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Abstract

The relating of deterministic, mean-field models into network models, where epidemic spread occurs between interconnected

susceptible and infectious individuals or populations, requires careful consideration. Here, we discuss models that consider

differently the manner in which contact rate and infectiousness change over time, with different algorithms suitable for different

underlying processes. Though these models give coincidental results to the mean-field in the case of large, highly connected

networks, the results when sparsely connected networks are considered may differ. Different subsets of the parameters from the

mean-field epidemic (R0, generation time, infectiousness, etc.) are preserved in each case. Despite these differences, simulated

epidemics generated under some model architectures are insensitive to the average degree of contact amongst nodes, k. Model-based

estimates of k may be model dependent, and must therefore be viewed with caution.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Disease dynamics are often analysed using compart-
mental models, and based on the solution of systems of
ordinary differential equations where homogeneous
mixing between different classes (i.e. the mean-field
approximation) is assumed (Anderson and May, 1991).
While these models have in many cases been highly
successful, the mean-field assumption can be inappropri-
ate when applied to certain systems, where interaction
only occurs between a restricted subset of individuals. In

extremis the case exists where the degree of contact is
polarized: zero for some pairs of individuals, and
non-zero for the rest. In this case, contact between
individuals can be represented by a network of connec-
tions between interconnected ‘nodes’ (Albert and
Barabási, 2002). This generic approach can represent a
e front matter r 2005 Elsevier Ltd. All rights reserved.
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variety of systems, such as individuals within a network
of social interaction (Gupta et al., 1989; Kretzschmar
and Wiessing, 1998; Newman, 2002; Meyers et al.,
2005), or in a metapopulation-type system, populations
of individuals (e.g. Ferguson et al., 2001; Hufnagel et al.,
2005). Though both network and metapopulation
models have existed for a long while, models combining
the two approaches are less common.

R0, the basic reproductive ratio, is typically taken to
mean

the average number of secondary infections produced
when one infected individual is introduced into a
[homogeneously mixed,] wholly susceptible host
population at equilibrium (Anderson and May,
1991).

It is easily shown that for many biologically reason-
able systems, R0 ¼ 1 is a global stability threshold for
the disease-free state, a result generalized by Diekmann
et al. (1990). In certain cases, R0 can be estimated
explicitly from the data, for example using field data
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from the recent 2001 FMD outbreak in the UK
(Haydon et al., 2003). However, R0 is normally
indirectly estimated, for example by fitting model
parameters to epidemiological data. Parameter esti-
mates so derived are necessarily sensitive to the
assumptions made elsewhere in the model; translating
these parameter estimates to models of different
architecture constructed with different assumptions
can result in profound differences in model output. In
many cases, the heterogeneity in transmission rates is
critical for control (Roberts and Heesterbeek, 2003). R0

is not necessarily the only parameter of interest here:
estimates of the nature of the contact network structure,
e.g. the mean number of connections per node k,
are also likely to be model dependent, and k is of
interest when considering the potential efficacy of
contact tracing and disease control strategies (Kiss
et al., 2005).

When moving from a differential equation model
of epidemic spread to individual-based models, addi-
tional assumptions or a priori knowledge must be
included concerning the spread of the epidemic at the
level of the node; these may differ according to the
nature of the node (for example, metapopulation or
individual) and the nature of the disease. Below, we
discuss a number of plausible, closely related network
models of epidemic spread, incorporating different
assumptions as to the mechanism of contact and
the nature of the infectious period. We get the
expected result of equivalency to the mean-field case as
the network becomes completely connected, however
markedly different results can be obtained when
simulated on sparsely connected networks, with differ-
ent properties preserved under different model assump-
tions. Thus, when considering the effect of degree
of network connection on epidemic spread, it is
necessary to consider carefully the design and purpose
of the model.
2. Theoretical background

We consider four different sets of model assumptions,
and compare them using the mean-field assumption as a
convenient benchmark. While we do not imply that the
mean-field is ‘‘better’’, it is certainly the most common
assumption; we shall discuss later the question of model
appropriateness.
2.1. The mean field differential equation model

The starting point for the network models of epidemic
spread considered below is the standard susceptible (S),
infected/infectious (I) and removed (R) or SIR model,
(discussed in detail elsewhere; see for example, Anderson
and May, 1991):

_S ¼ �bSI=N,

_I ¼ bSI=N � gI ,

_R ¼ gI . ð1Þ

Here, S, I, and R denote numbers of individuals, g the
rate of conversion from I to R, and b is the number of
potentially infectious contacts made per individual per
unit time. Frequency-dependent contact is assumed, as
this is a more appropriate starting point for translation
to individual-based models than density dependence. In
this model, R0 is equal to b/g, and the instantaneous
force of infection is lðtÞ ¼ bðI=NÞ.

Upon migration to an individual-based modelling
approach, it is necessary to consider risk of infection
across connections between pairs of individuals. We
consider epidemic spread on undirected networks of
connections between nodes, with a mean number of
connections per node, k. The mean-field case is
equivalent to an infinite number of nodes, N, with all
possible connections between nodes available, i.e.
k ¼ N � 1.

2.2. The impact of transmissibility and network structure

on epidemic spread

In network models, not only the properties of the
individual, but also the nature of the network of
connections between them is important in determining
R0 and the course of an epidemic (Keeling, 1999). It is
well known that for sexually transmitted diseases, highly
active individuals are extremely important. Anderson
and May (1991) show that

R0 / ð1þ C2
V Þ, (2)

where CV is the coefficient of variation of the distribu-
tion of the number of contacts per individual. This result
is due to the correlations between susceptibility and
infectiousness. Should these be uncorrelated, the ex-
pression reverts to the intuitive understanding of the
second paragraph above. We note that in undirected
networks these are always correlated. May and Lloyd
(2001), further define the ‘‘transmission potential’’, r0,
such that r0 ¼ b=g with parameters as described for the
mean field model introduced above, and

R0 ¼ r0ð1þ C2
V Þ. (3)

They recognized that for the mean-field model
r0 ¼ R0. Newman (2002) defines the probability of
infection occurring across a connection between an
infected and susceptible node through the whole
infectious period as the ‘‘transmissibility’’, T; this is
equivalent to q̄ as defined by Diekmann and Heester-
beek (2000). As with r0, this is a property of the node
and its connections, not the structure of the network as a
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whole, and the two are related such that r0 ¼ kT .
Diekmann and Heesterbeek (2000) note that in undir-
ected networks, the susceptible neighbourhood of an
infected node is reduced as it is connected to its source
infection. In this case R0 is given by

R0 ¼ q̄ðk � 1þ s2=kÞ,

therefore

R0 ¼ r0ð1þ C2
V � 1=kÞ, (4)

where s2 is the variance of the number of connections
per node. Keeling (1999) similarly found that R0 in
network models is reduced compared with that in mean-
field models due to the nature of the correlation between
susceptible and infectious nodes.

Below, we concentrate on the effect of model
parameterization upon the ‘‘transmission potential’’,
r0: the number of secondary cases generated from index
cases chosen at random from the population, which is
intimately related to T (Newman, 2002) or q̄ (Diekmann
and Heesterbeek, 2000). Though for the mean field
model this is equal to R0, this is not generally the case
for network models, as shown above. However, both
these quantities are sometimes (erroneously) referred to
as R0. We retain the usage r0 throughout, except where
explicitly discussing the mean-field model itself.

2.3. Model Ia—rate of infectious contact independent

of k

The naı̈ve assumption when constructing a network
epidemic model equivalent to a mean-field model with
known transmission potential r�0 ( ¼ R0), is that b
should be kept constant across different networks,
implying that each infectious individual is capable of
infecting a known number of susceptible individuals per
unit time. Thus, for networks where each node has a
higher number of connections to other nodes, the
probability of each connection resulting in transmission
goes down. Given this, the rate of infectious contact
across each connection, t, should be defined as

t ¼
b
k
¼

gr�0
k

, (5)

i.e. simply dividing the potentially infectious contacts
amongst the connected individuals. In the mean-field
case, k is equal to N � 1, and there is no local
exhaustion of susceptible nodes around an index case
during its infectious period. Thus in this limit the
expectation value of r0 is that of the standard SIR
model:

r0 ¼
1

g
kt �

b
g
ð¼ r�0Þ. (6)

However, Keeling (1999) notes that estimates of r0
derived from mean field models do not apply in the case
of a network model with small k. Following Keeling and
Grenfell (2000), consider a single isolated infectious
node (the index case) in a network of otherwise
susceptible nodes with an average of k connections per
node. In a random network, the distribution of the
numbers of connections will be binomial, well approxi-
mated by a Poisson distribution for large N and small k.
The probability that the infected node remains infec-
tious at time t after the beginning of the infectious
period is given by an exponential function HðtÞ with a
corresponding probability density function (PDF) of
removal at time t in (0, N) h(t):

hðtÞ ¼ g exp ð�gtÞ,

HðtÞ ¼ exp ð�gtÞ. ð7Þ

Similarly, the probability that a susceptible node in
contact with a single infected node remains susceptible
at time t after the beginning of the infectious period is
given by an exponential function SðtÞ, which has a
corresponding PDF of infection at time t, s(t):

sðtÞ ¼ t exp ð�ttÞ;

SðtÞ ¼ exp ð�ttÞ:
(8)

For a node with exactly m connections, the expected
number of secondary infections at infection age u is
given by

Rðm; uÞ ¼ mð1� SðuÞÞ. (9)

Summation over all possible infectious period lengths
and numbers of connections, treating these as indepen-
dent, gives the expectation of the number of secondary
from a single infected node r0:

r0 ¼
X1
m¼0

Poissonðm; kÞ

Z 1
u¼0

hðuÞRðm; uÞdu. (10)

This can be shown to reduce to

r0 ¼
t

tþ g

X1
m¼0

m Poissonðm; kÞ, (11)

r0 ¼ k
t

tþ g
, (12)

as given for exponentially distributed infectious periods
given by Keeling and Grenfell (2000) (cf. Diekmann et
al., 1998). The summation term of Eq. (11) evaluates to
the expectation of whichever distribution is used.
Therefore, the same equation, Eq. (12), is obtained not
only for a Poisson distribution of m, but for any degree
distribution with a finite k, for example with constant m

or in finite scale-free networks (Albert and Barabási,
2002). For networks with a low heterogeneity in k, the
basic reproduction ratio R0 will approach r0.
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2.4. Model IB—r0 independent of k

Parameterization according to Model Ia allows b to
be kept constant across networks, but at the expense of
preserving r�0. Where r�0 is assumed to be known, for
example when estimated directly from contact tracing
data (Haydon et al., 2003), the result of Keeling and
Grenfell (2000) can be used to infer the b required to
obtain the known r�0. Rearrangement of Eq. (12) above
gives the following definition of t such that r�0 is
preserved across networks with different k:

t ¼ g
r�0

k � r�0
; k4r�0. (13)

2.5. Model IIa—constant rate of generation of new cases

In Models Ia and Ib, as susceptibles connected to an
infectious node become infected, there are fewer of them
to infect; since infectiousness is constant, the average
number of secondary cases created per unit time for a
given infectious node therefore decays exponentially.
This results in the higher incidence found in Model Ib
for networks with higher k (Fig. 1). To fit the network
model to the incidence curve found for the mean-field
model, infectiousness must therefore rise over time,
should k be small.

We model this case as follows: For an index case with
exactly m connections, the number of secondary
infections in an infectious period of length u is given by

Rðm; uÞ ¼

Z u

t¼0

ðm� RÞCISðtÞcðtÞdt, (14)

where CIS denotes the contact rate per susceptible
neighbour, and c infectiousness at time t after infection.
If cCIS is inversely proportional to the number of
susceptible neighbours m� R, then the above reduces to
0
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Fig. 1. Epidemic time courses for Models Ia and Ib: number of

infectious individuals, averaged over 1000 epidemic and network

realizations for N ¼ 1000, g ¼ 1 and 1=g ¼ 4. Shaded symbols: t
determined by Eq. (5) (Model Ib) and r�0 ¼ 2:5; open symbols: t
determined by Eq. (13) (Model Ib).’ k ¼ 5; m k ¼ 10;K k ¼ 20. The

mean field equivalent model is shown with no symbol.
Rðm; uÞ ¼ au, independent of m, where the constant a is
the instantaneous rate of production of new infections
per infected node. The expectation value of r0 is thus

r0 ¼
X1
m¼0

Poissonðm; kÞ

Z 1
u¼0

auhðuÞdu ¼
a
g
. (15)

Therefore, a is equal to gr0, and corresponds to b in
Model I above. For a network with an average of k

connections per node, the probability of any connection
causing infection during the whole infectious period of
length u is therefore

P ¼ u
gr�0
k

. (16)

For large u and small k, this function can return
probabilities greater than unity. In this case, a value of
1.0 is assumed and all connections are considered as
causing infection, and the model output deviates from
the mean-field result.

2.6. Model IIb—fixed-length infectious periods

For some epidemics, a constant infectious period
would be more applicable than the exponential distribu-
tion considered in Models I and IIa, which for most
epidemics will overestimate the number of nodes with
infectious period considerably less than the mean
(Lloyd, 2001). Therefore, in a variant of Model IIa,
IIb, we assume constant u ¼ 2=g for all nodes, rather
than the exponential distribution obtained from Eq. (7).
This ensures that the mean age of infection when
secondary infection occurs, 1/g, agrees with that for the
earlier models (Section 4.2). However, with an infectious
period twice as long as for the exponential distribution,
the prevalence of infection is doubled. Prevalence for
Model IIb is therefore plotted divided by two to allow
for fairer comparison.

2.7. The next generation

Except for the index case, in the undirected networks
discussed here, all subsequent infected nodes with m

undirected connections have at most m�1 possible
infectious connections, as one connection leads back
to its source infection (Diekmann and Heesterbeek,
2000). Where m is distributed according to a Poisson
distribution, as in the simulations described below, then
R0 as calculated from Eq. (3) equals r0 and epidemics
are similar across different values for k. This is a special
case, and this result will not be recovered for some other
distributions of m. For the calculation of R0 in a
network context, not only the properties of the nodes
and connections (i.e. the transmissibility) but also the
network structure must be taken into account. In this
paper, we consider specifically model parameterization
for constant r0.
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Table 1

Required parameters K and D in Eqs. (17) and (18) for desired k and l

in constructed networks for N ¼ 1000, g ¼ 1

k l K D j

Clustered networks

5 2 5.41 (0.019) 1.62 (0.005) 0.11

10 10.7 (0.029) 1.63 (0.004) 0.23

20 23.1 (0.12) 1.56 (0.003) 0.47

Unclustered networks

5 16 5 — 0.005

10 (Measured) 10 — 0.01

20 20 — 0.02

Standard errors of the parameter estimates are shown in brackets

(n ¼ 10). Clustering coefficients j for the generated networks are

shown.
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3. Method

3.1. Network construction

A number N ¼ 1000 nodes were uniformly, randomly
distributed over a square landscape at positions xi, the
same realization of which was used throughout, with the
two coordinates of each node chosen independently
from a uniform distribution. The mean density of nodes
g was set at one node per square unit of the landscape.
Random, well-mixed networks, without clustering,
were constructed between these nodes, where the
probability of connection between any two nodes i

and j is given by

pij ¼ k=ðN � 1Þ; iaj. (17)

An undirected connection between nodes i and j exists
if and only if Uð0; 1Þopij , where Uða; bÞ is defined as a
function that returns a random number sampled
uniformly from the interval ½a; b�. As connections are
undirected, and there are no self-loops, only the cases
for all ioj need to be examined.

Random networks as generated above do not account
for the clustering that is likely to be present in many real
networks, where certain groups of individuals are more
likely to be connected to each other than to members of
other such groups. Here clustered networks were
generated by allowing for a greater chance of connection
between nodes that are located close together in space,
using the equation

pij ¼
K

2pD2
exp

�d2
ij

2D2

 !
; iaj;

pij ¼ 0; i ¼ j;

(18)

where D adjusts the average length of a connection, K

the number of connections per node, and dij ¼ jxi � xjj

is the Cartesian distance between nodes. For very
close pairs of nodes, Eq. (18) results in probabilities
of connection greater than unity. In this case, a
probability of 1.0 is assumed and the pair of nodes are
connected.

On a finite network, Eq. (18) does not result in a
network with number of connections per node K and
average connection length D (Read and Keeling, 2003).
Therefore, the average number of connections per node,
k, and the average connection length l were measured on
the generated networks, and stepwise adjustment of
both parameters K and D performed to obtain the k and
l to within a desired tolerance; these parameters are
shown in Table 1. Table 1 also indicates the clustering
coefficient of the networks generated, j. This is defined
as the probability that if connections exist between a
node A and two others, B and C, then B and C

themselves will be connected.
3.2. Epidemic simulation

An epidemic was initiated by seeding the network
with a single index case, and then simulated using
asynchronous updating. In the first two models (Models
Ia and Ib), the time elapsed between infection and
removal for each node was determined as an exponential
deviate:

u ¼ � ln ðUð0; 1ÞÞ=g. (19)

The time elapsed between infection of a node and
secondary infection of a connected node q was
calculated in a similar manner to u, though such
infection was conditional on the infected node remain-
ing infectious after this interval, and the connected
node not having already been infected. The probability
of infection across all connections is considered a
constant. Thus, no interaction between t and k is
assumed:

q ¼ � ln ðUð0; 1ÞÞ=t. (20)

In the third model (Model IIa), secondary infectious
cases were uniformly distributed through the infectious
period of a node with duration u (defined as in Eq. (19)),
subject to a probability of infection of each connected
node of tu. For the limit of large N and large k (N,
k!1; N ¼ k � 1), mean field behaviour is obtained
from models I and IIa, with b ¼ r�0g ¼ tk.

Comparison simulations were carried out as in Model
I, but under the mean-field condition that encounters
between nodes are entirely random. This was imple-
mented by constructing a network where each node is
connected to every other node, and thus k was a
constant N�1 for all nodes. This is a stochastic form of
the differential equation model shown in Eq. (1), similar
results to which are obtained with a large population N

and large initial seeding.
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4. Results

4.1. Behaviour of Model I

Time courses of epidemics parameterized according to
Models Ia and Ib are contrasted in Fig. 1 for unclustered
networks and various values for k. Alongside these is
shown the time course for the mean-field case
(k ¼ N � 1). With increasing k, the variance of the
number of secondary cases derived from a primary case
increases (though the expectation r0 is constant in Model
Ib). This results in a greater probability of stochastic
extinction during the initial phase of the epidemic for
higher k. To account for this, Fig. 1 considers only
‘established’ epidemics, with final epidemic size Z4200.

Results from Models Ia and Ib were most similar to
each other and to the mean-field case for large k

(k ¼ 20). For Model Ia, higher k corresponds to an
earlier, higher epidemic peak and a larger final epidemic
size Z—as mentioned earlier, r0 is not preserved across
different values of k in Model Ia, and thus, neither is the
final epidemic size. The opposite effect is seen for Model
Ib: as expected r0 values are the same, but the epidemic
peaks higher and earlier for lower k. The final epidemic
size here was independent of k.

Observed r0 was measured on the simulated epi-
demics by determining the average number of infected
cases having the index case as their source of infection.
This average was consistently found to be slightly lower
than that predicted from Eq. (12). This results from the
index cases competing for susceptible nodes with its
daughter infections. The magnitude of this effect was
greater in clustered networks where the number of
completely connected triplets of nodes is high (Keeling,
1999). Since r0 here is, as mentioned earlier, equivalent
to May and Lloyd’s (2001) ‘‘force of infection’’, it is not
affected by the form of the degree distribution.

4.2. Epidemic generation time

The shape of the prevalence curves shown in Fig. 1
and elsewhere incorporate not only r0, but also on the
generation time TII. Should r0 and TII vary with both k

and model architecture, then it is possible that with
knowledge of some of the above, some inference could
be made about the others. Thus, below, we examine the
relationship between k and TII for the model architec-
tures described earlier.

For Model Ib, measured generation time across the
whole epidemic, defined as the average period between
the time of an infection and the time of infection of its
source node, increased monotonically with time in both
clustered and unclustered networks though was similar
initially (Fig. 2). This results from an increasing ratio of
R to I nodes through time, resulting in fewer encounters
between I and S nodes and lower infection rates.
The curve for clustered networks in Fig. 2 lies to
the right of that for unclustered networks as the
former produces epidemics that take a much larger
number of generations to spread over the whole
landscape. Averaged across every infection event of a
whole epidemic however, no difference in generation
time was found between clustered and unclustered
networks, nor for simulations with different N

(N ¼ 500 and 1500 were tested). Nevertheless, genera-
tion time was, as mentioned above, dependent on k with
shorter generation times for lower k (Fig. 3).

The behaviour of epidemic generation time can be
studied qualitatively by considering the time to infection
in isolated pairs of I–S nodes. The PDF describing the
probability of secondary infection in an I–S pair at time
t after the I node becomes infectious is given by

jðtÞ ¼ HðtÞsðtÞ. (21)

The average time of an infection in the first generation
of infection, after the infection of the index case,
denoted by TII0, is thus given by the expectation of this
function across all t, conditional on the probability that
infection of the S node occurs, t=ðtþ gÞ:

TII0 ¼

Z 1
t¼0

tjðtÞ

t=ðtþ gÞ
dt, (22)

TII0 ¼
1

tþ g
, (23)

where t is parameterized according to Models Ia and Ib,
TII0 varies with k in both cases:

TII0 ¼
1

g

k

k þ rn
0

� �
t ¼

grn
0

k
ðModel IaÞ, (24)

TII0 ¼
1

g

k � rn
0

k

� �
t ¼ g

r�0
k � r�0

ðModel IbÞ. (25)
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Fig. 3. Generation time for Model Ib simulations with different values

of k, compared with TII0 as predicted from Eq. (25) together with the

mean-field approximation. Parameters as in Table 1 and Fig. 1. The

average generation time for all infections over 2500 network and

epidemic realizations are shown. Light-shaded bars: clustered network;

dark-shaded bars: random network; white bars: TII0 from Eq. (25); and

striped bars: TII0 from Eq. (24).
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Fig. 4. Epidemic time courses for Model IIa: number of infectious

individuals, averaged over 2500 epidemic and network realizations.

Parameters as in Table 1 and Fig. 1. & k ¼ 5; n k ¼ 10; J k ¼ 20

(open symbols). The mean field equivalent model is shown as a solid

line with no symbol. (Curves for k ¼ 10, k ¼ 20, and the mean-field

equivalent coincide.) For comparison, the time course for Model IIb is

also shown (K, solid symbol), with prevalence adjusted for the longer

mean infectious period.

Table 2

Variation in model outputs with varied k and constant b or r�0 for the

different models

Parameter Model

Ia

Model

Ib

Model

IIa

Model

IIb

Parameters independent of k

r0 No Yes Yesa Yes

b Yes No Yesa Yes

Z No Yes Yesa Yes

Generation time No No Yesa Yes

TII0 No No Yesa Yes

Final epidemic size No Yes Yesa Yes

Approaches mean-field

for large k

Yes Yes Yes No

aFor kbr�0.
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The solution of Eqs. (24) and (25) for different values
of k are shown for comparison with the measured
generation times in Fig. 3. TII0 is consistently higher
than measured generation time, and higher for larger k,
but this effect is smaller for TII0 in Model Ia, as defined
by Eq. (24).

4.3. Epidemics with a constant time course and different k

Fig. 4 shows simulation results for Model IIa. For
larger k, Model IIa agrees with the mean-field approx-
imation shown also in Fig. 1, and has the same r0,
generation time, final epidemic size, and epidemic time
course. For small k (k ¼ 5), some nodes with u

considerably greater than 1/g will have insufficient
connections to produce the large number of secondary
cases predicted for large u, and for the definition
of Eq. (16), allows for the non-sensical result p41. As
a result, for smaller k, epidemics with a smaller r0 are
obtained.

For large N and k, the mean time to infection of
Model IIa, TII0, can be shown to equal 1/g, which is the
same value found for the mean-field approximation.
Dividing Eq. (16) by u gives a daily rate of infection per
connection t whose definition is identical to that shown
in Eq. (5). Thus, for large N and k, model behaviour
approaches once more that of the mean-field approx-
imation, and the simple definition of Eq. (5) applies:

t ¼
P

u
¼

gr�0
k

. (26)

Where a constant infectious period is modelled, p41
as described above does not occur. Model IIb amends
Model IIa above such that a constant infectious period
of length 2/g is assumed for all nodes. Thus, TII0 ¼ 1=g

as before. The time course of such an epidemic is shown
in Fig. 4. Here, the incidence of infection was divided by
two to account for each individual being infectious for
twice as long. Simulation results for this model were
independent of k, with a constant epidemic time course,
but did not coincide with the mean field approximation
for large k.

4.4. Comparison of model behaviour

With the exception of Model IIb, all the models
described above generated the same results when
approximating mean field conditions with k � N !1.
For smaller k, the different models preserve different
parameters from this epidemic time course (Table 2). In
Model IIa, epidemic generation time, final epidemic size,
and r0 were independent of k where k is somewhat larger
than r�0. For Model Ib, r0 and final epidemic size did not
vary with k, but epidemic generation time was lower for
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lower k. Model Ia had only an infection rate b that was
independent of k. Only in Model IIb were all parameters
independent of k, but here, the mean field model was not
approached for large k due to the different underlying
assumption concerning infectious period distribution.
5. Discussion

Of the models described above, all but Model IIb use
the rate parameter g to determine infectious period
length according to an exponential distribution, which
can have consequences for epidemic dynamics (Lloyd,
2001). Model IIb addresses this by using fixed infectious
period lengths—the delta distribution—which for some
infections will be more reasonable; more complex
models have used forms of the gamma distribution
(Lloyd, 2001), for example by using multiple sequential
infectious stages (Ferguson et al., 2001).

Which of the above modelling approaches is the most
appropriate will depend upon the system being studied.
Model I assumes equal probability of contact between
pairs of nodes in all states throughout the infectious
period and constant infectiousness. This would be
appropriate for a disease where the pattern of contact
between individuals is unaffected by the presence of the
infectious agent (for example, if there is a long delay
before clinical symptoms are manifest), or where the
infectiousness of contact is not altered by changes in
pattern of contact (as might be the case for STDs).

For other systems, infectiousness over time, disease
incidence and k may be interrelated. For example, in the
recent epidemic of foot-and-mouth disease in the UK in
2001, the number of secondary cases arising from
infected premises generated over time remained roughly
constant (Haydon et al., 2003). This may have been
because k was high and therefore there was little
exhaustion of connected individuals, in which case it is
consistent with the original ODE model (Eq. (1)).
However, should k have been low, infectiousness may
have been increasing. This is one interpretation of
Model II: the probability of contact is unchanged from
Model I, but infectiousness of nodes increases through
the infectious period in such a manner that the force of
infection is fixed.

On the other hand, patterns of contact may change.
An alternative interpretation of Model II is that the
force of infection is constant over time; this can be
regarded as assuming that outward connections are
not made to infected nodes. If there is a fixed total
duration of contact, then this time would be divided
amongst all available remaining nodes and thus the
transmission rate to each susceptible node is increasing
(e.g. transmission of the Black Death to susceptible
villages by fleeing individuals). This constant rate of
generation of secondary cases cannot however be
maintained indefinitely: for nodes with small k or long
infectious periods, the supply of available connected
nodes will be exhausted before the infectious period
ends.

In epidemiology, one of the important uses of
network models is in the analysis of the efficacy of
contact tracing (Huerta and Tsimring, 2002; Eames and
Keeling, 2003; Kiss et al., 2005; Meyers et al., 2005).
One obvious consequence is that for large k, contact
tracing is much less effective than for small k (Kiss et al.,
2005). Therefore, when considering disease control
policies with regards to contact tracing, a determination
of k is essential. However, the results above show that
sensitivity of model output to k is dependent on the
exact model architecture used, and therefore whether a
value for k can be meaningfully obtained from epidemic
data depends upon using a suitable model to describe
the system. For systems resembling Model I, given
an epidemic time course and either of the generation
time and R0, an estimate of k could be made by fitting
the models. In other such systems, this may not be the
case.

The results presented above show that small differ-
ences in model architecture, unimportant when the case
of a large, fully connected network is considered, can
produce large differences in model output when sparsely
connected networks of infection are considered, but
where these differences appear in model output depends
on where these differences in the model architecture lie.
In particular, r0, R0, and the epidemic generation time
may or may not be preserved across different values of
k, depending upon the particular modelling assumptions
made. Thus, for such network models, parameter
estimates derived from one such model may not
translate safely to another. Additionally, where model
output is insensitive to the degree of connection
amongst nodes, no estimate of the degree of connection
can be obtained from fitting the model to epidemic data,
important if predictions of control are based on model
dependent assumptions (e.g. Kao, 2003).
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