
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 12 August 2010
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Journal of Biological Dynamics
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t744398444

Large-scale properties of clustered networks: implications for disease
dynamics
Darren M. Greena; Istvan Z. Kissb

a Institute of Aquaculture, University of Stirling, Stirlingshire, UK b Department of Mathematics,
University of Sussex, Falmer, Brighton, UK

First published on: 01 June 2010

To cite this Article Green, Darren M. and Kiss, Istvan Z.(2010) 'Large-scale properties of clustered networks: implications
for disease dynamics', Journal of Biological Dynamics,, First published on: 01 June 2010 (iFirst)
To link to this Article: DOI: 10.1080/17513758.2010.487158
URL: http://dx.doi.org/10.1080/17513758.2010.487158

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t744398444
http://dx.doi.org/10.1080/17513758.2010.487158
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Journal of Biological Dynamics
iFirst, 2010, 1–15

Large-scale properties of clustered networks: implications for
disease dynamics

Darren M. Greena* and Istvan Z. Kissb†

aInstitute of Aquaculture, University of Stirling, Stirling, Stirlingshire FK9 4LA, UK; bDepartment of
Mathematics, University of Sussex, Falmer, Brighton BN1 9RF, UK

(Received 17 August 2009; final version received 19 March 2010 )

We consider previously proposed procedures for generating clustered networks and investigate how these
procedures lead to differences in network properties other than clustering. We interpret our findings in terms
of the effect of the network structure on the disease outbreak threshold and disease dynamics. To gener-
ate null-model networks for comparison, we implement an assortativity-conserving rewiring algorithm
that alters the level of clustering while causing minimal impact on other properties. We show that many
theoretical network models used to generate networks with a particular property often lead to significant
changes in network properties other than that of interest. For high levels of clustering, different procedures
lead to networks that differ in degree heterogeneity and assortativity, and in broader scale measures such
as R0 and the distribution of shortest path lengths. Hence, care must be taken when investigating the
implications of network properties for disease transmission or other dynamic process that the network
supports.

Keywords: networks; clustering; epidemic dynamics; percolation

1. Introduction

Contact networks are a frequently used tool in epidemiological modelling: each epidemiological
unit (be it a person, animal, self-contained subpopulation) is considered as a network node, with
potentially infectious contact between nodes represented by directionless edges or directed arcs.
The power of the approach is that by explicitly considering the pairwise interactions between
units, one can extend the results obtained from compartmental, mean-field, spatial and metapop-
ulation or household-based models. Direction, strength and (potentially) timing of contact can
all be accounted for. In sexually transmitted infection (STI) models [2], contact heterogeneity
and patterns of connectivity can be accommodated in a straightforward way. They also have the
benefit of being able to use epidemiological data directly, as opposed to modelling using summary
parameters (e.g. variance in sexual partner count) abstracted from the data.
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2 D.M. Green and I.Z. Kiss

The principal parameter estimated in epidemiological modelling is that of the basic reproduction
number R0. A historical definition, which must be taken with great care when applied to complex
structured populations, is given by

the average number of secondary infections produced when one infected individual is introduced into a
[homogeneously mixed,] wholly susceptible host population at equilibrium. [3]

However, though for simple models such as the mean field, R0 is well defined, in general no
analytic formula is available for R0. Moreover, one must consider whether the concept of a single
R0 value is even appropriate in a complex population (e.g. [15]), and the above definition is not
appropriate where the population is not well mixed, or with correlation between susceptibility
and infectiousness.

Nevertheless, models of R0 and final epidemic size are of utility in considering the risk of
infectious disease between populations with different structures. Various authors have found that
epidemic spread is encouraged or hindered by different network properties (for an overview,
see [41]). A node’s degree – its number of contacts k – is of key importance, as is the distri-
bution of contacts: networks with a higher variance of degree enjoy a higher R0 for the same
between-node disease transmission rate τ [3]. Under proportionate mixing, nodes with contact
rates u and v account for a fraction uv of contacts. Deviations from this occur where mixing
is preferential: assortativity in node degree, with preferential contact between nodes of like
degree, increases R0 but decreases the final epidemic size [4, 12, 16, 34]. In a broader sense,
assortativity occurs wherever there is preferential mixing according to some node property, e.g.
according to sex, with assortative mixing in homosexual and disassortative in heterosexual contact
networks.

In this paper, the network property of most concern is that of clustering. Clustering measures
the degree to which ‘any friend of yours is a friend of mine’. In clustered networks, if edges
(a, b) and (a, c) exist, then connections (b, c) are more likely to exist than would be expected
by chance alone in random networks. This is a form of non-random mixing associated with both
assortativity and spatial structure. Clustered networks have a lower density of nodes within two
steps of a focal node compared with random networks, limiting the spread of disease and reducing
R0 [20, 30, 44], since nodes infected by the focal node are competing for further neighbouring
nodes to infect.

Ideally when comparing networks, one would like to be able to vary one parameter of interest,
while keeping all other parameters constant. In this case, we are sure that any differences in
network properties are due to that parameter. In practice, this proves difficult [39, 40]. To explore
the dependency of epidemic dynamics upon network structure imposed by clustering, various
authors have designed different algorithms to generate clustered networks (e.g. [10, 24, 35, 38,
45]). However, these algorithms come from quite different start points, and occasionally there are
notable side-effects of clustering upon other network properties [24].

In this paper, we consider a set of previously used algorithms for generating clustered networks
[10, 35, 38] and investigate in what ways these networks differ with otherwise similar degree
and clustering coefficients. Here, we are primarily interested in parameters of epidemiological
interest, in terms of transmission threshold for epidemic spread, potential epidemic size and the
time-course of disease; though one must also consider the effect of network structure on the effec-
tiveness of control strategies [25, 27]. Some of these properties will be disease or disease model
dependent, however properties such as the distribution of shortest path lengths or departures from
proportionate mixing are related. We employ rewiring algorithms to change the clustering coeffi-
cients of networks while maintaining other selected network properties constant [24]. Particularly,
we wish to preserve the mean degree, degree distribution and levels of assortative or disassortative
mixing.
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2. Method

2.1. Network construction

A network is described in terms of its number of nodes N and an adjacency matrix Aij, elements
of which are 1 where an edge (i, j ) exists, and zero otherwise. The number of edges from a
single node i is given by ki = ∑

j Aij. All networks were undirected, generated with N = 10,000
nodes, with mean node degree of either 〈k〉 = 5 or 〈k〉 = 10 and clustering coefficients chosen
from C = 0.2, 0.4, 0.6, or no clustering 0.0. A set of 100 networks were generated for each
parameter set. The clustering coefficient used is the ratio of triangles to triples, where triples are
permutations of three nodes u, v, w with edges (u, v) and (u, w) and triangles are those where
an additional edge (v, w) exists. Other definitions of clustering exist [45], but this measure is
easy to calculate and epidemiologically useful. A selection of different network types were then
generated, either using algorithms reported in the literature, or by rewiring of other networks.
These algorithms are described below.

Fixed degree: Each node has the same number of edges k, distributed at random by applying
50 × N rewiring operations to a lattice network, where in each rewiring operation four
unique nodes with edges (a, b) and (c, d) are rewired to give edges (a, d) and (b, c). The
number of rewiring operations was greatly in excess of the number of edges present, and
was sufficient for the properties of the rewired networks to agree with prior expectation.

Poisson: Random Poisson networks were generated by assigning edges (a, b) for each pair of
nodes a < b with a single constant probability.

Iterative: An iterative algorithm suggested by Eames [10] was implemented. This algorithm pro-
ceeds by repeating two steps. In the first step, n1 triples are generated by connecting unique
nodes a, b, c with edges (a, b) and (a, c). In the second step, n2 triangles are generated by
selecting a node u with at least two neighbours at random, choosing two random neighbours
v, w and forming a link (v, w). Both steps are subject to the constraint that no node may
have more than k connections, and duplicate edges are not allowed. The network clustering
coefficient is varied by changing n1 and n2. Since there is potential for this algorithm to
‘stall’, it is considered finished if (kN/2) × 0.9975 edges are successfully assigned.

Spatial: This algorithm [38] begins by assigning each node i coordinates xi and yi uniformly
distributed across a square world of side-length

√
N with toroidal boundary conditions

(the top and bottom, and left and right edges are adjacent). The probability of connection
pij between two nodes i and j is determined by the distance dij between them, according to
pij = p0 exp(−d2/2D2) where p0 and D are parameters to be adjusted to obtain the required
〈k〉 and C.

Group-based: The clustering algorithm of Newman [35] has been discussed by the current authors
elsewhere [24]. The N nodes are assigned to ‘groups’ with connections within groups as
described below. Multiple group membership by nodes leads to between-group linkages.
For each of g groups, ν nodes are chosen at random (without replacement), with nodes thus
enjoying a mean of μ = gN/ν groups, binomially distributed. For every pair of nodes that
are members of the same group, an edge is added with probability p = k/(μ(ν − 1)) (with
higher probability where multiple groups are shared). The resulting networks have clustering
coefficient C = p/(1 + μ(ν − 1)/(ν − 2)), adjusted by altering the number of groups per
node, μ, subject to the constraint that p ≤ 1.

Unclustered: Clustered networks generated by the iterative algorithm had clustering removed
using rewiring as for the fixed degree networks.

Unclustered preserving mixing: Alternatively, rewiring to uncluster networks was carried out by
preserving assortativity. In this case edges (u, v) and (w, x) were rewired to (u, x) and (w, v)
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4 D.M. Green and I.Z. Kiss

Figure 1. Rewiring algorithm step for generating clustering.

only where edges were similar in terms of their node degrees: ku = kw and kv = kx . This
was carried out for the spatial algorithm.

Rewire to cluster: Networks created using fixed degree or Poisson methods were clustered using an
iterative rewiring algorithm, also recently used by House and Keeling [17]. At each iteration,
a chain of five random nodes u, v, w, x, y with edges (u, v), (v, w), (w, x) and (x, y) was
identified (without edges (u, y) or (v, x)) by selecting a node u at random and performing a
depth-first search to find suitable chains. The effect of rewiring to remove (u, v) and (x, y)
and insert (u, y) and (v, x) edges on a ‘local’ clustering coefficient is identified (Figure 1).
Where this is increased, the rewiring is accepted. The ‘local’ clustering coefficient is defined
as the ratio of triangles to triples amongst triples a, b, c where node a is one of u, . . . , y.
This avoids calculating clustering repeatedly for the whole network. A related approach was
investigated by Bansal et al. [5].

Reclustered: The group-based and spatial networks were reclustered to preserve clustering coef-
ficients and node degree but remove other forms of structure. This was performed by first
unclustering, and then using the rewire to cluster algorithm to return the network to its former
clustering coefficient.

Small sample networks generated by some of the above procedures are shown in Figure 2.
To compare the properties of networks with the same level of clustering, generated according to
different algorithms, we use a series of measures that capture the large-scale properties of the
network.

2.2. Network measures

Simpler network characteristics such as the distribution and average number of contacts and, for
some cases, degree correlations were kept fixed to focus on the differences in large-scale network
features. In particular, we focus on the measures detailed below.

Path length: In addition to the adjacency matrix Aij, we can calculate a matrix of shortest path
lengths Lij, denoting the number of edges required to be followed to travel through the
network from node i to j . By definition Lii = 0 and where no connecting path exists,
Lij = ∞. Path lengths were sampled for 10 nodes of each of the 100 networks in each set.

Correlation dimension: Borrowing a term from chaos theory, we can use the correlation sum to
describe the large-scale structure of a network [13]. We can calculate this in terms of L as
follows:

χ(ε) = 1

N2

N∑
i,j=1

H1(ε − Lij),
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Journal of Biological Dynamics 5

Figure 2. Sample networks with N = 500, 〈k〉 = 5 and C = 0.6. (a) iterative algorithm; (b) rewire to cluster from
constant k; (c) spatial and (d) this network reclustered.

where H1(x) = 1 for x ≥ 0 and zero for x < 0 (Heaviside step function). Therefore χ

represents the proportion of nodes reached within ε steps through the network, with χ(0) =
1/N , χ(1) = (〈k〉 + 1)/N , and χ(ε) increasing for higher ε in a manner dependent on
network structure. If χ(ε) ∝ εν (i.e. a straight line plot of χ vs. ε on a log–log plot) then we
consider the network to have dimension ν. The shape of χ determines the potential trajectory
of an epidemic on the network.

Mixing measures: We measure the degree to which networks depart from proportionate mixing:
in assortative networks, there is preferential connection between nodes with similar degree.
In contrast, in a disassortative network, edges are more likely to connect nodes of dissimilar
degree than expected with random mixing. Where we write

∑
(i,j) x in place of

∑N
i,j=1 Aijx,

iterating over all edges (i, j) ∈ E, then a measure of mixing is given by the following
correlation coefficient:

r =
M

∑
(i,j) kikj −

(∑
(i,j) ki

) (∑
(i,j) kj

)

M
∑

(i,j)(ki)2 −
(∑

(i,j) ki

)2 ,
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6 D.M. Green and I.Z. Kiss

where M = ∑N
i,j=1 Aij, twice the total number of edges. The correlation r is positive for

assortative networks, negative for disassortative and zero for proportionate mixing.
Eigenvalue analysis: The lead eigenvalue λ of the network adjacency matrix can be obtained

through simple iteration of the following expression:

V s+1 = AV s

||AV s ||1 ,

iterating until convergence, starting with V 0
i = 1/n (i = 1, . . . , N). The notation || · ||1 indi-

cates that for computational convenience, V is divided by its total at each step. The lead
eigenvalue λ is given simply by the solution of λV s = AV s where s is large. The lead
eigenvalue is related to R0 as discussed below [9].

Giant connected component: A network component is a set of nodes such that a path can be
found between any pair of nodes within the group. The largest such component is the giant
connected component (GCC). The potential resilience of a network to epidemic spread can be
obtained by examining the size of the GCC when a proportion of edges is removed at random.
Typically, a sharp percolation threshold is found, analogous to the epidemic threshold found
with increasing transmission rate in compartmental models [37].

2.3. Simulation model

Epidemic simulation allows numerical determination of the effect of network structure on the
threshold value of the transmission rate for epidemic outbreak, i.e. the point at which R0 = 1, as
well as final epidemic size. The time-course of the spread of disease is also obtained.

Epidemic dynamics were simulated using an SIR model. At time t , nodes may be susceptible S,
infectious I , or removed R. Infection is transmitted at rate τ across every (S, I ) edge. The epidemic
is seeded with one or more infected nodes. Thereafter, the probability of a node becoming infected
depends on the state of its neighbouring nodes. In a small time interval δt , a node with kI infected
neighbours becomes infected with probability 1 − exp(−kI τδt). Similarly, recovery/removal is
modelled as a Poisson process with the recovery probability given by 1 − exp(−γ δt), independent
of neighbouring nodes. We use synchronous updating with γ = 1 throughout and a timestep of
δt < 0.01, with 10 randomly selected initial seeding nodes.

2.4. Estimates for R0

2.4.1. Scope of the problem

Though R0 has a simple definition, this simple definition belies a range of problems for its
calculation and applicability. In addition, for structured populations, a distinction can be made
between the basic reproduction number of the simulated disease R0, and the transmission potential
ρ0 [28]. The latter can be defined as the average number of secondary cases derived from an index
case chosen at random from the population. Unlike R0, it is a function only of the properties of
individual nodes (see caveat later), and independent of network mixing properties. It is therefore
a useful baseline for comparison between epidemics with different transmission rates.

No general expression for the basic reproductive numberR0 exists that can be directly calculated
from basic network properties. Nevertheless, various estimates for R0 have been proposed which
encapsulate network structure to a greater or lesser extent. Frequently, these are expressed in terms
of edge transmissibility T = τ/(τ + γ ): the probability of transmission between an isolated (S, I )
pair during the whole infectious period of the I node [14, 33]. The estimates described below
capture different subsets of the network properties listed in the previous sections.
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2.4.2. Generation-based approach

In this approach, an estimate of R0 is made using the distribution of node degrees and the
correlation between node degrees of adjacent nodes. Thus, data concerning the spatial or large-
scale network structure and clustering are discarded. We consider the generation of an infected
node to be the number of steps along the infection chain it lies from the index case. We let Ii,g

denote the number of nodes of degree i in generation g and Ig = ∑∞
i=0 Ii,g is the total number of

infected nodes in generation g. The next generation, Ii,g+1 is given by

Ii,g+1 =
∞∑

j=0

Tjp(i|j)Ij,g,

where p(i|j) is the probability that a node with j contacts is connected to a node with i contacts,
and T is the generation-wide probability of transmission across a link [18]. Iterating this calcu-
lation allows us to determine the number of infected nodes in consecutive generations, and based
on this, calculate R0 (Appendix, Section A.1). Diekmann and Heesterbeek [9] have shown that
under appropriate conditions, R0 is given by

R0 = lim
N,n→∞

⎛
⎝

n∏
g=1

Ig+1

Ig

⎞
⎠

1/n

.

In this general case, a closed expression for R0 is difficult to obtain, however for specific networks
p(i|j) can be estimated from the network adjacency matrix as follows:

p(i|j) =
∑

uv Auv[ku = i][kv = j ]∑
uv Auv[ku = i] ,

where [x = y] gives unity where x = y, and zero otherwise. The number of infected nodes in
consecutive generations can then be computed under the assumption of networks of infinite size
with vanishing density of short loops. Recently, Miller [30, 31] has investigated the potential for
similar formulations for use with clustered networks.

2.4.3. Summary statistics

We now briefly report on various R0-like measures, and how they relate to the above analytical
approach. Assuming random seeding and I0 = 1, from the equations above we obtain a value of
I1 = 〈k〉T (where 〈k〉 is the mean number of edges per node), which corresponds to the transmis-
sion potential, written fully as ρ0 = 〈k〉τ/(τ + γ ) [14, 21]. For a specified ρ0, the corresponding
edge-based transmission rate τ can be calculated as τ = γ (ρ0/(〈k〉 − ρ0)) [14].

In the case of proportionate random mixing, p(i|j) = ip(i)/〈k〉. In this case, it can be shown
that I2 = T 2〈k2〉 (Appendix, SectionA.1; [18]). In general, Ig+1/Ig is constant for any higher value
of g and therefore R0 = T (〈k2〉/〈k〉). The calculation should ideally be modified for undirected
networks to account for a node losing a connection upon becoming infected from its parent case
[1, 26]. In this, case R0 = T

(〈k2〉/〈k〉 − 1
)
. Note that this correction is not applied to ρ0, where

infection of the focal node is assumed to happen ‘by magic’, not infection from a linked node.
These expressions account for degree heterogeneity [3], but are only appropriate where there

is no higher level network structure in the form of clustering [20] or assortativity [4]. A further
measure is given by the lead eigenvalue of the network adjacency matrix, λ [9], whose value
differs from the previous one where the network is broken into dissimilar components [15].
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8 D.M. Green and I.Z. Kiss

Figure 3. Correlation sum for different clustering algorithms. Inset shows same figure on a log–log scale. All lines
are thick unless otherwise stated. Solid black line: fixed degree C = 0.6; solid grey: fixed degree C = 0; thin solid:
iterative C = 0.6; black dashed: spatial C = 0.6; grey dashed: spatial reclustered C = 0.6; thin dashed: spatial unclustered
preserving mixing; grey dotted: Poisson; black short dash: group-based C = 0.6; grey short dash: group-based reclustered
C = 0.6. 〈k〉 = 5 throughout.

3. Results

Networks formed through the iterative algorithm have a slower increase in χ with path length ε

and longer mean path lengths, compared with networks with similar parameters formed through
the rewired fixed-degree networks (Figure 3), even for χ(2), which is in a sense another measure
of the degree of local clustering. Examining other network properties, no difference was found
in the levels of clustering at the level of squares (proportion of quadruples a, b, c, d with edges
(a, b), (b, c), and (c, d) that are also squares with edge (a, d)) with coefficients of C� = 0.44 and
0.43, respectively. However, an interesting difference was found in the distribution of triangles at
the node level (the numbers of triples being fixed at k(k − 1) = 20), with those of the iterative
networks having lower variance despite the same mean (17.6 vs. 25.3). Local triangle counts
were correlated between connected nodes, but there was no difference in the degree of correlation
between network types (r ≈ 0.6). That different measures of clustering are not consistent with
each other is not unexpected: the several ‘traditional’ clustering measures [42] deviate from each
other in different network architectures.

The correlation sum of the spatial networks alone shows a trend close to a straight line on the
log–log plot (Figure 3). All other network types show exponential increase (straight line on semi-
log plot, Figure 3, inset) in the proportion of network reached with distance. The spatial networks
are therefore the only ones showing finite dimension, and power-law epidemic spread is expected
to be a better model of infection than exponential in epidemics growing on these networks [43]
(see [8] for a further example). With polynomial epidemic growth, there is no exponential growth
phase. It is therefore debatable whether any estimate of R0 is appropriate in such cases. The
ordering of the correlation sum plot slopes is reflected in the timescale of epidemic simulations
shown in Figure 4. In both plots, the slower rise of the spatial networks in terms of potential
epidemic spread is seen, even for a particular level of clustering, and a lower rise for the clustered
networks themselves.

In network-based models of disease transmission, connected components (CCs) play an impor-
tant role [22, 23, 33, 37]. Disease seeded into any node in a CC can potentially reach any other
node in that component. Thus, for undirected networks, provided that each link will transmit the
infection, the size of the largest or giant CC (GCC) represents the upper limit for the potential
size of an epidemic. However, for any network only a subset of all edges will be involved in the
transmission process. To account for edges that will not be involved in disease transmission, the
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Journal of Biological Dynamics 9

Figure 4. Time series for simulated epidemic. Results are mean prevalence for 10 simulations on each of 25 networks,
with τ = 2.5 and γ = 1. Line styles, mostly as in Figure 3, are shown in the legend; throughout, 〈k〉 = 5.

contact network can be de-constructed or diluted by removing a proportion 1 − p (0 ≤ p ≤ 1)

of edges at random [7]. This gives rise to a network that can be regarded as the ‘epidemiological
network’of truly infectious links [19]. In contrast with the simulation models discussed elsewhere
in this paper, this is a static approach which does not consider the time-evolution of the epidemic
system and its effects, such as the level of competition for susceptibles between cases and their
secondary cases.

The emergence and growth of the GCC can be investigated by increasing the value of p. In
Figure 5, the size of the GCC is plotted as a function of p for different network types. For spatial
networks with high clustering, the GCC is only present for values of p that are considerably higher
compared with the case of the reclustered version of the same network, the spatial network with no

Figure 5. The size of the giant connected component (GCC) for increasing probability p of links being present. (a)
spatial C = 0 (black continuous), C = 0.6 (black dashed), reclustered C = 0.6 (grey dashed) and unclustered preserving
mixing (grey continuous), (b) fixed degree C = 0 (black continuous) and C = 0.6 (black dashed) and (c) group-based C = 0
(black continuous), C = 0.6 (black dashed) and reclustered C = 0.6 (grey dashed). All simulations based on networks
with 〈k〉 = 5.
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10 D.M. Green and I.Z. Kiss

clustering and the unclustered version of the spatial network but with mixing preserved. This indi-
cates that the structure of the spatial network limits the epidemic spread and this effect is stronger
than for networks with exactly the same level of clustering but obtained using the reclustering
algorithm. Similar arguments hold for networks with fixed degree. However, for group-based
networks the situation changes and the GCC emerges for smaller values of p compared with the
case of group-based networks with no clustering. In a previous paper Kiss and Green [24] have
shown that this is a direct consequence of higher clustering leading to higher degree heterogeneity.
Although, the GCC appears for smaller values of p as clustering increases, its size is limited and
stays relatively small when compared with the unclustered case.

For the case of spatial networks, in Figure 6 the cumulative frequency of the CCs is plotted
for below and above percolation regimes. The percolation threshold is given by the value of p at
which the GCC emerges (i.e. when the size of the GCC is comparable to the network size in the
limit of an infinite network). Here we do not focus on the exact percolation threshold but rather
on how components grow and connect together to form the GCC. Figure 6(a) illustrates that for
unclustered networks, the percolation is sharper with a clear transition from having CCs of very
small sizes to a single large GCC. However, for high levels of clustering (C = 0.6), the transition
is less sharp with CCs continuing to grow almost independently and only merging in a single
large GCC for high values of p (see Figure 6(b)). This illustrates how clustering promotes the
local growth of subclusters with few inter-cluster links that can lead to a single large component
spanning most of the network.

In Table 1, numerical estimates for various R0-related quantities are given. Apart from the ratio
of successive radius perimeters, (χ(2) − χ(1))/(χ(1) − χ(0)) (see section correlation dimension
for definition of χ ), all measures are based on the assumption of large networks with no loops.
Moreover, (〈k2〉/〈k〉) is only valid when networks are proportionally mixed. However, the value
of λ and the generation-based approach captures any departure from proportionate mixing, as
demonstrated by the positive correlation between these and the mixing measure r . For the group-
based model, high clustering leads to high contact heterogeneity but no assortativity. Contact

Figure 6. Cumulative distribution of the connected component size for the spatial network model with c = 0.0 (a) and
c = 0.6 (b). Results are based on the outcome of 10,000 simulations (100 simulations on 100 different networks). (a)
Below percolation for p = 0.05, 0.1, 0.15, 0.2 (black: dotted, short dashed, long dashed and solid) and above percolation
for p = 0.25, 0.3, 0.35 (grey: long dashed, short dashed and dotted). (b) Below percolation for p = 0.45, 0.5, 0.55, 0.6
(black: dotted, short dashed, long dashed and solid) and above percolation for p = 0.65, 0.7, 0.75 (grey: long dashed,
short dashed and dotted). All simulations based on networks with 〈k〉 = 5.
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Table 1. Basic statistics of constructed networks for 〈k〉 = 5.

Network C r 〈k2〉/〈k〉 λ (χ(2) − χ(1))/(χ(1) − χ(0)) I2/I1

Fixed degree 0.00 – 5.0 5.0 4.0 5.0
Fixed degree, clustered 0.60 – 5.0 5.0 1.4 5.0
Iterative, clustered 0.61 – 5.0 5.0 1.1 5.0

0.21 – 5.0 5.0 3.0 5.0
Spatial, clustered 0.58 0.583 6.0 11.0 1.3 7.2
Spatial, reclustered 0.60 0.072 6.0 7.8 1.4 6.1
. . . unclustered preserving mixing 0.00 0.583 6.0 8.9 4.9 7.2
Spatial, no clustering 0.00 0.000 6.0 6.2 5.0 6.0
Group-based, clustered 0.61 0.000 14.0 14.7 5.0 14.0
Group-based, unclustered 0.01 0.000 6.5 6.7 5.4 6.5
Poisson, clustered 0.60 0.072 6.0 7.8 1.5 6.0

0.40 0.030 6.0 6.9 2.6 6.0
0.20 0.007 6.0 6.3 3.8 6.0

. . . no clustering 0.00 0.000 6.0 6.2 5.0 6.1

Clustering coefficient C, mixing measure r , ratio of degree distribution first two moments 〈k2〉/〈k〉, lead Eigenvalue of adjacency matrix
λ, ratio of nodes within two and one step from focal node (ratio of successive radius perimeters) (χ(2) − χ(1))/(χ(1) − χ(0)) and the
next-generation matrix estimate R0 ∼ I2/I1 are shown.

heterogeneity alone gives larger R0 values and a fast spreading epidemic between the subset of
highly connected nodes. This is reflected in high values of almost all measures. The eigenvalue
approach does particularly well to capture the low level of assortativity generated by high levels
of clustering in random or Poisson networks.

4. Discussion

Our results demonstrate that networks exhibiting similar levels of clustering, but generated by
different algorithms, can differ significantly in their large-scale structure. This has implications for
the spread of disease on such networks. Moreover, tuning a particular network property can lead to
undesired but significant changes in network properties other than that of interest, and in a different
manner for different network construction algorithms. This hinders accurate determination of the
effect of different network properties on the dynamical processes the network supports.

To more accurately capture heterogeneity in contact at the level of individuals, models of
disease transmission on contact networks – either data based or theoretical – have become more
common. While accurate network data are difficult to collect, many theoretical network models
have been developed simply based on partial information or general network characteristics (e.g.
small-world networks [45] with short path length and high clustering). Our R0-like parameter
estimates above fall into this category: they are an attempt to summarize the ability of the network
to support an epidemic by extracting partial information from it. The information retained and
utilized varies between measures, and thus so does the applicability of the measure to different
network types. The ability of the measures presented above to capture particular network properties
is summarized in Table 2.

The equivalence of various epidemiological network measures is epidemic model (or rather,
disease) dependent. For example, though we define ρ0 as the number of secondary cases from a
randomly chosen index case, with exponentially distributed infectious periods, this is in practice
an overestimate in individual-based model simulations, since the index case competes with its
own secondary cases (and later) for other secondary cases to infect. The same principle applies to
R0. This effect is present in our network simulations as well as the mean-field model (Appendix,
Section A.2) and is particularly strong in clustered networks and a large seeding population, but
absent in discrete generation-based models.
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12 D.M. Green and I.Z. Kiss

Table 2. Sensitivity of network measures to network properties (see caption to Table 1 for definitions).

Property 〈k〉 〈k2〉/〈k〉 λ (χ(2) − χ(1))/(χ(1) − χ(0)) I2/I1 Simulation

Degree � � � � � �
Degree heterogeneity � � � � �
Clustering � �
Overlap of generations �
Non-random mixing � � � �
Community structure � �

A tick indicates the indicated measure is sensitive to differences in the indicated network property.

Many assumptions are implicit in formulations of network epidemic models such as that pre-
sented above. For example, we assume that all edges have equal weight and that this is not affected
by the number of connections an individual makes, as might be the case under the frequency-
dependent model paradigm. Other measures of clustering giving different weightings to nodes
with dissimilar k may be more appropriate for other network types. We also assume exponentially
distributed infectious period lengths, a distribution with a long tail and thus much overlap of
generations of infection. With many such other–often more biologically appropriate–approaches
available, there is always the danger of letting ‘the tail wag the dog’, that is being driven by what
we usually model, rather than being driven by modelling epidemic problems that need solutions.

Simple analytical approaches can aid the analysis of complex networks. For example, Newman
[33] showed that under some appropriate conditions the transmission of diseases on networks is
equivalent to a bond-percolation problem with the possibility of analytically or semi-analytically
computing outbreak threshold and outbreak size distribution. Kenah and Robins [22, 23] have later
on expanded on the precise conditions for such an agreement between the two approaches to hold.
Using a similar approach, Miller [29] considered the more general case of varying susceptibility
and infectivity. However, all these approaches are based on the assumptions of infinite networks
with no loops and in some cases proportionate or random mixing. Recently, Newman [36] and
Miller [31] developed an approach for analytic calculations of many properties in a class of
random clustered networks and confirmed previous findings based on simulation. Britton et al.
[6] used a branching process approximation to study the spread of an epidemic on a network with
tunable clustering. Their analytical results for the epidemic threshold and the probability of a large
outbreak on clustered networks confirm in a rigorous way the effect of clustering on the spread of
epidemics. Even though such models are difficult to extend to networks with more heterogeneity
or structure, such simple theoretical models provide a useful starting point for investigating the
effect of any departure from the idealized network models.

Clustering is a local property and the triangular subgraph structure and their frequency have
been generalized to motifs (e.g. four nodes in a line or connected in a circle), widely studied in
the context of systems biology [32]. For example, for gene regulatory networks, certain motifs
are more abundant in the network compared with what would be expected at random and these
frequently re-occurring small structures are regarded as the building blocks of networks. For our
particular case, different network-generating algorithms could lead to more frequently observing
motifs composed of four or more nodes. However, we found no difference in clustering at the level
of squares between iterative and fixed-degree networks. Future work could examine the presence
and frequency of other larger motifs that could be a by-product of the generating algorithms and
could have significant effects on disease transmission.

An important aspect of many disease transmission models is the exploration of the efficacy of
different control measures. For example, previous studies have shown that this strongly depends
on disease characteristics and contact network properties: contact tracing performs better on
clustered networks [11, 25] where the redundant local links offer multiple opportunities to trace
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and isolate individuals who have been in contact with infectious individuals. Similarly, with STIs
on assortatively mixed networks, contact tracing must be performed quickly or at least at a level that
is comparable to the rate of disease transmission [27]. Such studies are often based on theoretical
network models and focus on investigating the effect of a particular network property. In this paper,
we have shown that theoretical network models must be used with care and that the analysis of
the network itself merits as careful consideration as the dynamical processes that the networks
support. Combining network measures that focus on local node properties with large-scale network
measures can improve the transparency and accuracy of modelling predictions.
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Appendix

A.1 Generation-based network approach

Following on from the main text, where we let Ii,g denote the number of infected nodes of degree i in generation g, Ii,g+1
is given by

Ii,g+1 =
∞∑

j=0

Tjp(i|j)Ij,g,

where p(i|j) is the probability that a node with j contacts is connected to a node with i contacts. In the case of proportionate
random mixing, p(i|j) = ip(i)/〈k〉. Hence, given random seeding of initial cases in the zeroth generation such that
Ij,0 = p(j), the number of individuals with degree i in the first generation is

Ii,1 =
∑

j

Tj
ip(i)

〈k〉 Ij,0 = T ip(i)
∑

j jp(j)

〈k〉 = T ip(i)

while in the second generation this is

Ii,2 =
∑

j

Tj
ip(i)

〈k〉 Ij,1 = T 2ip(i)
∑

j j2p(j)

〈k〉 = T 2〈k2〉
〈k〉 ip(i).

Summation according to i gives I1 = T 〈k〉 and I2 = T 2〈k2〉. Dividing I2 by I1 we obtain the standard estimate for R0.

A.2 Generation-based mean-field model

The mean-field SIR model can be posed in a way in which the generations of infection may be identified. The infected
compartment I is subdivided into compartments indexed by the generation of infection g ∈ N0. Infection by generation
g produces infected individuals at generation g + 1, with therefore no flow into the g = 0 index case compartment. As
usual, β and γ represent the infection and removal rates.

dIg

dt
= βSIg−1 − γ Ig, g > 0,

dIg

dt
= −γ Ig, g = 0,
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dS

dt
= −β

∑
g

Ig,

dRg

dt
= γ Ig.

Solving this model for β = 3 and γ = 1, and an initial infected population of I0,0 = 0.0001, we obtain a final state of
R1,∞ = 0.000295, suggesting a value of R0 = 2.95, less than the theoretical value of R0 = β/γ = 3. This theoretical
value is approached as I0,0 approaches zero.
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