11Þ

which is the well known result for the mean-field SIR model. Barbour and Mollison [22] use ran-
dom graphs to construct different realizations of the Reed–Frost chain-binomial epidemic process
[23]. They present an alternative derivation of Eq. (11) for the final epidemic size by calculating
the size of the giant component (i.e. the largest connected subset of nodes) in large random
graphs. Their study also emphasises the important role of explicitly considering the contact struc-
ture when modelling disease spread.

In the case of k = 0, transmission occurs only through the defined network structure and Eqs.
(4)–(6) reduce to
rð1Þ ¼ h1� expð�kaÞi; ð12Þ
q0 ¼ ahki2=hðk � 1Þð1� expðkaÞÞi; ð13Þ
which approaches the result of May and Lloyd [6], if the preferential attachment model, with
m = hki/2� 1 is used. These predictions are presented in Fig. 2 as a function of the transmission
potential q(=q0 = qr). For smaller values of q, the final epidemic size on scale-free networks is
considerably higher than that for the mean-field model. However, as q increases, the critical value
of qcrit � 1.4 is reached, where the final epidemic sizes are the same for both types of transmission
mechanisms. For large q, the final epidemic size corresponding to the mean-field model ap-
proaches its asymptote (total population size) more rapidly than for scale-free networks.

Newman [24] studied the effect of clustering on the size of the giant component and final epi-
demic size in networks with tunable degree distribution and tunable clustering coefficient. Cluster-
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. The theoretical predictions of the final epidemic size as a function of the transmission potential q = qr = q0. The
pidemic size, r(1), for the mean-field SIR model (solid line) is plotted using Eq. (11). For the scale-free network
dashed line) r(1) is plotted using the preferential attachment model in Eqs. (12) and (13) in the m = hki/2!1
The final epidemic sizes are equal at qcrit � 1.4.
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ing and network heterogeneity have similar effects on the final epidemic size. High levels of clus-
tering lower the epidemic threshold, and there is a critical transmissibility separating two distinct
regimes for different levels of clustering. For transmissibility lower than the critical value, final
epidemic size on clustered networks is higher than that on unclustered networks. For transmissi-
bility higher than the critical value, the opposite effect is observed.

Studies of disease spread using individual-based network models have shown that disease on
scale-free networks initially spreads preferentially to nodes with high degree [15]. As q increases
on scale-free networks, the disease depletes the population of highly connected nodes, and must
propagate to the poorly connected, less accessible nodes. In homogeneous networks this depletion
never occurs, and the final epidemic size is larger for large q than on equivalent SF networks.
4. Comparison of theoretical predictions with simulation results

The theoretical predictions for r(1) given by Eqs. (4)–(6) are compared to an individual-based
stochastic model that simulates the spread of disease on computer-generated homogeneous and
scale-free networks. It is assumed that transmission occurs through the links of the networks only
(k = 0). Homogeneous networks are generated such that each network node has the same number
of links. This distribution of contacts is expected to approximate well the mean-field case where
the number of contacts per node is large; in extremis, each node can potentially contact any other
node. Scale-free networks are obtained using the preferential attachment model of Barabási and
Albert [2,21]. Their model accounts for the continuous addition of new nodes seen in real net-
works and the preferential attachment of these to nodes already present in the network. The net-
work construction algorithm starts with a small number (m0) of connected nodes. At every step, a
new node with m(6m0) links, is added to the network, connecting to already existing nodes. The
probability P that a new node connects to an existing node u depends on the degree uk of that
node with PðukÞ ¼ uk=

P
lul. Numerical simulations of the Barabási and Albert model produce

networks with scale-free degree distribution, p(k) / k�c, with an exponent c = 2.9 ± 0.1.
All the networks used in the simulations were built using N = 10000 nodes. The epidemics are

seeded with ten randomly chosen nodes to avoid stochastic extinction. The probability of a sus-
ceptible node with k infectious neighbours becoming infectious in a small interval of time Dt is
directly related to skDt. An infectious node recovers at rate g, and without loss of generality,
g = 1 is used for all the simulations. The results from all the simulations are averaged over 50 dif-
ferent network realizations and 50 epidemic realizations on each individual network.

The theoretical prediction for r(1) in the case of homogeneous networks is obtained from Eqs.
(4) and (6) upon using the probability density function p(k) = d(k � hki), where d is the Dirac
delta function. In this case r(1) is given by
rð1Þ ¼ 1� expð�q0ð1� 1=hkiÞrð1ÞÞ. ð14Þ

In Fig. 3, the final epidemic size is plotted according to the theoretical prediction (Eq. (14)) and
simulation results using different values of hki. In the hki !1 limit Eq. (14) is equivalent to Eq.
(11), and represents the purely mean-field case.

For scale-free networks p(k) = 2m2/k3 (k P m) is used in Eqs. (4) and (6) leading to the follow-
ing parametric equations:
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Fig. 3. Comparison between the theoretical predictions using Eq. (14) for homogeneous networks (solid grey lines,
thick for hki = 20 and thin for hki = 6) and computer simulations of the final epidemic size r(1) (dashed grey lines,
thick for hki = 20 and thin for hki = 6). The solid black line represents the hki !1 limit equivalent to the mean-field
case given by Eq. (11).
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Fig. 4. Comparison between the theoretical predictions using Eqs. (15) and (16) for scale-free networks (solid grey lines,
thick for hki = 20 and thin for hki = 6) and computer simulations of the final epidemic size r(1) (dashed grey lines,
thick for hki = 20 and thin for hki = 6). The solid black line represents the m = hki/2!1 limit and is identical to the
result of May and Lloyd [6].
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rð1Þ ¼ 2
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In Fig. 4, the final epidemic size is plotted for scale-free networks using the theoretical prediction
(Eqs. (15) and (16), with m = hki/2) along with simulation results for different values of hki. In the
limit of m!1, Eqs. (15) and (16) are equivalent to those obtained by May and Lloyd [6].

In both cases, for large values of hki the agreement is good, but less so for smaller values of hki.
Comparing Figs. 3 and 4 show that the difference between the theoretical and numerical results,
for smaller values of hki, is less significant for highly heterogeneous networks, where the highly
connected nodes dominate the dynamics. The differences for smaller values of hki can be ac-
counted for by the local depletion of susceptible neighbours [25].
5. Discussion

The importance of contact heterogeneity and multiple transmission mechanisms has long been
recognised. For example, Diekmann et al. [26] explicitly incorporated the reduction of infectious
output due to repeated contacts between individuals into the expression for R0, showing how it
reduces the effective infectious output. Here, we have investigated the role of contact heterogene-
ity and multiple routes of transmission in determining final epidemic size. We have used as a basis
for comparison scale-free networks, as these are relevant for a number of disease contact struc-
tures, particularly in the case of sexual contact networks. However, many of the concepts derived
in the scale-free context are important in the simple context of population heterogeneity, provided
that heterogeneity incorporates correlation between susceptibility and transmissibility. Transmis-
sion through the network leads to a ‘hierarchical’ spread [15] that ensures rapid infection of highly
connected nodes (‘superspreaders’), and this has consequences for reactive disease control through
contact tracing [27].

Here, we have shown that for small values of q, heterogeneity ensures a larger final epidemic
size than on homogeneous networks. For higher q values, the depletion of highly connected nodes
means that the local ‘susceptible neighbourhood’ of infectious individuals will be rapidly depleted,
as the average number of connections in remaining susceptible nodes goes down more quickly
than in more homogeneous networks. On homogeneous networks, the initial spread is slower,
but may result in a larger epidemic even though R0 is lower. Interestingly, mixed strategies (where
the overall transmission potential is the same, but heterogeneity is only partially exploited) are
never favoured – the final epidemic size is always lower than that at one of the two extreme cases
of k = 0 or 1 (Fig. 1).

An important aim of most epidemic control programmes is to minimise the number of individ-
uals affected by disease (i.e. final epidemic size). This can be achieved by reducing transmissibility,
shortening the duration of the infectious period and reducing the contact rate between susceptible
and infected individuals. Critical to the use of mathematical models in determining the most effec-
tive policy is good parameter estimation, and ‘real-time’ use of mathematical models for disease
control requires that these be developed rapidly [28,29]. Knowledge about both the transmissibil-
ity of the disease and the network of contacts are needed if the estimates of the transmission po-
tential are used to identify effective control strategies promptly in the event of an epidemic [27,30].
Here, we have shown that an estimate of the transmission potential of a disease is only a good
indicator of the final epidemic size (and therefore the most effective control strategy to take) if
there is a priori knowledge of the underlying contact structure that drives the epidemic.
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Appendix A. Calculation of the threshold criterion

To derive an overall epidemic threshold (when 0 < k < 1), we assume that in the initial stages
ik� sk and sk � p(k). Following these assumptions Eq. (2b) now reads
_ikðtÞ ¼ pðkÞ
X

l

ð1� kÞs kðl� 1Þ
hki þ kb� gdlk

pðkÞ

� �
ilðtÞ. ðA:1Þ
Now define
IðtÞ ¼
X

k

ikðtÞ ðA:2aÞ
and
JðtÞ ¼
X

k

kikðtÞ. ðA:2bÞ
Combining Eqs. (A.1) and (A.2) the following pair of linear equations is obtained:
_IðtÞ ¼ ½kb� g � ð1� kÞs�IðtÞ þ ð1� kÞsJðtÞ; ðA:3Þ

_JðtÞ ¼ kbhki � ð1� kÞs hk
2i
hki

� �
IðtÞ þ ð1� kÞs hk

2i
hki � g

� �
JðtÞ. ðA:4Þ
A linear stability analysis of the disease free state (I,J) = (0,0) is performed. By substituting
I(t),J(t)! I,Jexp(Kt) in the already linearised equations (A.3) and (A.4) a quadratic equation
for the eigenvalues K is obtained, with the transition from a negative to a positive eigenvalue given
by
1

2
kbþð1� kÞs hk
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( )1=2
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Rewriting Eq. (A.5) in function of qr = kb/g and q0 = (1 � k)shki/g (qr and q0 defined in the
paper) we obtain
R0 ¼
1

2
qr þ q0
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Appendix B. The calculation of the final epidemic size (r(‘))

Let us start form Eqs. (2a) and (2b)
_skðtÞ ¼ �skðtÞ
X

l

ð1� kÞs kðl� 1Þ
hki þ kb

� �
ilðtÞ; ðB:1Þ

_ikðtÞ ¼ skðtÞ
X

l

ð1� kÞs kðl� 1Þ
hki þ kb

� �
ilðtÞ � gikðtÞ; ðB:2Þ
and assume that
kk ¼
X

l

ð1� kÞs kðl� 1Þ
hki þ kb

� �
ilðtÞ. ðB:3Þ
Integrating Eq. (B.1) we obtain

sk(t) = sk(0)exp(�Uk(t)) with sk(0) = Nk/N

where
UkðtÞ ¼
Z t

0

kkðsÞds. ðB:4Þ
If Eqs. (B.1) and (B.2) are added together, and integrated from 0 to t, and the boundary condi-
tions applied at 0 and t!1, the following expression is obtained for the final size of the epidemic
of nodes with k connections (rk = rk(1)):
rk

g
¼
Z 1

0

ikðsÞds. ðB:5Þ
If in Eq. (B.4) for kk Eq. (B.3) is used and t!1 is assumed then
Ukð1Þ ¼
X

l

ð1� kÞs kðl� 1Þ
hki þ kb

� �
rl

g
; ðB:6Þ
however sk(1) = Nk/N � rk = (Nk/N)exp(�Uk(1)) which gives
rkð1Þ ¼ N k=Nð1� expð�Ukð1ÞÞÞ. ðB:7Þ

If in Eq. (B.6) for rk Eq. (B.7) is used then
Ukð1Þ ¼
X

l

ð1� kÞs
g

kðl� 1Þ
hki þ kb

g

� �
ð1� expð�Ulð1ÞÞÞ

Nl

N
. ðB:8Þ
Expanding the sum in Eq. (B.8) we obtain

Uk(1) = ka + ar

where
a ¼
X

l

ð1� kÞs
ghki ð1� expð�la� arÞÞðl� 1ÞN l

N
; ðB:9Þ

ar ¼
X

l

kb
g
ð1� expð�la� arÞÞ

N l

N
. ðB:10Þ
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The final epidemic size for the whole population is given by
rð1Þ ¼
X

k

rkð1Þ ¼
X

k

N k=Nð1� expð�ka� arÞÞ ¼
X

k

pðkÞð1� expð�ka� arÞÞ; ðB:11Þ
and if in general hf ðkÞi ¼
P

kf ðkÞpðkÞ the following parametric equations are obtained:
rð1Þ ¼ h1� expð�ka� arÞi; ðB:12Þ

where a and ar are determined by
qr ¼ ar=h1� expð�ka� arÞi; ðB:13Þ
q0 ¼ ahki2=hðk � 1Þð1� expð�ka� arÞÞi; ðB:14Þ
with qr = kb/g and q0 = (1 � k)shki/g the transmission potentials of the two different transmission
mechanisms, as previously defined. It is worth noting that Eqs. (B.9), (B.10) and Eqs. (B.13),
(B.14) are equivalent, and for the degree distribution (p(k) = 2m2/k3 (k P m)) used in this paper,
the sums in Eqs. (B.13) and (B.14) are convergent. Therefore, various values of a and ar generate
well defined finite values for qr, q0 and r(1).
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