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Abstract. In this paper we explore the potential of the pairwise-type modelling approach to be
extended to weighted networks where nodal degree and weights are not independent. As a baseline
or null model for weighted networks, we consider undirected, heterogenous networks where edge
weights are randomly distributed. We show that the pairwise model successfully captures the
extra complexity of the network but, does this at the cost of limited analytical tractability due
the high number of equations. To circumvent this problem, we employ the edge-based modelling
approach to derive models corresponding to two different cases. These models are more amenable
to compute important epidemic descriptors, such as early growth rate and final epidemic size,
and produce similarly excellent agreement with simulation. Using a branching process approach
we compute the basic reproductive ratio for both models and discuss the implication of random
and correlated weight distributions on this as well as on the time evolution and final outcome of
epidemics. Finally, we illustrate that the two seemingly different modelling approaches operate on
similar assumptions and it is possible to formally link the two.
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1. Introduction
The study of epidemic spread through contact networks has significantly improved our understand-
ing of how the structure of interactions influences the spread of an infectious disease. One of the
most recognised facts is that individuals with more contacts tend to become infected sooner and
then spread the disease more quickly than others. Thus, for a given average degree, epidemics tend
to spread faster if the population has a more heterogeneous degree distribution.

A number of models have been introduced to study the spread of an SIR (susceptible-infectious-
recovered) infectious disease through a class of random networks known as configuration model
networks [19]. The earliest models [16] were restricted to final size calculations, predicting how the
total number infected depends on the transmission probability. More recently, models have been
introduced which attempt to predict the dynamics of an epidemic, with varying levels of success
and degrees of complexity. There are now several models available which can predict with high
accuracy the population-scale dynamics of an SIR epidemic spreading through a configuration
model network [18, 14, 9, 24, 6].

However, these analyses assume that all interactions have the same strength. In fact some
connections are expected to transmit infection quicker than others as a result of the closeness of
interaction of the individuals. By itself, a heterogeneous distribution of contact weights would af-
fect the dynamics of an epidemic. However, we further expect that an individual’s contact-weights
are likely to have some dependence on degree the impact of the weights becomes more significant.
Previous studies have considered and analysed different scenarios of weighted networks based on
theoretical/synthetic network models [22, 15, 20, 5], as well as empirical networks reconstructed
from real data (e.g. social mixing data [13] and cattle movements between farms [17]).

In this paper we develop and analyse models which allow us to incorporate edge-weights into
the epidemic dynamics and we explore this via pairwise and edge-based compartmental models, as
well as simulation. In particular, we focus on weighted networks where link or edge weights and
node degree are not independent, see for example [8, 21]. The aim of this study is twofold. First,
we explore the flexibility of the pairwise and edge-based compartmental modelling frameworks
to account for this added level of complexity, and second, to gain better understanding on the
precise impact of different weight distributions and of correlations between link-weight and degree
on epidemic threshold, growth rate and epidemic dynamics. The paper is organised as follows.
Section two is dedicated to model derivation starting with network construction and edge-weight
distribution, including some null models, such as where link-weights are randomly distributed and
where all link weights are equal to some predetermined average. In this same section, we derive
and present the pairwise and edge-based models for random and degree-dependent weights cases.
Section 3 is dedicated to results, and it is divided into an analytic, numeric and model comparison
part. Finally, in section 4, we provide further aspects for discussion and future directions.
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2. Model derivation
The models are built up in a bottom up approach. We first describe the construction of the networks
we study and how their edge-weights are assigned. We then describe the disease dynamics and
simulation model. We conclude this section with the formulation and derivation of the pairwise
and edge-based compartmental models for two distinct classes of weighted networks.

2.1. Network construction and simulation
Our focus here is the construction of our model networks and the simulation of an epidemic through
those networks. Our model networks use the configuration model framework [19] with each edge
assigned one of M possible weights. The two network types we consider differ in how those
weights are assigned to edges. We make standard assumptions about the disease spread, but we let
the rate of transmission along an edge depend on its weight.

2.1.1. Networks with randomly-distributed edge weights

In this case a two step approach is used to generate networks with randomly-distributed edge
weights. First, a network of N nodes with prescribed degree distribution P (k) is generated ac-
cording to the configuration model. This procedure leads to an undirected unweighted network
where edge weights can be now assigned at random according to a specified weight distribution
Q(w). If Q(w) is defined across weights wi, where Q(wi) = qi and i = 1, 2, . . . ,M , then in
a homogenous random network (i.e. all nodes have degree k), the distribution of edge-weights
of various types is multinomial with parameters k - number of trials and qi - the probability of
a link being of weight wi with i = 1, 2, . . . ,M . The average weight in the network is given by
〈w〉random =

∑M
i=1 qiwi.

While this is a good baseline model it is unlikely that this scenario would be a true represen-
tation of social interactions. For example, different weights could be interpreted as representing
different social interactions (e.g. household, workplace and casual) and this could suggest a model
where each individual has a certain number of links of different weights. Ignoring degree het-
erogeneity and considering individuals to be equal can result in a weighted network with fixed
edge-weights, e.g. each node has k links with k1 being of household type and with k2 = k − k1
being of workplace type and thus of different weights, say w1 and w2 [20].

2.1.2. Degree-dependent weighted networks

While many different edge-weight allocation scenarios are possible, we opt to investigate the case
where edge weights and node degrees are not independent. This is in contrast with the random
edge weights case, where the network topology and the edge weight distribution and allocation are
totally uncoupled. In particular, we wish to investigate an intuitively plausible idea which suggests
that the weight or ‘strength’ of a link is negatively correlated to node-degree since individuals
with many contacts are likely to afford a limited time commitment per link, and thus less of an
opportunity for the disease to transmit [8, 21]. In line with these studies, we propose a weighted
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network model where the link-weight between two nodes of degree i and j, respectively, is given
by w(i, j) = wij with some functional form that ensures that the weight is inversely proportional
to the node degrees. Generating such a network is straightforward and it requires that first a con-
figuration network with given degree distribution (i.e. P (k)) is generated. This is followed by
allocating weights to all links based on the degrees of the end nodes and according some pre-
specified function w(i, j), where i, j = kmin, . . . , kmax with kmin and kmax being the minimal and
maximal nodal degree in the network.

This setup makes it possible to construct at least two possible null-model-type weighted net-
works:

(i.) the first is a network that has the same topology and weight distribution but with weights
allocated at random. This amounts to effectively ‘lifting’ the weights of the original net-
work and then re-distributing them at random. In this case, the distribution of weights is
given by Q(W = w(i, j)) = NP (i)i jP (j)

〈k〉 /(〈k〉N/2) =
2ijP (i)P (j)
〈k〉2 and Q(W = w(i, i)) =

NP (i)i iP (i)
〈k〉 /(〈k〉N) = i2P 2(i)

〈k〉2 , where W is a random variable of link-weights, and

(ii.) the second is simply a weighted network where all link-weights are equal to the average
weight and this can be computed as

〈w〉dd =
∑kmax

i=kmin
NP (i)i iP (i)

〈k〉 wii + 2
∑kmax−1

i=kmin

∑kmax

j=i+1NP (i)i
jP (j)
〈k〉 wij

〈k〉N
,

where NP (i)i jP (j)
〈k〉 = ijNP (i)P (j)

〈k〉 stands for the actual expected number of links between
nodes of degree i and j, and 〈k〉 =

∑
kP (k) is the average nodal degree.

These two null models will be used as baseline models for comparison when looking to determine
the effect of degree-dependent weights on epidemic dynamics and other important indicators, such
as R0 and final epidemic size.

2.1.3. Epidemic model and simulation

In this paper, the simple SIR (susceptibel-infective-recovered) epidemic model is considered. Dis-
ease tranmission is specified in terms of infection and recovery events. The rate of transmission
over an edge of weight 1 is denoted by τ and this is adjusted by the edge weight by assuming that
transmission is directly proportional to it, i.e. rate of transmission across an edge of weight w is
τw. Infected individuals recover independently of each other at rate γ. The simulation is imple-
mented using the Gillespie algorithm [2] with exponentially distributed (rate given by the total rate
of change in the system) inter-event times, with the single event to be implemented at each step
being chosen at random and proportionally to its rate. All simulations start with a few infected
nodes chosen at random with the remaining nodes being susceptible.
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2.2. Approximate ODE models
Markovian processes on networks, being disease, rumour, information, innovation transmission or
firing neurones result in an exact mathematical description in terms of Kolmogorov/master equa-
tions. Their high dimensionality, even for small networks, renders them difficult to use and often
these can only be used to ascertain results of a theoretical nature but may offer less insight for
specific applications. Notably, for highly symmetric or regular networks, the exact equations can
be used directly and this is an area that has been well exploited and has been used to provide and
illustrate linkages between stochastic and approximate ODE models. However, for more general
networks, the drawback of the exact model remains. This has led to the development of a number
of approaches and models that do an excellent job in approximating results from explicit simu-
lations on networks which correspond to what would be regarded as the exact model. Examples
include: (a) pairwise models [18, 1, 14, 11], (b) edge-based compartmental models and in gen-
eral approaches that require the use of probability generating functions [6], (c) effective degree
models [24, 9], and other variations or combinations based around these. In this paper, we will
concentrate on pairwise and edge-based compartmental models and will assess their flexibility and
performance in accounting and approximating epidemic dynamics unfolding on two main classes
of weighted networks.

2.2.1. Pairwise models

The model extension that we propose is partly covered in Rattana et al. [20]. However, here
we extend this from homogenous to heterogeneous networks with random weights as well as
to the case where edge weights and node degree are not independent. Before writing down the
two models, we refresh the notation and counting procedures. In line with the notation used for
pairwise models, the number of singles remains unchanged, with [Ak] denoting the number of
nodes across the whole network which have degree k and are in state A. Pairs of type Ak − Bk′ ,
[AkBk′ ], are now further divided depending on edge weights, i.e. [AkBk′ ]i represents the number
of links of type Ak − Bk′ with the edge having weight wi, where as before i = 1, 2, . . . ,M and
A,B ∈ {S, I, R}. Edges are doubly counted (e.g. in both directions) and thus the following rela-
tions hold: [AkBk′ ]m = [Bk′Ak]m and [AkAk]m is equal to twice the number of uniquely counted
links of weight wm with nodes at both ends in state A and having degree k. From this extension
it follows that

∑M
i=1[AkBk′ ]i = [AkBk′ ]. The same convention holds at the level of triples where

[AkBk′Cq]mn stands for the expected number of triples where a node in state B and of degree
k′ connects a node in state A and of degree k and a node in state C and of degree q via links
of weight wm and wn, respectively. The weight of the edge impacts on the rate of transmission
across that edge, and this is achieved by using a link-specific transmission rate equal to τwi, where
i = 1, 2, . . . ,M . In line with the above, we construct two pairwise models, one for randomly
distributed weights across edges and one for the case where edge weights and node degrees are
correlated.

5



P. Rattana et al. Epidemics on correlated weighted networks

Evolution equations for SIR dynamics on heterogenous networks with random weights

˙[Sk] = −τ
∑M

n=1wn[SkI]n,

˙[I] = τ
∑

k

∑M
n=1wn[SkI]n − γ[I],

˙[R] = γ[I],

˙[SkSk′ ]m = −τ
∑M

n=1wn ([SkSk′I]mn + [Sk′SkI]mn) ,

˙[SkI]m = τ
(∑

k′
∑M

n=1wn[SkSk′I]mn −
∑M

n=1wn[ISkI]nm − wm[SkI]m
)
− γ[SkI]m,

˙[SkR]m = −τ
∑M

n=1wn[ISkR]nm + γ[SkI]m,

˙[II]m = 2τ
(∑

k

∑M
n=1wn[ISkI]nm + wm

∑
k[SkI]m

)
− 2γ[II]m,

˙[IR]m = τ
∑

k

∑M
n=1wn[ISkR]nm + γ([II]m − [IR]m),

˙[RR]m = γ[IR]m,

(2.1)

where k, k′ ∈ {kmin, kmin + 1, . . . , kmax} and m = 1, 2, 3, ...,M . Here, kmin and kmax stands for
the smallest and largest nodal degree in the network. We further note that the system above stems
from a reduction applied to a fuller version where evolution equations for all [Ik] classes are given
(i.e. ˙[Ik] = τ

∑kmax

l=kmin

∑M
n=1wn[SkIl]n − γ[Ik]). Summing this for k = kmin, kmin + 1, . . . , kmax

gives the evolution equations for [I], as shown above. A similar notational procedure has been
applied at the level of triples where in general [AkBk′I]mn =

∑kmax

q=kmin
[AkBk′Iq]mn.

The above system of Eq. (2.1) is not closed. Singles depend on pairs, and pairs depend on
triples. Thus equations for triples are needed. This dependency on higher-order moments can be
broken via approximating triples in terms of singles and pairs [18]. The agreement of the results
from the closed system with simulation depends on how well the closure captures essential features
of network structure and the edge weight distribution. Following Eames [14], the following closure
is applied,

[AmBnI] =
n− 1

n

[AmBn][BnI]

[Bn]
or [AmBnCp] =

n− 1

n

[AmBn][BnCp]

[Bn]
. (2.2)

It is worth noting that the equations only rely on triples for which the central individual is suscepti-
ble. Thus individuals at the “ends” of a triple cannot affect one another’s status through the central
node until after they no longer affect the equations at the pair level.

Evolution equations for SIR dynamics on networks with degree-dependent weights
The focus now shifts to the case where we wish to incorporate some general correlation between
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edge weights and nodal degree. This is done by assuming that transmission between a susceptible
node of degree k and infected node of degree q happens at rate τwkq, where wkq = w(k, q) can ac-
commodate various dependencies of edge weight on nodal degree. The pairwise equations follow
in the same way as before and are given by

˙[Sk] = −τ
∑

q wkq[SkIq],

˙[Ik] = τ
∑

q wkq[SkIq]− γ[Ik],

˙[Rk] = γ[Ik],

˙[SkSk′ ] = −τ
∑

q(wk′q[SkSk′Iq] + wkq[Sk′SkIq]),

˙[SkIk′ ] = τ
∑

q(wk′q[SkSk′Iq]− wkq[Ik′SkIq])− τwkk′ [SkIk′ ]− γ[SkIk′ ],

˙[SkRk′ ] = −τ
∑

q wkq[IqSkRk′ ] + γ[SkIk′ ],

˙[IkIk′ ] = τ
∑

q(wk′q[IkSk′Iq] + wkq[Ik′SkIq]) + τ(wkk′ [SkIk′ ] + wk′k[Sk′Ik])− 2γ[IkIk′ ],

˙[IkRk′ ] = τ
∑

q wkq[IqSkRk′ ] + γ([IkIk′ ]− [Rk′Ik]),

˙[RkRk′ ] = γ([RkIk′ ] + [Rk′Ik]),
(2.3)

where as before k, k′, q ∈ {kmin, kmin + 1, . . . , kmax} and with wxy yet unspecified. This system
is closed in the same way as before using Eq. (2.2).

2.2.2. Edge-based compartmental models for weighted networks

We follow the derivation of Edge-based compartmental models (EBCM) of [4, 6, 7]. We as-
sume that the population is connected according to the configuration model. We assume that the
population-scale measures of infection (number infected, etc) are behaving deterministically. A
consequence of this assumption is that if we choose a random individual u, the random event of
whether u is or is not infected cannot have any impact on the population scale. So if we alter a
single individual u so that u can become infected but cannot transmit to its partners, this can have
no population-scale impact.

We define a test individual as follows: u is a test individual if u is randomly selected from the
population and prevented from transmitting to its neighbours. Because the dynamics are determin-
istic and u is selected randomly, the probability u is in a given state equals the proportion of the
population in that state. So to calculate the proportion infected, we can simply calculate the prob-
ability u is infected. This depends on the probabilities that the partners of u are infected. Because
we have prevented u from causing any infections, the status of each partner of u is independent of
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any other partner, which will simplify our calculations. This is closely related to the observation
for the pairwise equations that the triples only appear in the pair equations if the central individual
is still susceptible.

EBCM Evolution equations for SIR dynamics on heterogeneous networks with random
weights
As before, let us assume that there is a weight distribution Q(w) assigned to the edges. Without
loss of generality, we can assume that the transmission rate for an edge with a given w is simply
τw for some parameter τ . We further assume that; (a) infected individuals recover at rate γ, which
is independent of how they were infected and that (b) at the initial time t = t0, the probability an
individual of degree k is infected is S(k, t0).

Let us now consider a test individual u, and let v be a random neighbour of u. Let θ be the
probability that v has not transmitted to u given that at time t0 v had not yet transmitted to u. Then
trivially, θ =

∑
wQ(w)θw where θw is the probability a neighbour along a weight w edge has

not transmitted to u given that it had not yet transmitted at time t0. Note that θ(0) = 1. These
probabilities are not affected by the degree of u, so the probability u is susceptible is

S(t) =
∑
k

P (k)S(k, t0)θ
k = ψ(θ).

Once we know S(t), we can find the probability that u is infected or recovered simply by noting
that Ṙ = γI and I = 1− S −R.

To complete the system, all the θw need to specified. Assuming that the edge connecting v to u
has weight w, we define φS,w to be the probability that v is still susceptible. We define φI,w to be
the probability v is infected but has not transmitted to u. We define φR,w to be the probability v has
recovered and did not transmit to u. Then θw = φS,w + φI,w + φR,w and 1 − θw is the probability
transmission has occurred (given that it had not occurred prior to t0).

To find φS(t), we assume its initial value φS(t0) is known. We need to find the probabil-
ity that v has degree k given that it was chosen as a neighbour of u and was susceptible at
time t0. To do this, we count all edges belonging to susceptible nodes of degree k at time t0
and divide by the number of all edges belonging to susceptible nodes at time t0. This yields
kP (k)S(k, t0)N/

∑
k′ k
′P (k′)S(k′, t0)N = kP (k)S(k, t0)/ψ

′(1). The probability that v is still
susceptible if it started susceptible and has degree k is θk−1. So φS(t) = φS(t0)ψ

′(θ)/ψ′(1). Note
that this is independent of w.

We can find φR,w(t) in terms of θw. We assume that its initial value φR,w(t0) is known. By
definition, θw(t0) = 0. An infected neighbor along a weight-w edge transmits at rate τw and
recovers at rate γ. Thus it moves from being counted towards φI,w to being counted towards φR,w
at rate γ and to being counted towards 1− θw at rate τw. Thus the rate of increase of φR,w is γ/τw
times the rate of increase of 1− θw. Using this argument, we conclude that

φR,w =
γ

τ
(1− θw) + φR,w(0)

The arguments above are summarised in figure 1.
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φS = φS(t0)
ψ′(θ)
ψ′(1)

φI,w φR,w

1 − θw

γφI,w

τwφI,w

Figure 1: Flow diagram for random weight case.

Then, since φS + φI,w + φR,w = θw and we know φS and φR,w, we can compute φI,w. Sum-
marising the findings above leads to

θ̇w = −τwφI,w

= −τw
(
θw − φS(0)

ψ′(θ)

ψ′(1)
− γ(1− θw)

τw
− φR,w(0)

)

So we end up with the system

θ̇w = −τwθw + τwφS(0)
ψ′(θ)

ψ′(1)
+ γ(1− θw) + τwφR,w(t0), (2.4)

θ =
∑
w

Q(w)θw, (2.5)

where as for the pairwise model w ∈ {w1, w2, . . . , wM}. The initial conditions on φS,w(t0) and
φR,w(t0) depend on how the epidemic is initialized. We have θw(t0) = 1. Noting that in ψ′(θ) it is
θ, not θw, and combining the above with

S = ψ(θ) , I = 1− S −R , Ṙ = γI,

completes the system.
In general starting by randomly selecting a proportion ρ of individuals yields S(k, t0) =

φS(t0) = 1 − ρ and φR,w(t0) = R(t0) = 0. If instead the diseases starts with a very small
number and set t0 when enough infections are present to be deterministic, then the initial condi-
tions are different, and depend on the state of the population at this initial time [4]. In particular
S(k, t0) may depend on k and not match exactly with φS(t0).

EBCM evolution equations for SIR dynamics on networks with degree-dependent weights
The focus now shifts to the case when across each edge there is a weight wkk′ which depends on
the degrees k and k′ of the neighbouring nodes. Transmission happens at rate τwkk′ . We define θk
to be the probability a neighbour of a degree k test node has not transmitted to it (given that it had
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φS,k,k′ =
φS,k,k′(t0)θ

k′−1
k′

φI,k,k′ φR,k,k′

1 − θk,k′

γφI,k,k′

τwkk′φI,k,k′

Figure 2: Flow diagram for weights dependent on degree.

not at time t0). Due to this being k dependent, the expression for ψ(θ) will be more complicated
compared to the random weights case. Instead, the probability the test node is susceptible is

S(t) =
∑
k

P (k)S(k, t0)θ
k
k = ψ(θkmin

, θkmin+1, . . . , θkmax).

Assume the neighbor v has degree k′. We define θk,k′ to be the probability that v has not transmitted
given that it has degree k′, u has degree k, and v had not transmitted to u by time t0. Then
v is in the same states as before with probabilities φS,k,k′(t), φI,k,k′(t), and φR,k,k′(t). We find
φS,k,k′(t) = φS,k,k′(t0)θ

k′−1
k′ . We find that φR,k,k′ = γ(1 − θk,k′)/τwkk′ + φR,k,k′(t0). The picture

underlying this process of thought is given in figure 2.
The final equations are

θ̇k,k′ = −τwkk′θk,k′ + τwkk′φS,k,k′(t0)θ
k′−1
k′ + γ(1− θk,k′) + τwkk′φR,k,k′(t0), (2.6)

θk =
∑
k′

Pn(k, k
′)θk,k′ (2.7)

Ṙ = γI , I = 1− S −R , S =
∑
k

P (k)S(k, t0)θ
k
k (2.8)

where Pn(k, k′) is the probability the neighbour of u has degree k′ given that it hadn’t transmitted
to u by time t0.

As before if we start by randomly selecting a proportion ρ of individuals at time t0, we have
S(k, t0) = φS(t0) = 1 − ρ, and φR,k(t0) = R(t0) = 0. In this case we get Pn(k, k′) =
k′P (k′)/

∑
k′′ k

′′P (k′′). If the disease has been spreading for some time, the considerations above
will not hold. In many cases, Pn(k, k′) can be calculated rather than taken as an ‘initial condi-
tion’. Hence, if the initial infected proportion is a randomly chosen proportion ρ, then the initial
conditions are:

R(t0) = 0,

φR,k,k′(t0) = 0,

S(k, t0) = 1− ρ,
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φS,k,k′(t0) = 1− ρ,
θk,k′(t0) = 1,

and

Pn(k, k
′) =

k′P (k′)

〈k〉
.

If the infection has been spreading for some time before t0, then the probability a neighbour
has transmitted to u before t0 depends on the degree of the neighbour. Since we define θ to be
conditional on transmission to u never happening prior to t0, this needs to be corrected for, and
thus Pn(k, k′) will be different.

3. Results
In this section we present analytical and numerical results from network simulations, pairwise and
edge-based representations of SIR dynamics. To compute the early growth rate and final epidemic
size, we first write out the edge-based system for the special case of a heterogeneous network
with low (degree l with probability P (l)) and high (degree h with probability P (h)) degree. This
automatically induces three weights w1 = wll, w2 = wlh = whl and w3 = whh. Moreover, for the
degree-dependent weighted network, the distribution of weights is given by: q1 = qll =

l2P 2(l)
〈k〉2 ,

q2 =
2lhP (l)P (h)
〈k〉2 and q3 = qhh = h2P 2(h)

〈k〉2 , where 〈k〉 = lP (l) + hP (h) is the average nodal degree,
and q2 stands for the proportion of uniquely counted links between l and h nodes.

3.1. Epidemic threshold and final epidemic size
While pairwise models can be used to compute R0 [18] and early growth rate [20], this is only
practical for special cases where the number of equations remains relatively low. Such calculations
are possible for homogenous unweighted networks [18] and even for homogenous networks with
two different edge weight types [12, 20]. In general and as we show, the edge-based compartmental
models are more amenable to such analysis due to their smaller dimensionality, see Table 1.

3.1.1. Random edge weight distribution for heterogeneous networks

The three weights system leads to working with θw1 , θw2 and θw3 , where Q(w1) = q1, Q(w2) = q2
and Q(w3) = 1− q1 − q2 = q3. Based on Eq. (2.4), the evolution equations for these are,

θ̇w1 = −τw1θw1 + (1− ρ)τw1

ψ′θw1
(θ)

ψ′θw1
(1)

+ γ(1− θw1), (3.1)

θ̇w2 = −τw2θw2 + (1− ρ)τw2

ψ′θw2
(θ)

ψ′θw2
(1)

+ γ(1− θw2), (3.2)

11
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Table 1: System complexity in terms of the number of differential equations needed to fully de-
scribe the epidemic dynamics. As before, M is the number of different weight types and K is the
number of different nodal degrees, e.g. K = kmax − kmin + 1 provided that nodes of any degree
between minimum and maximum degree exist.

Type of weighted network Pairwise model Edge-based model

full system: 2K + K(K+1)
2

M +K2M
randomly distributed weights

reduced-system : K + 1 + K(K+1)
2

M +KM
M + 1

degree-dependent weights 2K + K(K+1)
2

+K2 K2 + 1

θ̇w3 = −τw3θw3 + (1− ρ)τw3

ψ′θw3
(θ)

ψ′θw3
(1)

+ γ(1− θw3). (3.3)

For a heterogenous network with N nodes where a node has degree l (e.g. low degree) with
probability P (l) or degree h (e.g. high degree) with probability P (h) = 1 − P (l), the proportion
of susceptibles at time t (based on Eq. (2.5)) is given by

S(t) = (1− ρ)(P (l)θl + P (h)θh) = ψ(θ),

where θ = q1θw1 + q2θw2 + q3θw3 .

Early growth rate
To compute the early growth rate, the assumption of an infinitesimally small initial infection must
hold. Hence, to satisfy this requirement, we modify Eqs. (3.1-3.3) by taking (1 − ρ) → 1. This
gives

θ̇w1 = −τw1θw1 + τw1

[
Pe(l)θ

l−1 + Pe(h)θ
h−1]+ γ(1− θw1),

θ̇w2 = −τw2θw2 + τw2

[
Pe(l)θ

l−1 + Pe(h)θ
h−1]+ γ(1− θw2),

θ̇w3 = −τw3θw3 + τw3

[
Pe(l)θ

l−1 + Pe(h)θ
h−1]+ γ(1− θw3),

where Pe(l) = lP (l)/〈k〉, Pe(h) = hP (h)/〈k〉 and 〈k〉 = lP (l)+hP (h). Here, Pe(k) - represents
the probability of finding a node of degree k when picking an edge at random and considering
either of the nodes at its ends. We set θw1 = 1 + ε1, θw2 = 1 + ε2 and θw3 = 1 + ε3. We linearise
about the equilibrium and have the matrix equation ε̇1

ε̇2
ε̇3

 =

 −τw1 + τw1q1ζ − γ τw1q2ζ τw1q3ζ
τw2q1ζ −τw2 + τw2q2ζ − γ τw2q3ζ
τw3q1ζ τw3q2ζ −τw3 + τw3q3ζ − γ

 ε1
ε2
ε3

 ,

where
ζ = (l − 1)Pe(l) + (h− 1)Pe(h).

12
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Thus, the eigenvalues are the solutions of a 3rd order equation given by λ3+ a1λ
2+ a2λ+ a3 = 0,

where

a1 = u1 + u2 + u3 − v1 − v2 − v3,
a2 = u1u2 + u1u3 + u2u3 − u1(v2 + v3)− u2(v1 + v3)− u3(v1 + v2),

a3 = u1u2u3 − u1u2v3 − u1u3v2 − u2u3v1,

where, ui-s and vi-s are given by

ui = τwi + γ , vi = τwiqiζ for i = 1, 2, 3.

By considering the case of λ = 0, the critical point for change of stability, the third order equation
yields a3 = 0. This means that at the point at which the eigenvalue changes sign a3 = 0, and this
gives a relation between the system parameters which determines the threshold condition.

The basic reproduction number - R0

The basic reproduction number R0 can be computed in two different ways. First, by using an
individual-level view and average across nodes of different degrees that have become infected
from the very initial index case. By doing this, we average the expected number of infections in
the second generation. This approach yields,

Rrw
0 = (l − 1)Pe(l)(q1r1 + q2r2 + q3r3) + (h− 1)Pe(h)(q1r1 + q2r2 + q3r3),

where
ri =

τwi
τwi + γ

i = 1, 2, 3.

A more rigorous and widely applicable approach is to compute R0 as the leading eigenvalue
of the next generation matrix (NGM). In this case, we can consider the epidemic in terms of an
embedded multi-type branching process [10, 3], where theNGM = (mij)i,j=1,2,...,Nt (Nt - number
of different types) consists of entries giving the expected number of offsprings of type i produced
by a single individual of type i. Once, the different types have been defined, then NGM can be
constructed, and R0 will be equivalent to the leading eigenvalue of the NGM. In this case, we have
individuals of two different types (individuals of low and high degree) and the NGM is given by,

NGM =

 (l − 1)Pe(l)(q1r1 + q2r2 + q3r3) (h− 1)Pe(l)(q1r1 + q2r2 + q3r3)

(l − 1)Pe(h)(q1r1 + q2r2 + q3r3) (h− 1)Pe(h)(q1r1 + q2r2 + q3r3)

 ,
where, for example (h− 1)Pe(l)(q1r1+ q2r2+ q3r3) stands for the expected number of individuals
of low degree infected by a typical infected individual with high degree. Hence,

Rrw
0 =

(
(l − 1)Pe(l) + (h− 1)Pe(h)

)
(q1r1 + q2r2 + q3r3), (3.4)

and this is identical to the previously computed value. A further consistency check of our calcu-
lations can be performed. Namely, the relation Rrw

0 = 1 ⇔ λ = 0 should hold. Indeed, using

13
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condition a3 = 0 leads to Rrw
0 = 1.

Final epidemic size
To compute the final epidemic size, we need to return to the original equations that account for
the initial conditions as given by Eqs. (3.1-3.3). By setting the derivatives to zero, it is possible to
find asymptotic values of θw1 , θw2 and θw3 , i.e. θw1(∞), θw2(∞) and θw3(∞). Once these values
are know the final epidemic size is given by R(∞) = 1 − ψ(θw1(∞), θw2(∞), θw3(∞)), where
θw1(∞), θw2(∞) and θw3(∞) are the solutions of the following system,

θw1(∞) =
γ + (1− ρ)τw1

[
Pe(l) (θ(∞))l−1 + Pe(h) (θ(∞))h−1

]
τw1 + γ

, (3.5)

θw2(∞) =
γ + (1− ρ)τw2

[
Pe(l) (θ(∞))l−1 + Pe(h) (θ(∞))h−1

]
τw2 + γ

, (3.6)

θw3(∞) =
γ + (1− ρ)τw3

[
Pe(l) (θ(∞))l−1 + Pe(h) (θ(∞))h−1

]
τw3 + γ

, (3.7)

where θ(∞) = q1θw1(∞)+q2θw2(∞)+q3θw3(∞). By treating the above as a fixed point problem, it
can be shown that a numerical recursion will converge quickly to the true solution and we compare
this simulation results in the numerical analysis part.

3.1.2. Degree-dependent weights

For the same simplified scenario with a network with bimodal degree distribution and weights that
correlate with node-degree, Eqs. (2.6-2.8) yield

θ̇ll = −τwllθll + (1− ρ)τwllθl−1l + γ(1− θll), (3.8)
θ̇lh = −τwlhθlh + (1− ρ)τwlhθh−1h + γ(1− θlh), (3.9)
θ̇hl = −τwhlθhl + (1− ρ)τwhlθl−1l + γ(1− θhl), (3.10)
θ̇hh = −τwhhθhh + (1− ρ)τwhhθh−1h + γ(1− θhh). (3.11)

According to the model derivation θl and θh can be found as

θl = Pn(l, l)θll + Pn(l, h)θlh,

θh = Pn(h, l)θhl + Pn(h, h)θhh,

with Pn(k, k′) = k′P (k′)/〈k〉. This complemented by

S(t) = (1− ρ)(P (l)θll + P (h)θhh),

gives the full system.

14
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Early growth rate
As before, we note that for the correct calculation of the early growth rate, Eqs. (3.8-3.11) must be
used with (1− ρ)→ 1. By setting θll = 1 + ε1, θlh = 1 + ε2, θhl = 1 + ε3 and θhh = 1 + ε4, and
linearising around the disease-free steady state leads to the following Jacobian, J,

−τw1 + v1 − γ τw1(l − 1)Pn(l, h) 0 0

0 −τw2 − γ τw2(h− 1)Pn(h, l) τw2(h− 1)Pn(h, h)

τw2(l − 1)Pn(l, l) τw2(l − 1)Pn(l, h) −τw2 − γ 0

0 0 τw3(h− 1)Pn(h, l) −τw3 + v2 − γ


.

where
v1 = τw1(l − 1)Pn(l, l) , v2 = τw3(h− 1)Pn(h, h).

The eigenvalues will be the solution of J − λI = 0, where I is the identity matrix. Thus, the
eigenvalues are the solutions of a 4th order equation given by λ4 + a1λ

3 + a2λ
2 + a3λ + a4 = 0,

where

a1 = u1(1−R1) + 2u2 + u3(1−R2),

a2 = 2u2

(
u1(1−R1) + u3(1−R2)

)
+ u22 + u1u3(1−R1)(1−R2)− v3,

a3 = 2u1u2u3(1−R1)(1−R2) + u22 (u1(1−R1) + u3(1−R2))− v3 (u1 + u3(1−R2))− v2v3,
a4 = u1u

2
2u3(1−R1)(1−R2)− u1u3v3(1−R2)− u1v2v3,

where

R1 = (l − 1)Pn(l, l)r1, R2 = (h− 1)Pn(h, h)r3, v3 = (τw2)
2(l−1)Pn(h, l)(h−1)Pn(l, h)

and where ui-s are given by
ui = τwi + γ for i = 1, 2, 3,

By considering the case of λ = 0, the critical point for change of stability, the fourth order
equation yields a4 = 0. This means that at the point at which the eigenvalue changes sign a4 = 0,
and this gives a threshold condition. As expected, it can be shown that a4 = 0 is equivalent to
Rdd

0 = 1 (below). This confirms that the calculations are consistent.

The basic reproduction number - R0

In this case, we calculate R0 only by using the next generation matrix approach, and R0 is the
leading eigenvalue of the next generation matrix. Before writing down the NGM we need to
specify the choice of individual types, and then the entries of the NGM = (mij)i,j=1,2,...,Nt . For
this case, the types will be depend solely on the degree of the nodes, and thus, the NGM is given
by,

NGM =

 (l − 1)Pe(l)r1 (h− 1)Pe(l)r2

(l − 1)Pe(h)r2 (h− 1)Pe(h)r3

 .
15
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For example, the expected number of low degree individuals produced by a single high degree
individual h, is given by (h− 1)Pe(l)r2. The leading eigenvalue of the above matrix, and thus R0

is given by

Rdd
0 =

R1 +R2 +
√

(R1 −R2)2 + 4F

2
,

where
R1 = (l − 1)Pe(l)r1, R2 = (h− 1)Pe(h)r3,

and
F = (l − 1)Pe(l)(h− 1)Pe(h)r

2
2.

Final epidemic size
Using the same approach as before and taking into account the initial condition in terms of ρ, the
final epidemic size is given by R(∞) = 1− ψ(θl(∞), θh(∞)) where θll(∞), θlh(∞), θhl(∞) and
θhh(∞) are the solutions of the following system,

θll(∞) =
γ + (1− ρ)τwllθl−1l (∞)

τwll + γ
, (3.12)

θlh(∞) =
γ + (1− ρ)τwlhθh−1h (∞)

τwlh + γ
, (3.13)

θhl(∞) =
γ + (1− ρ)τwhlθl−1l (∞)

τwhl + γ
, (3.14)

θhh(∞) =
γ + (1− ρ)τwhhθh−1h (∞)

τwhh + γ
. (3.15)

3.1.3. Comparison of R0 and final epidemic size

Based on the analytic and semi-analytic calculations above, we provide a few examples where
R0 and the final epidemic size (Fig. 3) are compared for networks with heterogenous degree and
weight distributions. Namely, as indicated in section 2.1., we start from networks with degree-
dependent weights and compare R0 and final epidemic size corresponding to this against those
from networks with the same topology and same weight distribution but with weights assigned at
random, and weighted networks where all weights are equal to the average weight from the original
network, 〈w〉dd = q1w1+q2w2+q3w3. Fig. 3 (left panel) shows clearly thatR0 is maximised when
all weights are equal, and that networks with randomly distributed weights allow for a larger R0

value compared to the case of networks where degrees and weights are inversely correlated. This
observation can be made rigorous. We start by noting that R0 for the case of equal weights, based
on Eq. (3.4) - ( with all weights equal), is given by,

Rav
0 = ((l − 1)Pe(l) + (h− 1)Pe(h))

τ〈w〉dd
τ〈w〉dd + γ

.

16



P. Rattana et al. Epidemics on correlated weighted networks

Similarly, based on Eq. (3.4), the basic reproduction ratio is given by

Rrw
0 = ((l − 1)Pe(l) + (h− 1)Pe(h))

(
q1

τw1

τw1 + γ
+ q2

τw2

τw2 + γ
+ q3

τw3

τw3 + γ

)
.

First, we want to show that Rrw
0 ≤ Rav

0 . Noting that ϕ(w) = τw
τw+γ

is a concave function on
w ∈ [0,∞), as ϕ′′

< 0, then using Jensen’s inequality under the condition q1 + q2 + q3 = 1, yields

q1ϕ(w1) + q2ϕ(w2) + q3ϕ(w3) ≤ ϕ(q1w1 + q2w2 + q3w3),

q1
τw1

τw1 + γ
+ q2

τw2

τw2 + γ
+ q3

τw3

τw3 + γ
≤ τ(q1w1 + q2w2 + q3w3)

τ(q1w1 + q2w2 + q3w3) + γ
.

Hence, we can conclude that Rrw
0 ≤ Rav

0 , with equality when all weights are equal. Moreover, it is
easy to see that when w1 = w2 = w3 = w, we have

Rrw
0 = Rav

0 = ((l − 1)Pe(l) + (h− 1)Pe(h))
τw

τw + γ
.

While we do not have an explicit proof, numerical tests support the observation that Rdd
0 ≤ Rrw

0 ,
and hence the following inequality holds

Rdd
0 ≤ Rrw

0 ≤ Rav
0 . (3.16)

The final epidemic size can be computed semi-analytically using the approach developed in
the context of edge-based modelling. Namely, we use Eqs. (3.5 - 3.7) for the randomly-distributed
and fixed weights case, and Eqs. (3.12 - 3.15) for the degree-dependent weighted network case. In
both situations, we treat the equations as maps which we then numerically iterate to find their fixed
points. The final epidemic size plots (see the right of Fig. (3) and Fig. (4)) show that for the same
R0 value, the final epidemic size is largest on the original network with degree-dependent weights.
This is a direct consequence of the relation between theR0 values on the different networks, see Eq.
(3.16). Namely, with all parameters being equal, R0 is smallest on the original network. Hence,
considering a fixed value of R0(= Rconst

0 ) across the different networks requires a larger value
of τ on the original network compared to the randomly distributed and fixed weights cases. This
higher value is required to compensate for the negative correlation between degree and weights,
which means that once the highly connected nodes are infected, the epidemic progresses to less
well connected parts of the network but with increasing per link rates of transmission. In Fig. (4)),
there is a complete reversion of order compared to the left panel in Fig. (3).

3.2. Numerical analysis of pairwise- and edge-based models
The numerical analysis part focuses around comparisons between the ‘original’ degree-dependent
weighted networks and the two null models. Namely, we consider the network with the same
weight distribution but with the weights distributed at random and the case of all weights equal
to the average weight. For all cases we use a network where nodes can be of either a low or
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Figure 3: Basic reproductive ratioR0 and final epidemic size for heterogeneous weighted networks.
All numerical tests use N = 1000, P (l) = 0.8, P (h) = 1 − P (l), I0 = 50, l = 3, h = 13 and
γ = 1. Degree-dependent weighted networks (black line and (+)), networks with random weight
distribution (red line and (?)), and networks with all weights equal (blue line and (◦)). All networks
have the same average weight 〈w〉dd = q1w1 + q2w2 + q3w3.
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Figure 4: Final epidemic size as a function of R0. All parameters are the same as in Fig. (3).
.
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high degree, i.e. degrees of two types only. In Fig. 5, we present time evolution plots for the
prevalence and the R class, as well as the semi-analytic final epidemic size results following from
the edge-based compartmental models. There are several important observations that can be made.
Firstly, the agreement between the pairwise, edge-based and simulation model is excellent for
all cases considered. Secondly, the distribution of weights has a significant impact on the time
evolution of the epidemic with the homogenous/equal link-weight case giving rise to the fastest
growing epidemic. The difference between the randomly distributed and equal weights cases is
not significant, and both lead to fast epidemics compared to the original network model, where the
epidemic is slower but lasts longer. This figure also emphasises the excellent agreement between
simulations and the semi-analytic calculations resulting from the edge-based model.

The marked difference in the time evolution of the epidemics can be explained intuitively by
noting that on a network with degree-dependent weights, and especially when weights and degrees
are inversely correlated, the important role played by highly connected nodes is negated by small
link weights which makes transmission less likely. The slow initial growth in prevalence shows
that the epidemic is ‘struggling’ to get through the highly connected nodes of the network, where
link weights are low, and this is followed by a phase where nodes that are less well connected
become infected with this process being favoured by larger link-weights.

3.3. The principle of formally proving model equivalence
Our numerical results show remarkable agreement between the pairwise and the EBCM models,
see Figs. (5 - 6). A careful analysis (which will come in a future publication) shows that while
the two models appear to make different assumptions, they are in fact equivalent. We will give
some insight into why this occurs. The central observation is that with both models, we will show
that when considering two neighbours u and v, in our calculation of whether v has infected u it is
rigorously possible to ignore whether any other neighbours have previously infected u.

The EBCM approach proceeds by starting with the initial problem of calculating the proportion
of the population that is in each state. By assuming that the population-scale dynamics are deter-
ministic, we can conclude that this must equal the probability that a random individual is in each
state. So we transition to the equivalent problem of choosing a random individual u and calculating
its probability of being in a given state. We seek to calculate the probability that a random neighbor
v of u has transmitted infection to u. This is complicated by the fact that u might first transmit to
v. However, we note that preventing u from transmitting to v after infection of u does not alter the
probability that u is susceptible, infected, or recovered. Thus we find another equivalent problem:
calculate the probability that u is in each state given that it is prevented from transmitting to its
partners. This sequence of arguments means that as we calculate whether v has transmitted to u,
we can ignore whether or not another neighbor has already transmitted to u.

In the pairwise model, we look at the equations for the rates of change of [SkSk′ ], [SkIk′ ], and
[SkRk′ ] in Eq. (2.3). In each equation, there is a term on the right hand side which represents
infection of the Sk individual by a partner other than the k′ individual. After substituting our
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Figure 5: Time evolution of prevalence and removed class on heterogeneous weighted networks
(simulation: dashed line and (◦), pairwise: solid line, and edge-based: (?)), and semi-analytical
final epidemic size (thin black line). All numerical tests use N = 1000, P (l) = 0.8, P (h) =
1 − P (l), I0 = 50, l = 3, h = 13, γ = 1, τ = 3, and simulations are averaged over 50 different
network realisations and 50 simulations on each of these. Degree-dependent weighted network
(black), network with randomly distributed weights (red) and network with equal weights (blue).
All networks have the same average weight 〈w〉dd = q1w1 + q2w2 + q3w3.
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Figure 6: Time evolution of prevalence and R class on heterogeneous weighted networks (simu-
lation: dashed line and (◦), pairwise: solid line, and edge-based: (?)), and semi-analytical final
epidemic size (thin black line). All numerical tests use N = 1000, P (l) = 0.8, P (h) = 1− P (l),
I0 = 50, l = 3, h = 13, γ = 1, and simulations are averaged over 50 different network realisations
and 50 simulations on each of these. Degree-dependent weighted network (black), network with
randomly distributed weights (red) and network with equal weights (blue). All networks have the
same average weight 〈w〉dd = q1w1 + q2w2 + q3w3. From left to right : τ = 2, τ = 3 and τ = 4,
respectively.
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closure relation, each of these terms looks like −[SkSk′ ]f , −[SkIk′ ]f , and −[SkRk′ ]f where

f = −τ k − 1

k

wkq
∑

q[IqSk]

[Sk]
=
k − 1

k

˙[Sk]

[Sk]
.

So each of equations is of the form ẋ = −xf + y where the y terms represent other effects. By
moving the xf term to the left hand side, we can use an integrating factor which yields a differential
equation for the new variable xeF where Ḟ = f . The y terms remain in the equation, multiplied
by eF , but the term that represented infection of the Sk individual by a partner other than the k′

individual has been eliminated. If we follow this change of variables and perform a few more
simplifications, it is possible to arrive at the EBCM equations.

4. Discussion
In this paper we have shown that the pairwise and edge-based compartmental models can be suc-
cessfully extended to specific cases of weighted networks and studied the non-trivial case of non-
independence between weights and nodal degrees. In particular, we assumed that the link weight is
inversely proportional to the degrees of the nodes that it connects. This model has been compared
to two null models where for both the network topology remains the same and only the distribu-
tion of weights changes. First, we considered the case when the original weights are ‘lifted of’
the edges and redistributed at random, thus making weights and nodal degrees independent , and
secondly, the networks with all weights equal has been considered.

The results show that the negative correlation between weights and nodal degrees can negate
the important role played by highly connected nodes in standard epidemic models on non-weighted
graphs, and that weight heterogeneity but with the same overall average or total weight, reduce the
value of R0. The relation between final epidemic size and R0, as expected, is determined by the
model structure and, in this case, the same R0 value leads to the biggest final epidemic size on
degree-dependent weighted networks.

An important by-product of our analysis is the issue around model equivalence. This aspect
emerged from the numerical evaluation and comparison of pairwise, edge-based and simulation
models. The excellent agreement between all three, but especially, the agreement between pairwise
and the edge-based model lead us to consider whether the two models are indeed equivalent. While,
here we only present the basic idea of a formal proof, in future work we will present detailed
arguments to show that the models are equivalent. We believe that in a model ‘rich’ environment,
this part of our study and future work , as well as of others in the community [23], are important
in trying to reconcile as much as possible different modelling approaches and to identify model
hierarchies, as well as to pinpoint model efficiencies in terms of generating analytical or semi-
analytical results.
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