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In a recent paper [13], we proposed and analyzed a compartmental ODE-based model describing
the dynamics of an infectious disease where the presence of the pathogen also triggers the diffusion
of information about the disease. In this paper, we extend this previous work by presenting results
based on pairwise and simulation models that are better suited for capturing the population contact
structure at a local level. We use the pairwise model to examine the potential of different information
generating mechanisms and routes of information transmission to stop disease spread or to minimize
the impact of an epidemic. The individual-based simulation is used to better differentiate between
the networks of disease and information transmission and to investigate the impact of different
basic network topologies and network overlap on epidemic dynamics. The paper concludes with an
individual-based semi-analytic calculation of R0 at the non-trivial disease free equilibrium.
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I. INTRODUCTION

As is evident all around us, human populations affected by the presence of an infectious disease will rarely remain
passive. From leaflets found in a local clinic to community workshops and all the way up to national and global
multimedia campaigns, concerted efforts are put into effect with the goal of changing peoples’ behavior in the presence
of an infectious pathogen [4, 7]. The motivation for the above is that people, by virtue of the information content of
these messages, will change their attitudes and actions to reduce their chances of becoming infected, spreading the
disease further or experiencing prolonged periods of medical treatment. Often the messages in these campaigns are
targeted to a particular geographic, sociodemographic (e.g. gender, age, ethnicity, income) or psychographic (e.g.
those that are more likely to engage in risky behavior) sub-audience as many studies have found that the presence of
a disease often correlates with an individuals’ association with these segments [21]. When pathogens are known to
spread through relatively well defined networks, as in the case of sexually transmitted diseases (STD), contact tracing
data collected at clinics can be used to identify individuals with a prominent structural role in the network (e.g. hubs
or bridges) who can then be approached or screened preferentially. Likewise individuals that are probable to influence
opinion can be approached and seeded with information in the hope that they will diffuse this through their social
network [17, 21].

Besides such organized campaigns, observations suggest that people’s decision on whether to adopt a change in
behavior is based or influenced by others in their personal network of friends, colleagues and acquaintances [15, 21].
This word-of-mouth effect has been observed and utilized in electronic marketing [8, 16, 19] and when modelling the
diffusion of innovations [12], a paradigm that attempts to capture how people transition through the adoption process
of a new product from non-aware to adopter (see [18] for a comprehensive review). Personal communications may
also occur, although perhaps at a lower rate, between individuals that are not members of each others social network
but come into contact rather infrequently and unpredictably. For example, an individual might unintentionally hear
a conversation between two strangers on a bus. Such a ‘mean-field’ type of person to person transmission has been
recently presented in [1] to model the transmission of infectious diseases between randomly and infrequently meeting
individuals. Intuitively, such mean-field infections may be more frequent when considering an airborne pathogen than
in STD’s where the contacts are well determined and identifiable [9, 20]. Besides media, social and random contacts
a fourth route to awareness is an obvious one: being infected with a pathogen an individual will take measures to
avoid infecting those in his/her neighborhood.

A number of compartmental epidemiological models have recently appeared in the literature incorporating human
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behavioral response [3, 6, 14], these are summarized in a recent review [7]. In the same review, in an attempt to
map the landscape of epidemiological/behavioural models, the authors propose a classification based on the following
criteria: the source of information - global or local, the type of information - prevalence or belief -based and finally the
effect of information. The type of information is a classification meant to delineate whether behavioral change occurs
due to the disease prevalence (prevalence-based) or due to the diffusion of some other behavioral trait that may be
unrelated to the current prevalence (belief-based). The authors present as an example of this the decision of whether
to vaccinate a child. Here, a conclusion might be reached without the disease in question being currently prevalent
but based on a subjective perception of risks associated with vaccination. Finally the effect of information classifies
how the presence of information alters an individuals exposure to the risk of infection. Possession of disease-related
information might result in individuals changing their disease state via vaccination that can eliminate susceptibility,
changing or influencing their contact network or taking measures to reduce the chances of acquiring or passing on
infection. In light of this classification, we will present a model which encompasses both prevalence and belief-based
types of information, local and global sources as well as the mean-field and self-induced avenues for information
generation and transmission.

This paper builds on our previous work [13] where we proposed a compartmental model that coupled a simple
SITS model with the diffusion of information generated by the presence of the disease. Here, we extend this model
by introducing additional sources and routes of information transmission. We also provide a more fine-grained pairwise
description of the problem along with an individual-based computational representation. The paper is organized as
follows. In Section 2 the disease and information transmission models are introduced. These will serve as a basis for
the pairwise model presented in the first part of Section 3 and the individual-based simulation model discussed in the
second part. The pairwise model will be used to assess the potential of various routes of information generation and
transmission to reduce the infectious prevalence as well as the benefits of using various combinations of these. In the
second part of Section 3, simulations are used to increase the freedom of coupling or decoupling routes of disease and
information transmission and to investigate the effect of network overlap for some simple network topologies. Finally,
in Section 4, we present an individual-based analytic R0 calculation at the non-trivial disease free steady state (DFSS)
with further discussion in Section 5.

II. MODEL

Following on from [13], the population is divided into five different classes that specify the individual’s status with
respect to disease and information. These are: susceptible non-responsive (Snr), susceptible responsive (Sr), infected
non-responsive (Inr), infected responsive (Ir) and in treatment (T ). The term responsiveness emphasizes that the
willingness to act or respond to the available information is key in trying to avoid infection or halting further spread.
The important ingredients of the model relate to the generation and transmission of information as well as the benefits
of possessing and responding to information. In the current model, information or responsiveness about the disease
is generated in three ways: (a) Inr → Ir as a result of symptoms, (b) Ix → T , where x ∈ {nr, r}, as a result of being
diagnosed and moving to the treatment class and (c) Xnr → Xr, where X ∈ {S, I} as a result of global information
transmission. While the first two are intuitive, the latter is used to model the effect of mass-media campaigns which
act as a single-source of information with its strength and duration often linked to the prevalence of infection in
the population. Information transmission is possible in multiple ways and here we account for two: (a) locally or
individual to individual and (b) mean-field. While disease dissemination locally represents the simple interaction of
individuals where they can engage in discussions about an ongoing outbreak or diseases in general, the mean-field
type transmission accounts for a less clear-cut interaction, such as overhearing a discussion, where information can
be transmitted between individuals that are not necessarily in direct contact. Many of these different mechanisms of
information generation and transmission can be easily linked to various ways in which information is disseminated in
real-life.

It is natural to also incorporate the possibility for loss of responsiveness, consequently every Xr individual will
transition to the Xnr class at a constant rate dX , where X ∈ {S, I} . Note that this form is general enough that it
could also model an individual’s inability or refusal to act on information. Alternatively, as suggested in [13], the rate
of information loss can be encoded as a decreasing function of the prevalence, a form that we do not explore in the
current paper. The principal benefits of being informed and responding to the information can translate into reduced
susceptibility, reduced infectivity and/or faster recovery if infected. For sake of completeness and to keep the model
as general as possible, we incorporate all the above but we note that their presence of absence will depend on the
precise modelling context and should be incorporated and used accordingly. The full suite of transitions are given in
Table I.

The present model, in some sense, can be seen as a generalization of the model in [5] but with a few important
remarks. The model by Funk [5], is different in that information is only generated via self-diagnosis from infected
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individuals and this can lead to a qualitatively different behavior when compared to the present case where information
is also generated via treatment. The model by Funk [5] uses a more general pairwise approach that accounts for two
separate networks but it does not include the global prevalence-based transmission of information. In light of the
above, the model proposed here shares some common features with some of the existing models but incorporate
new ways in which information can be generated and transmitted and gives further insight into the problem via
semi-analytic R0 calculations.

transition rate contact type

Inr + Snr → 2Inr τ Gd infection

Inr + Sr → Inr + Ir σsτ Gd infection

Ir + Snr → Ir + Inr σiτ Gd infection

Ir + Sr → 2Ir σsσiτ Gd infection

Inr → T γnr independent infection

Ir → T σrγnr independent infection

T → Snr r · p independent infection

T → Sr r · (1− p) independent infection

Xr + Ynr → Xr + Yr αX Gi information

Xr + Ynr → Xr + Yr mXkMF mean-field information

Xnr → Xr δXGX([Inr], [Ir]) independent information

Inr → Ir ω independent information

Xr → Xnr dX independent information

TABLE I: All transitions allowed by the coupled infection/information system, where X, Y ∈ {S, I} with individuals in
treatment acting as members of the responsive classes (i.e. Xr ∈ {Sr, Ir, T}). Individuals in the treatment class return to being
susceptible non-responsive and responsive at rate pr and r(1 − p) with 0 ≤ p ≤ 1, respectively. The reduced susceptibility,
infectivity and faster recovery, as a result of acting on information, is captured by the discount factors σs, σi ∈ (0, 1] and σr > 1.
The exact expressions and/or explanations for mXkMF and GX([Inr], [Ir]) are given in the Appendix A.

III. RESULTS

We seek to explore the efficacy of our chosen mechanisms that model behavioral change in attempting to slow
or stop the spread of a disease. This will be achieved by using a pairwise approximation (see Appendix A) and
individual-based simulation model as well as a probabilistic semi-analytic R0 calculation at the non-trivial DFSS. An
understanding of the capabilities of these processes should provide useful information when designing information
campaigns to fight a potential disease outbreak or when attempting to assess the impact of those that are currently
implemented.

A. Pairwise model: comparison of information source efficacy

Pairwise ODE models [11] provide a good compromise between simple compartmental and full simulation models
and allows us to capture more of the local nature of contacts and to depart form the very limiting homogeneous
random mixing assumption. For example, this is important when modelling contact tracing [2, 10] where control
relies on being able to answer the ‘who infected whom’ type questions. In this case, the situation is similar in that
the local nature of individual to individual transmission of information can lead to clusters of responsive individuals
that are difficult to capture via simple compartmental models. Based on all possible transitions detailed in Section 2,
pairwise equations can be derived heuristically or based on a mechanistic approach. In total there are 20 equations,
5 for singles and 15 for pairs (see Appendix A). The dimensionality of the system could be further reduced by taking
into account that the population is closed and that all pairs add up to 〈k〉N , where 〈k〉 is the average node degree
and N is the population size. The system of equations can be numerically integrated using standard methods (for
more details and parameter values see Appendix A). The system exhibits three qualitatively different behaviors: (a)
neither disease nor responsiveness can spread, (b) only responsiveness spreads and a state of endemic-responsiveness
is reached and (c) both responsiveness and infection are endemic.
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The analysis begins by comparing information sources with respect to their capacity to bring the prevalence to
a desired low level. Information can achieve this by shifting a large fraction of the population into the responsive
class. Such informed individuals will then experience decreases in their infectivity and susceptibility as well as a faster
recovery. The minimum rate at which a source of information can bring the prevalence to a desired low level will
be referred to as the critical information transmission rate. Starting with a small initial information generation or
transmission rate, for a range of infection rates τ with fixed recovery parameters, the system is seeded with a small
number of Inr and Sr individuals. The system of pair approximation equations (see Appendix A) is then numerically
integrated to identify the smallest or critical rate that will lead to the desired prevalence level Ieq. Next the relative
capacities of α, ω and δ to deliver a state of low infection prevalence for different values of τ are considered. We
let p = 0.9, which approaches a worse case scenario limit whereby no information is generated by the individuals
themselves through past experience. This parameter choice allows us to examine the effects of α, ω and δ in relative
isolation. As shown in Fig. 1 contact-based transmission of information is by far the most efficient way to generate a
responsive population. In this case every receiver of information (Inr or Snr) immediately also becomes a transmitter
of information, in contrast to global transmission of information where the source of information is at all times
singular. The mean-field type transmission of information is equally potent and produces results that are similar to
the contact-based transmission case, especially if the network is densely connected. For smaller values of 〈k〉, the
mean-field transmission performs better than the purely contact-based but the differences are small. The effectiveness
of global information (acting on Inr or Snr) is strongly tied to the K parameter which acts as a measure of population
inertia (see Eq. (34) in Appendix A) in responding to information. Populations with high values of K are resistant
to behavioral change which can therefore act as an indicator for the quality of global information campaigns. For
example, high values of K will simply lead to observing vanishingly small benefits from global information campaigns.
The critical rates for self-diagnosis are at best similar to those for global information, especially for diseases with low
transmissibility. As is the case for global information, self-diagnosis will only function once infected individuals are
present and the situation is somehow even less fortunate given that ω can only act on Inr. The self-diagnosis rate
can be thought of as a model for the probability of a particular infection being symptomatic. Thus for diseases with
mild symptoms or those that are asymptomatic the need for peer-to-peer communication and low population inertia
is even more pressing. Finally self-diagnosis can, in cases where the population has very high behaviorial inertia, be
more effective than global information dissemination. This can be seen by comparing the appropriate curves in Fig.
1. It is also worth noting that as τ increases it is less and less likely that information generation and/or transmission
can prevent an epidemic. More precisely at large but finite values of τ , the rates of information generation and/or
transmission needed to halt the spread will tend to unfeasibly large values.

In reality no single information source will act in isolation. Media campaigns encourage discussion which can bring
forth behavioral change. Infected individuals are likely to learn from experience and further communicate this to their
family and friends. Our model is able to accommodate such scenarios as we show in Fig. 2 for various combinations
of α, δ and ω. As expected the α and δ combination is the most effective pair while the combination of all three
sources is capable of eradicating a large majority of epidemics for large τ . Contact based transmission of information
is by far the most efficient as it constantly builds new sources of information. Responsive individuals are then able
to halt the spread of an epidemic by forming clusters that can resist infection invasions and this is discussed in more
detail in the next section.

B. The impact of network overlap on prevalence equilibria

In the most general case and for a given host population, infection diffuses on a network Gd and the social interactions
can be represented by a network Gi. The information transmission dynamics coupled with the overlap pattern between
networks determine the extent to which disease can be slowed or halted. Slowing or stopping an epidemic depends
on both the number of responsive individuals as well as their precise distribution around sources of infection. Hence,
increasing the effectiveness of the information/responsiveness dissemination is equivalent to an optimization process
where increasing the number of responsive individuals has to be coupled with achieving an optimal correlation pattern.
For example, it is beneficial if responsive susceptibles cluster around infectives. Here, we focus on investigating how
network overlap and different information generation mechanisms impact on these correlation patterns and ultimately
on model outcome. The role of the spatial structure or correlations is explored via individual-based stochastic
simulation. As in the case of the pairwise model, the simulation model admits three equilibria: the trivial disease-free
steady state (DFSS), the non-trivial DFSS and a state where information and infection remain endemic. Here, we
aim to examine the mixing patterns between Snr, Sr, Inr and Ir in the endemic state and between Snr and Sr in
the non-trivial DFSS. Furthermore, these correlations will be compared between non-overlapping and overlapping
networks.

The growth of infection is shown in Fig. 3 for Poisson random graphs and for different methods of information
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generation (i.e. via treatment alone with p = 0 and ω = 0 and via self-diagnosis with p = 1.0 and ω 6= 0 ). In both
cases, once information is generated it can only be passed on via the information transmitting network. The prevalence
of infection grows faster when networks do not overlap, although this difference is more significant in the ω 6= 0 case.
This is in line with previous findings [5] but merits closer scrutiny. In the ω 6= 0 case, information is generated via
Inr → Ir type transitions and thus the newly informed infectives can transmit both information and disease. Given
that the neighbouring nodes on Gd of these Ir individuals are at immediate risk of infection, it is desirable that these
nodes are also neigbours of the Ir individuals on Gi. If this is the case, and the transmission rate of information is
faster than the transmission rate of the disease, it is likely that infection can be stopped. However, if the networks do
not overlap, then responsive or informed individuals will transmit the information to those that are not at immediate
risk of infection and thus with little immediate benefit. Therefore, in this case, information acts similarly to random
vaccination with benefits only coming into play when infection reaches pockets of responsible clusters. According to
Fig. 3, complete overlap slows the epidemic initially but it cannot preemtively inform individuals that are not at
immediate risk of infection. For complete non-overlap however, the situation changes in that the epidemic picks up
early but later on reaches a large number of individuals with reduced susceptibility and therefore the spread slows.
While the long term behaviour for non-overlap and overlap is similar, the slow initial growth may offer an advantage
as it extends the period to implement other complementary control measures.

On the other end of the spectrum, information could be generated by those in treatment. In this case the amount
of edge overlap between the network has a less significant effect on the time evolution of the spread and final outcome.
Here, individuals in treatment (T s) can typically inform Snrs and/or Inrs. However, even for complete overlap,
informing non-responsive susceptible neigbours is not of immediate benefit since these are not at immediate risk of
infection. The most significant benefit of complete overlap is the transmission of information from T s to Inrs. This will
lower the infectivity of infectious individuals but it is far less effective compared to the ω 6= 0 case due to information
lagging behind the transmission of the disease. In effect, this is similar to contact tracing where, new infections are
identified via the infector. In this case, the slight differences between overlap and non-overlap (see Fig. 3) is also
reflected in the time evolution of the [TInr] pairs whereby the growth of these is faster in the non-overlapping case.
This means that more Inrs remain uninformed and thus lead to a slightly faster initial increase in the prevalence of
infection. This effect disappears quickly as the information makes progress and many individuals become responsive.
At this stage the local interaction has less of an effect given that a considerable part of the individuals are already
responsive.

In the context of our model, the arguments above can be underpinned by investigating the propensity of susceptible
responsive individuals to cluster around infectives. This can be measured by the following conditional probability

P (Sr − Iy|Sx − Iy) =
∑

y=r,nr

[SrIy]/
∑

x,y=r,nr

[SxIy].

This represents the fraction of all Sx−Iy pairs with Sx = Sr and indicates the correlation of information and infection.
If information and infection are neutrally correlated, for example if they spread on two networks that have disjoint
edge sets, then one would expect P (Sr − Iy|Sx − Iy) = Q(Sr) = Nr/N (i.e. equal to the probability of finding an Sr

if picking nodes at random). The time evolution of the conditional probabilities for overlapping and non-overlapping
Poisson networks are shown in Fig. 4. The correlations develop and persist as the systems settle to an equilibrium
prevalence. The amount of overlap plays a significant role only when information is generated via self-diagnosis (i.e.
ω 6= 0) (see blue lines in Fig. 4), and in this case, information is close to infection as shown by higher values of
the correlations. On the other hand if the infectives spread infection and responsiveness to a completely disjointed
neighbourhoods then initially there is very little correlation until later when there is a substantial amount of infection
and information. In all cases the system settles to an endemic state with non-zero infection and responsiveness and
will remain correlated (i.e. conditional probability far from the diagonal). In this equilibria, there is high correlation
between infectives and informed since both managed to invade and occupy parts of the network. This particular
correlation is a result of the system being in a form of statistical equilibrium where information loss and gain as well
as recovery and new infections all balance out. Fig. 4 also shows the good qualitative agreement between the pairwise
and simulation model for complete overlap, and highlights the merits of concurrently using both.

IV. INDIVIDUAL-BASED CALCULATION OF Rd
0

The coupled disease and information transmission model admits two disease-free steady states: (a) trivial
(1, 0, 0, 0, 0) and (b) non-trivial (1 − s0, s0, 0, 0, 0) (DFSSs). The trivial DFSS can be perturbed via the spread of
infection and/or responsiveness, provided that system is seeded accordingly or whether responsiveness can be gener-
ated directly (i.e. Inr → Ir). Here, the case of the trivial disease-free steady state is not discussed (see [6]) and the
focus is on determining the potential of an initial infected individual to invade or spread within a population that is
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at an equilibrium with respect to the transmission of responsiveness. Thus, the basis for calculating Rd
0 is provided by

the characteristics of the equilibrium of endemic responsiveness, where all nodes are either Snr or Sr and are arranged
in a particular configuration on the disease transmission network (Gd) as determined by the information transmission
process (e.g. local via contacts Gi and mean-field) and the particular overlap between the routes of responsiveness
and disease transmission.

In this case, computing Rd
0 amounts to determining whether a particular equilibrium is stable against perturbation

induced by mutating a randomly chosen individual to the Ix state, where x ∈ {nr, r}. A population with elevated
levels of responsiveness will be able to slow or halt the spread of an epidemic by virtue of reductions in the infectivity,
susceptibility and an increase in the recovery rate of responsive individuals. Consequently, in this model we define Rd

0

as: the expected number of secondary infections caused by a non-responsive and/or responsive infective in a completely
susceptible population in a state of endemic responsiveness. In general, Rd

0 will depend on the amount of responsiveness
but also on the presence, or absence, of correlations between the non-responsive and responsive individuals/nodes.
The Rd

0 calculations assume that responsiveness is at equilibrium, hence neighbors of the initial index case will do
not change their responsiveness status due to forgetting or become responsive due to responsive neighbors on the
information transmission network Gi.

The crucial ingredients for determining Rd
0 are: (a) the frequency of Snr and Sr individuals denoted by Q(Sx) =

[Sx]/N , where x ∈ {nr, r} and (b) the correlation pattern, and in particular, the conditional probabilities (i.e.
P (Sy|Sx) with x ∈ {nr, r}) that describe the neighborhood composition of a node on the Gi network as given by
the population level average, at the state of endemic responsiveness. The first step in calculating Rd

0 is to select at
random a susceptible individual and mutate this into an Inr or Ir individual. Thereafter, the spread of the disease
will depend on the local neighborhood around the mutated individual and the enumeration of all the possible ways
in which new infections can be generated. Information about the average number of possible onwards infections is
provided the average excess degree of a node, D = 〈k〉−1+ Var(k)

〈k〉 , where 〈k〉 is the average number of connections per
individual and Var(k) represents the variance as given by the node degree distribution on the Gi network. Combining
all the above, the expression for Rd

0 in the case of proportionately or randomly mixed networks can be written as

Rd
0 = D

∑

x,y,z∈{nr,r}
Q(Sx)P (Sx → Iy)P (Sz|Sx)P ((Iy, Sz)), (1)

where Q(Sx) represents the probability of picking a node of type Sx at random and P (Sx → Iy) represents the
probability of mutating a susceptible node to Ix, x ∈ {nr, r}. P ((Iy, Sz)) denotes the probability with which an
(Iy, Sz) edge generates a new infection. Expanding the sum we get the following eight terms:

Rd
0 = Q(Snr)P (Snr → Inr)P (Snr|Snr)P ((Inr, Snr)) + Q(Snr)P (Snr → Inr)P (Sr|Snr)P ((Inr, Sr)) +

Q(Snr)P (Snr → Ir)P (Snr|Snr)P ((Ir, Snr)) + Q(Snr)P (Snr → Ir)P (Sr|Snr)P ((Ir, Sr)) +
Q(Sr)P (Sr → Inr)P (Snr|Sr)P ((Inr, Snr)) + Q(Sr)P (Sr → Inr)P (Sr|Sr)P ((Inr, Sr)) +

Q(Sr)P (Sr → Ir)P (Snr|Sr)P ((Ir, Snr)) + Q(Sr)P (Sr → Ir)P (Sr|Sr)P ((Ir, Sr)). (2)

Assuming that a state of endemic responsiveness has been established in the population, Q(Sx) and P (Sy|Sx) are
given. The probability of mutating into Ix can be binary or imposed as required by a particular modelling context.
The more technical part is to write down the probability that infection will happen across an (Sx, Iy) edge. All these
calculations rely on a schematic diagram as shown in Fig. 6. Here, starting with a particular pair (i.e. (Snr, Inr)),
all potential end states are listed by following a Markovian type process with one single change allowed during any
single step. The complications arise from the fact that self-diagnosis and/or the repeated forgetting and acquiring of
responsiveness leads to an infinite tree of possible outcomes which makes calculations non-trivial. A new infection
on any such tree results will result from an (Snr, Inr),(Snr, Ir),(Sr, Inr) or (Sr, Ir) pair denoted by A, B, C and D,
respectively. To fully describe the problem, all trees starting with any one of the four pairs needs to be considered.
Independently of the source of the tree, all four pairs will be present in future generations, and calculating the
probabilities of encountering these pairs is crucial for calculating Rd

0. Before discussing the four different tree types,
it is worth noting that the probabilities of an infection originating from pairs A, B, C and D, given all other possible
events, can be simply written as

pinf
A =

τ

γnr + ω + τ
, pinf

B =
τσi

γr + α + τσi + d
, pinf

C =
τσs

γnr + ω + α + τσs + d
, pinf

D =
τσsσi

γr + 2d + τσsσi
. (3)

For a given starting point in the tree (say A), the first task is to obtain the expected number of pair types A (PA
A ), B

(PA
B ), C (PA

C ) and D (PA
D ) that can be reached in the complete tree. These expectation values can then be simply
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multiplied by the probability of a new infection resulting from a particular pair (i.e.
∑

X∈{A,B,C,D} pinf
X PA

X ). Below,
for the tree starting with node A, the full details of the calculations are given followed by more succinct summaries
for the three remaining trees in Appendix D. The technique only depends on the precise knowledge of all possible
transitions from a given pair to other pairs and the probability of these transitions as listed in Appendix B.

A. Tree starting with pair (Snr, Inr)

The removal of all end states from Fig. 5 results in a simplified diagram (see Fig. 6(a)). To work out the probability
of reaching all A, B, C and D pairs, the tree is first simplified by noting that in every even generation, with the
starting A being generation 0, only As and Ds occur, and similarly Bs and Cs only appear in every odd generation.
Hence, the tree can be further reduced to a tree with only As and Ds as given in Fig. 6(b). It is now useful to define
the probability of reaching a particular pair type i in generation n, given that the tree started with pair X, by iX(n),
where i ∈ {a, b, c, d}, X ∈ {A,B, C,D} and n = 0, 1, 2, . . . . Based on this, and on the simplified tree in Fig. 6(b), the
following system of coupled recurrence equations can be derived,

aA(n + 1) = rA
AAaA(n) + rA

DAdA(n), (4)
dA(n + 1) = rA

ADaA(n) + rA
DDdA(n), (5)

with initial condition (aA(0), dA(0)) = (1, 0), where rA
AA = rABrBA, rA

AD = rABrBD, rA
DA = rDBrBA + rDCrCA

and rA
DD = rDBrBD + rDCrCD. We note that these probabilities are derived based on examining the full tree and

considering the probability with which As and Ds generate more As and Ds two generations down the tree. Working
out the probability of going from a node to another simply amounts to multiplying together all transition probabilities
along the path from a source to a target node. For the first few generations, it is easy to check that aA(n) will give
the sum of all probabilities of reaching all possible As present in generation n. Hence, the following identities hold

PA
A =

∞∑
n=0

aA(n), PA
D =

∞∑
n=0

dA(n). (6)

Given that each A generates a B with probability rAB , and that D generates a B and a C with probability rDB and
rDC , the following equations hold

PA
B = PA

A rAB + PA
D rDB , PA

C = PA
D rDC . (7)

Therefore, the only task is to find PA
A and PA

D . Using simple linear algebra techniques, as detailed in Appendix C
(see Eq. (46-47)), these are given by

PA
A =

1− rA
DD

1− (rA
AA + rA

DD) + rA
AArA

DD − rA
ADrA

DA

, PA
D =

rA
AD

1− (rA
AA + rA

DD) + rA
AArA

DD − rA
ADrA

DA

. (8)

Collating all the information above, the probability of an infection from an (Snr, Inr) pair is

P ((Snr, Inr)) =
∑

X∈{A,B,C,D}
pinf

X PA
X . (9)

The derivation of the trees starting with states B,C and D in generation 0 are very similar and are shown in
Appendix D. All the results from the four starting pairs feed directly into Eq. (1) to provide an analytical expression
for Rd

0. This expression provides the means to investigate and tease apart the impact of factors such as the number
of responsive individuals as well as the precise correlation between non-responsive and responsive individuals. The
latter can be consolidated in a correlation matrix given as,

Pcorr =

(
P (Snr|Snr) P (Sr|Snr)
P (Snr|Sr) P (Sr|Sr)

)
.

Working under the assumption of homogeneous random mixing, distributing Q(Snr)N non-responsive and Q(Sr) =
N(1−Q(Snr)) responsive individuals results in a correlation pattern given by P (Snr|Snr) = P (Snr|Sr) = Q(Snr) and
P (Sr|Snr) = P (Sr|Sr) = Q(Sr). In Fig. 7(a), the value of Rd

0 is plotted for different proportions of non-responsive
individuals. While in this case both the number of responsive individuals and correlation change, the effect on Rd

0 is
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significant with a higher number of responsive individuals leading to a significantly lower value of Rd
0. In Fig. 7(b),

the number of non-responsive individuals is kept fixed and only the correlation pattern is varied. This can be achieved
using a simple two parameter model that determines uniquely the state of endemic responsiveness. In particular, for
a regular random graph, considering x = Q(Sr) as the first free parameter the following equations must hold

Q(Snr) = 1− x, (10)
P (Snr|Snr) + P (Sr|Snr) = 1, (11)

P (Snr|Sr) + P (Sr|Sr) = 1, (12)
Q(Snr)P (Sr|Snr) = Q(Sr)P (Snr|Sr), (13)

where, the first equation is trivial, the second and third are the normal requirements for conditional probabilities and
the fourth is the detailed balance condition which guarantees that individuals of different types are connected up in a
consistent manner. The second free parameter is chosen to be y = P (Snr|Snr), and all other variables follow in terms
of x and y,

P (Sr|Snr) = 1− y, P (Snr|Sr) =
(1− x)(1− y)

x
and P (Sr|Sr) = 1− (1− x)(1− y)

x
.

It is worth noting that all variables must be greater or equal zero and less or equal one. This requires that x ∈ [0, 1] and
max(0, (1− 2x)/(1− x)) ≤ y ≤ 1. Fig.7(b) shows that for a fixed level of responsiveness in the population (see group
of black and red curves), different correlations lead to significantly different values of Rd

0. It is not straightforward to
establish a link between the correlation matrix Pcorr and the value of R0. However, some simple observations hold.
For example if P (Snr|Snr) is high then the values of Rd

0 will be high and, in certain regimes, increasing assortativity
in responsiveness (e.g. non-responsive and responsive individuals preferentially connect to individuals of the same
type) also leads to higher values of Rd

0. The lack of a simple relation is to be expected given that the impact of
a particular pair type strongly depends on other parameters such as transmission or loss of responsiveness and the
benefits of being in a responsive state.

Even though a recipe for the optimal spatial correlation of Snrs and Srs is not forthcoming, it is possible nonetheless
to gain some insight into the effectiveness of certain configurations by examining the output from individual based
simulations. In Fig. 8, the time evolution of the neighborhood around an informed susceptible for completely
overlapping and non-overlapping Poisson random graphs is shown. In this case, information halts the spread of
infection and the system settles to an endemic responsiveness. Fig. 8, for full network overlap, shows that Sr

individuals quickly build an assortative mixing pattern which stays fairly constant over time and then quickly decays
just above neutral mixing after the infection has died out. For non-overlapping networks the assortativity in Sr slowly
builds up to a lower magnitude before it collapses on the diagonal. Although this behavior might seem to favor
the overlapping networks, the less than expected dissasortativity in the overlapping case can hamper the spread of
responsiveness (left panel Fig. 8). This is because it is now less likely to find a non-responsive next to a responsive type,
a configuration which does not benefit the diffusion of information. In other words in completely overlapping networks
information might get stuck in self sustaining clusters that can resist invasion whilst non-overlapping networks lead
to almost neutral mixing in information which can aid diffusion at remote parts in the network, with both scenarios
having their own merit.

The analytic expression of Rd
0 can also be used to determine numerically the critical values of parameters such as

α, ω and δ needed to bring the basic reproduction number below one. This might prove to be a useful tool in real
applications where the level and impact of control interventions need to be measured. The method for computing Rd

0

method can be generalized to capture all four pair types at once, but in this case, due to the increased dimensionality
of the transition matrix, calculations will become less transparent. It is worth noting that when analytic calculation
may fail to give a closed form expression, this technique can be easily implemented using a simple programming
language to derive numerical estimates and to assess the implications of truncating the recurrence equations at some
finite generation.

V. DISCUSSION AND FURTHER WORK.

Incorporating behavioural change into epidemiological models is a challenging task with many unknowns when
modelling the transmission of information and responsiveness of people. These are complex processes with many
heterogeneities at the individual level in how information is acquired, processed, acted upon and transmitted further.
In this paper, we derived and analyzed a pairwise and simulation model that capture multiple ways of generating and
transmitting information as well as the overlap between routes of disease and information transmission. The pairwise
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model, for two completely overlapping networks, was used to assess the efficacy of different sources of information
generation and routes of information transmission in bringing prevalence to as a low level as possible. Contact based
transmission of information was found to be the most efficient as it creates multiple secondary sources of information
and outcompetes processes such as the global transmission of information. The analysis, in line with previous findings
[6], also shows that information cannot always stop an epidemic but can significantly reduce its impact via lowering
the prevalence of infection.

The individual based model was used to study the effects of network structure using a simple similarity measure,
the neighborhood overlap of an individual between disease and information transmission (i.e. Gd and Gi). We
showed evidence to suggest that the effect of neighborhood overlap is tightly linked to the primary generation of
information and can result in the creation of different correlation structures in responsiveness (see Fig. 8) and also
between responsiveness and infection (see Fig. 4). The particular types of information generation and transmission
will heavily depend on disease characteristics and these will impact on model outcome and on establishing what the
most influential factors are in controlling epidemics via information transmission. A more realistic specification of
the information and infection networks aided by real world data, for example from sexual health surveys and email
exchange volumes, would allows us to further tease apart the importance of edge overlap as well as identify other
network measures that may be significant, such as the path length difference between networks and the occurrence
of network motifs, and examine their effect on the two diffusion processes. It is rarely the case that diseases invade
populations that are fully naive. A number of responsive individuals are always present due to past epidemics or simply
due to awareness being a trait that arises independently of past epidemics through genetic, social, cultural or economic
reasons. In either case, the number of responsive individuals and their precise distribution will have an important
impact on whether newly seeded infections can invade. In this paper, we presented a semi-analytic calculation of R0

based on probabilistic arguments and showed that the mixing patterns in information can significantly alter the basic
reproductive number of the disease. This is an important result since it opens up the possibility to tune or optimize
responsiveness in order to limit the potential of new outbreaks.

A number of simplifying assumptions on human behavior are built into our model. There are only two levels of
information awareness and transitions between them are instantaneous. In the real world an individual’s exposure to
the risk of infection is certainly not limited to two categories. People are also likely to react to information around
them via imitative behavior with individuals having different propensity for changing their behavior. Furthermore the
decision to act on information may depend on the source of information - or the combination of sources of information
- the order of arrival of information, or any segmentation of the population as discussed in the introduction. Our
individual based model is designed such that it can accommodate further behavioral heterogeneities, such as those
mentioned above. There is now enough evidence to suggest that cognitive and social aspects of a host population,
as well as a network of contacts (particularly in the case of STD’s), are interacting and altering the epidemiological
profile of an infectious pathogen. These are early days for behaviorial epidemiology and in the future it is likely
that knowledge generated in other fields, for example cognitive and evolutionary psychology, communications theory,
market research, game theory, anthropology, geography and demography should be examined for integration into
epidemiological modelling.
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Appendices
A. PAIR-APPROXIMATION EQUATIONS

Here, the equation of the pair-approximation model that accounts for disease transmission through a static network
of contacts and three different routes of responsiveness transmission are given. The first route of responsiveness
transmission overlaps completely with the disease transmission route, while the second and third account for mean-
field and global transmission of information, respectively. The equations are:

˙[Snr] = −τ [SnrInr]− τσi[SnrIr] + pr[T ]− λCαs([SnrSr] + [SnrIr] + [SnrT ])
− λMF mskMF ([Sr] + [Ir] + [T ])[Snr]/N − λGGs([Inr], [Ir])[Snr] + ds[Sr], (14)

˙[Sr] = −τσs[SrInr]− τσiσs[SrIr] + (1− p)r[T ] + λCαs([SnrSr] + [SnrIr] + [SnrT ])
+ λMF mskMF ([Sr] + [Ir] + [T ])[Snr]/N + λGGs([Inr], [Ir])[Snr]− ds[Sr], (15)

˙[Inr] = +τ [SnrInr] + τσi[SnrIr]− γ[Inr]− λCαi([InrSr] + [InrIr] + [InrT ])
− λMF mikMF ([Sr] + [Ir] + [T ])[Inr]/N − λGGi([Inr], [Ir])[Inr] + di[Ir]− ω[Inr], (16)

˙[Ir] = +τσs[SrInr] + τσiσs[SrIr]− γσr[Ir] + λCαi([InrSr] + [InrIr] + [InrT ])
+ λMF mikMF ([Sr] + [Ir] + [T ])[Inr]/N + λGGi([Inr], [Ir])[Inr]− di[Ir] + ω[Inr], (17)

˙[T ] = +γ[Inr] + γσr[Ir]− r[T ], (18)

˙[SnrSnr] = −2τ [SnrSnrInr]− 2τσi[SnrSnrIr] + 2pr[SnrT ] + 2ds[SnrSr]
− 2λCαs([SnrSnrSr] + [SnrSnrIr] + [SnrSnrT ])
− 2λMF mskMF ([Sr] + [Ir] + [T ])[SnrSnr]/N − 2λGGs([Inr], [Ir])[SnrSnr], (19)

˙[SnrSr] = −τσs[SnrSrInr]− τσiσs[SnrSrIr]− τ [InrSnrSr]− τσi[IrSnrSr]
+ pr[TSr] + (1− p)r[SnrT ] + λCαs([SnrSnrSr] + [SnrSnrIr] + [SnrSnrT ])
+ λMF mskMF ([Sr] + [Ir] + [T ])[SnrSnr]/N + λGGs([Inr], [Ir])[SnrSnr]
− λCαs([SrSnrSr] + [IrSnrSr] + [TSnrSr])
− λMF mskMF ([Sr] + [Ir] + [T ])[SnrSr]/N − λGGs([Inr], [Ir])[SnrSr]
− ds[SnrSr] + ds[SrSr]− λCαs[SnrSr], (20)

˙[SrSr] = −2τσs[SrSrInr]− 2τσsσi[SrSrIr] + 2(1− p)r[SrT ]
+ 2λCαs([SrSnrSr] + [IrSnrSr] + [TSnrSr])
+ 2λMF mskMF ([Sr] + [Ir] + [T ])[SnrSr]/N + 2λGGs([Inr], [Ir])[SnrSr]
− 2ds[SrSr] + 2λCαs[SnrSr], (21)

˙[SnrInr] = +τ [SnrSnrInr] + τσi[SnrSnrIr]− τ [InrSnrInr]− τσi[IrSnrInr]− τ [SnrInr]
− λCαs([SrSnrInr] + [IrSnrInr] + [TSnrInr])
− λMF mskMF ([Sr] + [Ir] + [T ])[SnrInr]/N − λGGs([Inr], [Ir])[SnrInr]
− λCαi([SnrInrSr] + [SnrInrIr] + [SnrInrT ])
− λMF mikMF ([Sr] + [Ir] + [T ])[SnrInr]/N − λGGi([Inr], [Ir])[SnrInr]
− γ[SnrInr] + rp[TInr] + di[SnrIr] + ds[SrInr]− ω[SnrInr], (22)

˙[SnrIr] = +τσs[SnrSrInr] + τσiσs[SnrSrIr]− τ [InrSnrIr]− τσi[IrSnrIr]− τσi[SnrIr]
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+ λCαi([SnrInrSr] + [SnrInrIr] + [SnrInrT ])
+ λMF mikMF ([Sr] + [Ir] + [T ])[SnrInr]/N + λGGi([Inr], [Ir])[SnrInr]
− λCαs([SrSnrIr] + [IrSnrIr] + [TSnrIr])
− λMF mskMF ([Sr] + [Ir] + [T ])[SnrInr]/N − λGGs([Inr], [Ir])[SnrInr]
− γσr[SnrIr]− di[SnrIr] + ds[SrIr]− λCαs[SnrIr] + pr[TIr] + ω[SnrInr], (23)

˙[SrInr] = +τ [SrSnrInr] + τσi[SrSnrIr]− τσs[InrSrInr]− τσiσs[IrSrInr]− τσs[SrInr]
+ λCαs([SrSnrInr] + [IrSnrInr] + [TSnrInr])
+ λMF mskMF ([Sr] + [Ir] + [T ])[SnrInr]/N + λGGs([Inr], [Ir])[SnrInr]
− λCαi([SrInrSr] + [SrInrIr] + [SrInrT ])
− λMF mikMF ([Sr] + [Ir] + [T ])[SrInr]/N − λGGi([Inr], [Ir])[SrInr]
− γ[SrInr] + (1− p)r[TInr]− ds[SrInr] + di[SrIr]− λCαi[SrInr]− ω[SrInr], (24)

˙[SrIr] = +τσs[SrSrInr] + τσiσs[SrSrIr]− τσs[InrSrIr]− τσiσs[IrSrIr]− τσiσs[SrIr]
+ λCαs([SrSnrIr] + [IrSnrIr] + [TSnrIr])
+ λMF mskMF ([Sr] + [Ir] + [T ])[SnrIr]/N + λGGs([Inr], [Ir])[SnrIr]
+ λCαi([SrInrSr] + [SrInrIr] + [SrInrT ])
+ λMF mikMF ([Sr] + [Ir] + [T ])[SrInr]/N + λGGi([Inr], [Ir])[SrInr]
− γσr[SrIr] + (1− p)r[TIr]− ds[SrIr]− di[SrIr]
+ λCαs[SnrIr] + λCαi[SrInr] + ω[SrInr], (25)

˙[InrInr] = +2τ [InrSnrInr] + 2τσi[InrSnrIr] + 2τ [SnrInr]− 2γ[InrInr]
− 2λCαi([InrInrSr] + [InrInrIr] + [InrInrT ])
− 2λMF mikMF ([Sr] + [Ir] + [T ])[InrInr]/N − 2λGGi([Inr], [Ir])[InrInr]
+ 2di[InrIr]− 2ω[InrInr], (26)

˙[InrIr] = +τ [InrSnrIr] + τσi[IrSnrIr] + τσs[InrSrInr] + τσiσs[InrSrIr]
+ τσi[SnrIr] + τσs[InrSr]− (γ + γσr)[InrIr]
+ λCαi([InrInrSr] + [InrInrIr] + [InrInrT ])
+ λMF mikMF ([Sr] + [Ir] + [T ])[InrInr]/N + λGGi([Inr], [Ir])[InrInr]
− λCαi([SrInrIr] + [IrInrIr] + [TInrIr])
− λMF mikMF ([Sr] + [Ir] + [T ])[InrIr]/N − λGGi([Inr], [Ir])[InrIr]
− di[InrIr] + di[IrIr]− λCαi[InrIr] + ω[InrInr]− ω[InrIr], (27)

˙[IrIr] = +2τσs[InrSrInr] + 2τσiσs[IrSrIr] + 2τσiσs[SrIr]
+ 2λCαi([SrInrIr] + [IrInrIr] + [TInrIr])
+ 2λMF mikMF ([Sr] + [Ir] + [T ])[InrIr]/N + 2λGGi([Inr], [Ir])[InrIr]
− 2γσr[IrIr] + 2λCαi[IrInr]− 2di[IrIr] + 2ω[InrIr], (28)

˙[SnrT ] = −τ [InrSnrT ]− τσi[IrSnrT ]− λCαs([SrSnrT ] + [IrSnrT ] + [TSnrT ])
− λMF mskMF ([Sr] + [Ir] + [T ])[SnrT ]/N − λGGs([Inr], [Ir])[SnrT ]
+ γ[SnrInr] + γσr[SnrIr] + ds[SrT ] + pr[TT ]− r[SnrT ]− λCαs[SnrT ], (29)

˙[SrT ] = −τσs[InrSrT ]− τσiσs[IrSrT ] + λCαs([SrSnrT ] + [IrSnrT ] + [TSnrT ])
+ λMF mskMF ([Sr] + [Ir] + [T ])[SnrT ]/N + λGGs([Inr], [Ir])[SnrT ]
+ γ[SrInr] + γσr[SrIr]− ds[SrT ]− r[SrT ] + r(1− p)[TT ] + λCαs[SnrT ], (30)
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˙[InrT ] = +τ [InrSnrT ] + τσi[IrSnrT ]− λCαi([SrInrT ] + [IrInrT ] + [TInrT ])
− λMF mikMF ([Sr] + [Ir] + [T ])[InrT ]/N − λGGi([Inr], [Ir])[InrT ]
+ γ[InrInr] + γσr[InrIr] + di[IrT ]− r[InrT ]− γ[InrT ]− λCαi[InrT ]− ω[InrT ], (31)

˙[IrT ] = +τσs[InrSrT ] + τσiσs[IrSrT ] + λCαi([SrInrT ] + [IrInrT ] + [TInrT ])
+ λMF mikMF ([Sr] + [Ir] + [T ])[InrT ]/N + λGGi([Inr], [Ir])[InrT ]
+ γ[IrInr] + γσr[IrIr]− γσr[IrT ]− r[IrT ] + λCαi[InrT ]− di[IrT ] + ω[InrT ], (32)

˙[TT ] = 2γ[InrT ] + 2γσr[IrT ]− 2r[TT ]. (33)

where N = Snr + Sr + Inr + Ir + T is the population size. The mean-field type transmission is implemented based
on ideas proposed by Eames [1]. The routes of responsiveness transmission can be switched on and off or can be
combined using λC , λMF and λG which are set to 0 or 1 accordingly. For our purposes we set

Gs([Inr], [Ir]) = Gi([Inr], [Ir]) =
δ([Inr] + [Ir])n

K + ([Inr] + [Ir])n
. (34)

In this paper, n = 1 at all times. To integrate the equations numerically, we use the classic closure proposed in [11].
This amounts to approximating all triples in terms of singles and pairs with the general closure relation given by

[ABC] =
〈k〉 − 1
〈k〉

[AB][BC]
[B]

.

This approximation closes the system and numerical integration can be performed. Parameter values are based on
those used in [13] but with units changed from weeks to years. For simplicity we assume that αs = αi = α, ds = di = d
and δs = δi = δ.

B. LIST OF ALL POSSIBLE TRANSITIONS AND THEIR PROBABILITY

From Fig. 5 and 6(a), it is easy to note that only the following transitions are possible,

A → B, B → {A,D}, C → {A,D} and D → {B, C}, (35)

with the probability of transitions given by

rAB =
ω

γnr + ω + τ
, (36)

rBA =
d

τσi + α + d + γr
, rBD =

α

τσi + α + d + γr
, (37)

rCA =
d

γnr + ω + α + τσs + d
, rCD =

α + ω

γnr + ω + α + τσs + d
, (38)

rDB =
d

γr + 2d + τσsσi
, rDC =

d

γr + 2d + τσsσi
. (39)

C. SOLVING LINEAR RECURRENCE EQUATIONS

Simultaneous recurrence equations can be solved using simple linear algebra arguments. Below we give a general
result for k equations followed by the full analytic solution for two equations as needed for the Rd

0 calculations.

Proposition 1 Let A be a k × k diagonalisable matrix. Hence, there is an invertible matrix P , such that

P−1AP =




λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λk

,



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where λi, i = 1, 2, . . . , k are the eigenvalues of A, and assume that |λi| < 1 for all i = 1, 2, . . . , k. Let x(n) be defined
by

x(n + 1) = Ax(n), x(0) = x0 ∈ Rk.

Then
∞∑

n=0

x(n) = PDP−1x0, (40)

where D is a diagonal matrix with diagonal elements Dii = 1
1−λi

for all i = 1, 2, . . . , k.

Proof:
It follows immediately that (P−1AP )n = P−1AnP . Hence, An = P (P−1AP )nP−1 = PΛnP−1, where Λn is a

diagonal matrix with diagonal elements Λii = λn
i , where i = 1, 2, . . . , k and n = 0, 1, 2, . . .. Therefore,

∞∑
n=0

Λn = D.

Thus we obtain

∞∑
n=0

x(n) =
∞∑

n=0

Anx0 =
∞∑

n=0

PΛnP−1x0 = P

( ∞∑
n=0

Λn

)
P−1x0 = PDP−1x0.

¤
Let us now apply the above result for a 2× 2 matrix

A =

(
a11 a12

a21 a22

)
.

The following two statements can by verified by elementary calculations. The matrix is diagonalisable if and only if

(a11 − a22)2 + 4a12a21 = 0 implies a12 = a21 = 0. (41)

The eigenvalues of matrix A are within the unit circle (i.e. |λi| < 1 for i = 1, 2) if and only if

|TrA| − 1 < detA < 1. (42)

Hence the following proposition holds,

Proposition 2 For a 2× 2 matrix A which satisfies conditions (41) and (42), the following equation holds,

∞∑
n=0

x(n) =
1

1− TrA + det A

(
1− a22 a12

a21 1− a11

)
x0. (43)

Proof:
Let us denote the eigenvalues of A by λ1, λ2 and the eigenvectors by u and v. Then P contains u and v as column

vectors: P = (u v), and the eigenvectors can be expressed as

u = (a12, λ1 − a11)T , v = (a12, λ2 − a11)T .

Then

P =

(
a12 a12

λ1 − a11 λ2 − a11

)
, P−1 =

1
a12(λ2 − λ1)

(
λ2 − a11 −a12

−λ1 + a11 a12

)
.

After some algebra, and using that λ1 + λ2 = TrA and λ1λ2 = det A, the following identity holds,

PDP−1 =
1

1− TrA + det A

(
1− a22 a12

a21 1− a11

)
.
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¤
Using the above Proposition in the case of x0 = (x0

1, x
0
2)

T , the first and second coordinate of x(n) are given by

∞∑
n=0

x1(n) =
(1− a22)x0

1 + a12x
0
2

1− TrA + det A
, (44)

∞∑
n=0

x2(n) =
a21x

0
1 + (1− a11)x0

2

1− TrA + det A
. (45)

Hence, for x0 = (1, 0)T and x0 = (0, 1)T , the first and second coordinate of x(n) are given by

∞∑
n=0

x1(n) =
1− a22

1− TrA + det A
, (46)

∞∑
n=0

x2(n) =
a21

1− TrA + det A
, (47)

and
∞∑

n=0

x1(n) =
a12

1− TrA + det A
, (48)

∞∑
n=0

x2(n) =
1− a11

1− TrA + det A
. (49)

D. CALCULATIONS FOR TREES STARTING WITH PAIR (Snr, Ir), (Sr, Inr) AND (Sr, Ir)

Here the same techniques that were used to derive the tree for (Snr, Inr) are used for the other three combinations
of S and I individuals.

A. Tree starting with pair (Snr, Ir)

This tree is easy to create and the same observations as before apply. In particular, B and/or C only appear in
every even generation while A and D are present in every odd one. Hence, the coupled recurrence equations are given
by

bB(n + 1) = rB
BBbB(n) + rB

CBcB(n), (50)
cB(n + 1) = rB

BCbB(n) + rB
CCcB(n), (51)

with initial condition (bB(0), cB(0)) = (1, 0), where rB
BB = rBArAB + rBDrDB , rB

BC = rBDrDC , rB
CB = rCArAB +

rCDrDB and rB
CC = rCDrDC . Using Eq. (46-47) developed in the Appendix C gives

PB
B =

1− rB
CC

1− (rB
BB + rB

CC) + rB
BBrB

CC − rB
BCrB

CB

, PB
C =

rB
BC

1− (rB
BB + rB

CC) + rB
BBrB

CC − rB
BCrB

CB

. (52)

Given that each B generates an A and a D with probability rBA and rBD, and that each C generates an A and two
Ds with probability rCA and rCD, it follows that

PB
A = PB

B rBA + PB
C rCA, PB

D = PB
B rBD + PB

C rCD. (53)

Therefore the probability of an infection from an (Snr, Ir) pair is

P ((Snr, Ir)) =
∑

X∈{A,B,C,D}
pinf

X PB
X . (54)



15

B. Tree starting with pair (Sr, Inr)

Working out P ((Sr, Inr)) follows a similar line of thought and starts by generating a tree beginning with C. Exactly
the same observations as above hold (i.e. B and/or C only appear in every even generation while A and D are present
in every odd one). Using the same approach as above the coupled recurrence equations now read as

bC(n + 1) = rC
BBbC(n) + rC

CBcC(n), (55)
cC(n + 1) = rC

BCbC(n) + rC
CCcC(n), (56)

with initial condition (bC(0), cC(0)) = (0, 1), where rC
BB = rBArAB + rBDrDB , rBC

2 = rBDrDC , rC
CB = rCArAB +

rCDrDB and rC
CC = rCDrDC . Using Eq. (48-49) developed in the Appendix C gives

PC
B =

rC
CB

1− (rC
BB + rC

CC) + rC
BBrC

CC − rC
BCrC

CB

, PC
C =

1− rC
BB

1− (rC
BB + rC

CC) + rC
BBrC

CC − rC
BCrC

CB

. (57)

Given that each B generates an A and a D with probability rBA and rBD, and that each C generates an A and two
Ds with probability rCA and rCD, it follows that

PC
A = PC

B rBA + PC
C rCA, PC

D = PC
B rBD + PC

C rCD. (58)

Therefore the probability of an infection from an (Sr, Inr) pair is

P ((Sr, Inr)) =
∑

X∈{A,B,C,D}
pinf

X PC
X . (59)

C. Tree starting with pair (Sr, Ir)

The calculations P ((Sr, Ir)) are identical and rely on the same technique of generating a new tree starting with
pair D. Once this is done, the coupled recurrence equations are given by

aD(n + 1) = rD
AAaD(n) + rD

DAdD(n), (60)
dD(n + 1) = rD

ADaD(n) + rD
DDdD(n), (61)

with initial condition (aD(0), dD(0)) = (0, 1), where rD
AA = rABrBA, rD

AD = rABrBD, rD
DA = rDBrBA + rDCrCA and

rD
DD = rDBrBD + rDCrCD. Using Eq. (48-49) developed in the Appendix C gives

PD
A =

rD
DA

1− (rD
AA + rD

DD) + rD
AArD

DD − rD
ADrD

DA

, PD
D =

1− rD
AA

1− (rD
AA + rD

DD) + rD
AArD

DD − rD
ADrD

DA

. (62)

Given that each A generates a B with probability rAB and that each D generates a B and a C with probability rDB

and rDC , it follows that

PD
B = PD

A rAB + PD
D rDB , PD

C = PD
D rDC . (63)

Therefore the probability of an infection from an (Sr, Ir) pair is

P ((Sr, Ir)) =
∑

X∈{A,B,C,D}
pinf

X PD
X . (64)
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VI. FIGURES.
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FIG. 1: Critical information rates resulting in a prevalence Ieq = 0.01 as a function of the per-contact infection transmission
rate τ (computed via the pairwise model). Solid and thick solid line correspond to αc and ωc, respectively. The four dashed
lines represent δc for different values of the population inertia parameter K = [0, 5, 20, 100] increasing from right towards the
left. The values for αc are denoted on the right y axis and for all other rates on the left y axis. Other parameters fixed across
all data points are p = 0.9, σs = σi = 0.5, σr = 2, γnr = 2, γr = σrγnr, d = γr, k = 6.
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FIG. 2: The effect of combining different sources of information. On the top left panel the endemic infection prevalence is
shown for a range of α and τ values. In the remaining panels, for each combination of α and τ , either global information or
self-diagnosis or both are added with the same constant rate equal to 12. All other parameters are the same as in Fig 1.
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FIG. 3: Time evolution of the total infection prevalence, based on simulation results, for overlapping (thin lines) and non-
overlapping (thick lines) Poisson random graphs. Responsiveness is generated by those in treatment with p = ω = 0 (red lines)
and by infected individuals with p = 1 and ω = 52 (blue lines). In all cases, responsiveness only diffuses via neighborhood
contacts. When the networks do not overlap the number of infected grows faster, however when responsiveness is generated
by individuals in treatment the overlap plays a less significant role. Both systems tend to very similar states with infection
prevalence being slightly higher in the non-overlapping cases. Other parameters are: τ = 2.5, α = 1.3, σs = σi = 0.5, σr = 2,
γnr = 2, γr = σrγnr, d = γr, N = 104 and 〈k〉 = 8.
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FIG. 4: Awareness in susceptible members of S−I pairs as a function of the total awareness prevalence in the population, Sr/N .
Results based on simulations on Poisson random graphs for full overlap (thick lines) and no overlap (thin lines). Responsiveness
is generated by those in treatment with p = ω = 0 (red lines) and by infected individuals with p = 1 and ω = 52 (blue lines).
Data from the pairwise model is shown by the circled lines. This correlation measure distinguishes between the two overlap
limits only when information generation is by the infected. In both cases correlations remain above the diagonal indicating
that the system reached an equilibrium where neither infection nor responsiveness spread further. All other parameters are the
same as in Fig. 3.
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FIG. 5: The diagram/tree of all transitions starting from pair (Snr, Inr). This is constructed based on a Markov process type
transition with only one change allowed at each step.
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FIG. 6: (a) The equivalent of Fig. 5 based on excluding all end states and denoting pairs (Snr, Inr), (Snr, Ir), (Sr, Inr) and
(Sr, Ir) by A, B, C and D, respectively. (b) A reduction of the tree in (a) obtained by only considering pairs in every even
generation, with the tree starting at generation zero. The rates of the reduced tree, rA

AA, rA
AD, rA

DA and rA
DD, are obtained from

the original tree by enumerating all possible ways of getting the desired transitions together with their probabilities.
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FIG. 7: Plots of Rd
0 for (a) homogeneous random mixing with Q(Sr) = 0.9 (continuous line), Q(Sr) = 0.5 (dashed line) and

Q(Sr) = 0.1 (dotted line), and for (b) fixed frequency of Q(Sr) = 0.20 and correlations given by y = 0.75, 0.875, 1 (black
continuous, dashed and dotted lines), and frequency Q(Sr) = 0.40 with correlation patterns given by y = 1/3, 2/3, 1 (red
continuous, dashed and dotted lines). The other parameter values are: P (Snr → Inr) = P (Sr → Ir) = 1, P (Snr → Ir) =
P (Sr → Inr) = 0, σs = σi = 0.50, γnr = 2.0, γr = 4.0, ω = 2.0, d = γnr and α = 2d.
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FIG. 8: The probability that in an Sx − Sr pair we find Sx = Snr (left panel) and Sx = Sr (right panel) for overlapping (thick
lines) and non-overlapping (thin lines) Poisson random graphs plotted against the prevalence of the type Sx as the system
evolves to its steady state. Information generated by those in treatment with p = 0.5 and ω = 0. All other parameters are the
same as in Fig. 3 except τ = 0.8.


