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a b s t r a c t

For many diseases (e.g., sexually transmitted infections, STIs), most individuals are aware of the potential
risks of becoming infected, but choose not to take action (‘respond’) despite the information that aims to
raise awareness and to increases the responsiveness or alertness of the population. We propose a simple
mathematical model that accounts for the diffusion of health information disseminated as a result of the
presence of a disease and an ‘active’ host population that can respond to it by taking measures to avoid infec-
tion or if infected by seeking treatment early. In this model, we assume that the whole population is poten-
tially aware of the risk but only a certain proportion chooses to respond appropriately by trying to limit their
probability of becoming infectious or seeking treatment early. The model also incorporates a level of respon-
siveness that decays over time. We show that if the dissemination of information is fast enough, infection
can be eradicated. When this is not possible, information transmission has an important effect in reducing
the prevalence of the infection. We derive the full characterisation of the global behaviour of the model, and
we show that the parameter space can be divided into three parts according to the global attractor of the
system which is one of the two disease-free steady states or the endemic equilibrium.

� 2010 Published by Elsevier Inc.
1. Introduction

Many compartmental models of disease transmission assume a
‘passive’ population that will not ‘respond’ (change its behaviour)
following an infectious disease outbreak or an ongoing endemic
infection [2,7]. For many diseases (e.g., sexually transmitted infec-
tions (STIs), SARS, Pandemic Influenza, Childood diseases) this is
rarely the case since through targeted campaigns or simple diffu-
sion of news through various media (e.g., TV, newspaper, social
networking sites) and individual to individual contact, the popula-
tion can be alerted to the presence of a disease that is spreading
through the population. This will usually result in individuals tak-
ing a range of measures to lower their probability of becoming in-
fected. These measures, depending on the disease, can range from
the use of face masks, vaccination, taking antiviral drugs [8], or,
condoms to individuals choosing to limit their number of contacts
with others, or in particular avoid contact with persons known to
be infectious [11,18]. In the case when already infected, as a results
of the information, some individuals will seek early treatment.

Here, in the context of STIs, we propose a simple compartmental
model that describes such an ‘active’ population. For many infec-
tious diseases, prevention is desirable, but when individuals become
infectious it is vital they seek treatment early. By the time that most
Elsevier Inc.
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people become sexually active it is likely that many will be aware of
the potential risk of becoming infected and of the measures that can
be taken to avoid becoming infected. Hence, the most important fac-
tor is the willingness or responsiveness of individuals to act upon the
information that is made available. For example, there is evidence
that mass media campaigns resulted in less than 1% of young adults
taking a Chlamydia test [1,15,17]; although there may be an increase
in testing during and shortly after campaigns. However, these data
reflect only testing behaviour following a media campaign and can-
not assess any possible change in sexual behaviour and conse-
quently in risk of acquiring infection. To reflect this in the model,
we differentiate between individuals based on the willingness to re-
spond to the information generated by the presence of the disease.
Individuals that are not yet infected and are willing to respond can
take basic measures to reduce their probability of becoming in-
fected. If infected, responsive individuals are likely to seek treatment
early and thus have a shorter infectious period compared to infected
individuals that remain passive. The willingness to respond is likely
to degrade with time either due to susceptible individuals becoming
less cautious with time or as a result of limited diffusion of informa-
tion when prevalence is low [1,17]. These are important factors that
are incorporated in the model.

Simple compartmental models have been previously used to
describe the influence of the information and information-related
delays on vaccination campaigns [3]. Specifically, for STIs, Chen [4]
developed a simple model to capture the interplay between the
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quality of information, the prevalence of the infection and disease
dynamics. In a recent paper, Funk et al. [10] discussed the spread
of awareness about the disease and its effect on epidemic outbreaks.
They investigated an SIR type compartmental model and compared
results to findings based on individual-based simulations. In the
compartmental model that they propose, the spread of awareness
has no effect on the epidemic outbreak threshold R0, but decreases
the proportion of infected individuals. When considering disease
and awareness spread on theoretical network models, they show
that if the disease transmission is not too fast the transmission of
awareness can halt the outbreak. The model that we propose is moti-
vated by and analysed in the context of STIs and uses assumptions
that are relevant in this context. In the case of STIs, most individuals
are aware of the risk, but only few respond accordingly. Most cam-
paigns are aimed at raising the responsiveness of the population to
a level where a significant number of individuals will take measures
to avoid infection or seek treatment early [1,15–17]. The present
model, apart from capturing individual to individual transmission
of information also, accounts for a population-wide transmission
and we discuss the overall implications of the dissemination of infor-
mation for disease outbreak threshold, disease dynamics and long-
term behaviour of the system.

2. Model

We extend the simple SIRS model to account for the treatment
class that is a common feature for many STIs. To account for non-
responsive and responsive individuals, the population is divided
into five compartments as follows: susceptible non-responsive
ðSnrÞ, susceptible responsive ðSrÞ, infectious non-responsive ðInrÞ,
infectious responsive ðIrÞ and treatment class ðTÞ. This model cap-
tures basic features of STIs (e.g., Chlamydia and Gonorrhea) with-
out considering heterogeneity in the number of contacts. The
equations corresponding to the transitions between the various
classes are (see Fig. 1 for a diagram of possible transitions)

dSnr

dt
¼ �bnrðInr þ IrÞ

Snr

N
� asfsðSnr; Sr ; Ir ; TÞ � dsgsðInr; IrÞSnr

þ hsðInr; IrÞSr þ prT; ð1Þ

dSr

dt
¼ �brðInr þ IrÞ

Sr

N
þ asfsðSnr ; Sr ; Ir ; TÞ þ dsgsðInr; IrÞSnr

� hsðInr; IrÞSr þ ð1� pÞrT; ð2Þ

dInr

dt
¼ bnrðInr þ IrÞ

Snr

N
� aifiðInr ; Sr; Ir ; TÞ � digiðInr; IrÞInr � cnrInr

þ hiðInr; IrÞIr; ð3Þ

dIr

dt
¼ brðInr þ IrÞ

Sr

N
þ aifiðInr; Sr; Ir ; TÞ þ digiðInr ; IrÞInr � crIr

� hiðInr ; IrÞIr ; ð4Þ
Fig. 1. Illustration of all possible transitions.
dT
dt
¼ cnrInr þ crIr � rT; ð5Þ

where ðSnr þ Sr þ Inr þ Ir þ TÞðtÞ ¼ N for all t P 0 and N is the popu-
lation size. The model given above, considers two different means of
information dissemination: (i) information dissemination via direct
contact between individuals given by fs and fi (e.g., mass-action or
some form of nonlinear incidence), and (ii) population-wide dis-
semination of disease related information given by gs and gi. As a
result of either of these, non-responsive susceptible and infectious
individuals move to the responsive class. In general, gs and gi de-
pend on the level of infection prevalence with high prevalence of
infection enhancing information transmission (e.g., TV, newspaper,
social networking sites) which in turn results in a higher rate of
transition from the non-responsive to the responsive class. How-
ever, information that covers the same topic repeatedly will loose
its value over time. This can be captured by including a saturation
effect in gs and gi for increasing levels of infection prevalence. The
value of the information degrades in time and many individuals
that are aware of the disease and are prepared to respond are going
to become less willing to do so. This is captured by hs and hi which
represent the rates at which responsive individuals move to the
non-responsive class. These rates can depend on time and can in-
crease when the level of infection prevalence is low (i.e., low levels
of prevalence can make individuals even less responsive) and de-
crease when prevalence increases. Individuals leave the treatment
class T and become susceptible again at rate r. For mild and easily
treatable STIs, such as Chlamydia, re-infection is not uncommon
and we assume that upon treatment a proportion p of individual
will not change their behaviour and will not become more cautious.
Many individuals who have a Chlamydia infection have no symp-
toms and do not know that they are infected. Hence, we assume
that awareness or responsiveness prompts these individuals to seek
care but does not change their behaviour. Thus, responsive individ-
uals are less likely to get infected ðbnr > brÞ and seek treatment fas-
ter ðcr > cnrÞ compared to non-responsive individuals. Disease and
information is likely to be transmitted through contacts that are
non-overlapping and hence information transmission is possible
from any responsive individual (i.e., Sr; Ir and T).
2.1. Choice of model

2.1.1. Contact-based transmission of information
For STIs contact between individuals is best characterised by

frequency dependent contact (i.e., mass-action). Thus, upon
assuming that the disease and information spread on different
routes, the natural choice for fs and fi is given by

fsðSnr; Sr; Ir ; TÞ ¼ fiðInr; Sr; Ir; TÞ ¼ f ðX; Sr; Ir ; TÞ ¼
XðSr þ Ir þ TÞ

N
: ð6Þ

This accounts for the spread of information triggered by the disease
from individuals that are aware and responsive (i.e., Sr; Ir and T) to
those that are non-responsive (i.e., Snr and Inr).

2.1.2. Population wide transmission of information
The rate of population-wide transmission of information is as-

sumed to depend on the disease prevalence. This is based on the
assumption that more cases will generate an increased volume
and more efficient diffusion of information. However, the effect
of this will be limited and will saturate for high prevalence with lit-
tle further impact on individuals’ behaviour. This is similar to the
case where the bilinear incidence is replaced by a non-linear func-
tion to capture the saturation effect as the number of infectious
people in the population increases [6,12,14]. There are different
ways to account for these aspects and we propose a relatively sim-
ple form where gs and gi are given by
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gsðInr; IrÞ ¼ giðInr; IrÞ ¼ gðInr ; IrÞ ¼
ðInr þ IrÞn

K þ ðInr þ IrÞn
; ð7Þ

where n P 1 and K are positive constants. When close to Inr þ Ir ¼ 0
and for fixed n;K determines the initial growth of g (i.e., g grows like
ð1=KÞðInr þ IrÞn). When K is fixed, n determines how quickly g
reaches the saturation level. By choosing n ¼ 1 and n ¼ 2, the func-
tion above will be equivalent to Michaelis–Menten and Holling-
type II function, respectively.

2.1.3. Decaying value of information
The value of information is likely to decay with time. For exam-

ple, susceptible individuals that are responsive for a certain
amount of time are likely to become less cautious. One can assume
that responsiveness either decays at a constant rate, d, or is depen-
dent on the total disease prevalence within the population which
should keep information in the public eye. We can therefore con-
sider at least two different choices for hs and hi,

h1
bðInr ; IrÞ ¼ db; h2

bðInr; IrÞ ¼
Db

Mb þ ðInr þ IrÞ
for b 2 fs; ig: ð8Þ

In the first case, h is independent of the prevalence level and is
equivalent to a simple transition or recovery rate, and in the second
case, h depends on the proportion of infectious individuals in the
population. When close to Inr þ Ir ¼ 0;Mb determines how quickly
h decays and in combination with Db also defines the starting rate
of transition when the prevalence is low.

3. Baseline model and its analysis

All dependent variables are non-dimensionalised by N. For
n ¼ 1;h ¼ h1 and upon using snr ¼ Snr=N; sr ¼ Sr=N; inr ¼ Inr=N; ir ¼
Ir=N; s ¼ T=N; k ¼ K=N we obtain

dsnr

dt
¼ �bnrðinr þ irÞsnr � asðsr þ ir þ sÞsnr �

dsðinr þ irÞ
kþ ðinr þ irÞ

snr

þ dssr þ prs; ð9Þ

dsr

dt
¼ �brðinr þ irÞsr þ asðsr þ ir þ sÞsnr þ

dsðinr þ irÞ
kþ ðinr þ irÞ

snr

� dssr þ ð1� pÞrs; ð10Þ

dinr

dt
¼ bnrðinr þ irÞsnr � aiðsr þ ir þ sÞinr �

diðinr þ irÞ
kþ ðinr þ irÞ

inr

� cnrinr þ diir; ð11Þ

dir

dt
¼ brðinr þ irÞsr þ aiðsr þ ir þ sÞinr þ

diðinr þ irÞ
kþ ðinr þ irÞ

inr � crir

� diir ; ð12Þ

ds
dt
¼ cnrinr þ crir � rs: ð13Þ

The goal of our investigation is to reveal the dynamic behaviour of
the system. In the first subsection we determine the two disease-
free steady states and their stability. In the next subsection we will
show how the endemic steady state can be determined numerically.
We will give numerical evidence that the endemic steady state (if it
exists) is unique and it is globally asymptotically stable in the posi-
tive orthant, that is all trajectories starting from a positive initial
condition tend to this point as time tends to infinity. To illustrate
the behaviour of the model, based on previous studies of the spread
and control of Chlamydia [1,17], some model parameters are fixed.
In the case of Chlamydia, the average infectious period for individ-
uals that are unaware and do not seek treatment early is found to be
in the region of 6 months (i.e., cnr ¼ 1=ð26weeksÞ). For individuals
that seek treatment early, mainly due to being aware, the average
infectious period is around 3 months (i.e., cr ¼ 1=ð13weeksÞ). The
time spent in treatment on average is around one week giving an
estimate of r ¼ 1=ð1weekÞ. To show the qualitative behaviour of
the model, we numerically integrated Eqs. (9)–(13) and varied the
rate at which infection ðbnrÞ and information (as and ai) is transmit-
ted. This preliminary investigation reveals three different model
outcomes: trivial and non-trivial disease-free steady states and an
endemic equilibrium (see Fig. 2). In the sections below, the stability
of these steady state is analysed in detail.

3.1. Disease-free steady states, stability analysis and R0

There are two disease-free steady states (DFSSs). The trivial
DFSS is sstriv ¼ ðsnr; sr ; inr ; ir ; sÞ ¼ ð1; 0;0;0;0Þ. The second DFSS can
be obtained by setting inr; ir and s to zero and determining the val-
ues of snr and sr such that Eqs. (9) and (10) are at equilibrium (i.e.,
dsnr=dt ¼ dsr=dt ¼ 0). Provided that, as > ds, the second DFSS is gi-
ven by

DFSSnon-triv ¼ ðsnr ; sr; inr; ir; sÞ

¼ 1� s0 ¼
ds

as
; s0 ¼

as � ds

as
;0;0;0

� �
: ð14Þ

There is also an endemic steady state (i.e., non-zero prevalence of
infection) with its existence and uniqueness discussed in the fol-
lowing subsection.

3.1.1. Linear stability analysis
The linear stability analysis can be carried out easier when Eqs.

(9)–(13) are considered as a four variable system (Eqs. (9)–(12)) with
s ¼ 1� snr � sr � inr � ir . Then the two disease-free steady states can
be written in the form ð1� s0; s0;0;0Þ, where s0 ¼ 0 for the trivial
DFSS and s0 ¼ as�ds

as
for the non-trivial DFSS. Then the 4� 4 Jacobian

at the two disease-free steady states ð1� s0; s0;0;0Þ takes the form

J ¼
L N

0 M

� �
;

with

L ¼
asð1� 2s0Þ � pr ds � pr

asð2s0 � 1Þ þ pr � r �ds þ pr � r

� �
;

M ¼
bnrð1� s0Þ � ais0 � cnr bnrð1� s0Þ þ di

brs0 þ ais0 brs0 � cr � di

� �
:

The block form of the Jacobian J yields that its eigenvalues are the
eigenvalues of L and M (the matrix N does not affect the eigen-
values). The eigenvalues of L are denoted by k1; k2 and those of M
are denoted by k3; k4. For the trivial DFSS (when s0 ¼ 0), the eigen-
values are

k1 ¼ �r; k2 ¼ as � ds; k3 ¼ bnr � cnr ; k4 ¼ �cr � di: ð15Þ

Therefore the trivial DFSS is stable if and only if as < ds andbnr < cnr .
For the non-trivial DFSS (when s0 ¼ as�ds

as
) the eigenvalues are

k1 ¼ �r; k2 ¼ ds � as;

k3;4 ¼
1
2
ðTrM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTrMÞ2 � 4 det M

q
Þ: ð16Þ

It is easy to show that Rek3;4 < 0 if and only if TrM < 0 and
det M > 0. Using that

det M ¼ �bnrð1� s0Þðcr þ di þ ais0Þ � brs0ðcnr þ di þ ais0Þ þ ais0cr

þ cnrcr þ cnrdi;
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Fig. 2. Three different model outcomes, (a) trivial disease-free steady state (b) non-trivial disease-free steady state and (c) endemic steady state, illustrated in terms of snr

(continuous), sr (dashed) and inr þ ir (dotted). Parameter values are cnr ¼ 1=ð26 weeksÞ; cr ¼ 1=ð13 weeksÞ; r ¼ 1=ð1weekÞ;d ¼ ds ¼ di ¼ 1=ð12 weeksÞ; ds ¼ ds; di ¼ di;p ¼ 0:5
and k ¼ 0:01. The other parameter values for the different panels are: (a) bnr ¼ 0:5cnr ; br ¼ 0:5bnr and as ¼ ai ¼ 0:5ds , (b) bnr ¼ 2cnr ;br ¼ 0:5bnr and as ¼ ai ¼ 4ds , and (c)
bnr ¼ 4cnr ; br ¼ 0:5bnr and as ¼ ai ¼ 4d. The initial condition for all cases is ðsnr ; sr ; inr ; ir ; sÞ ¼ ð0:5;0;0:5;0; 0Þ.
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one can easily prove that det M > 0 implies TrM < 0. Therefore the
non-trivial DFSS is stable if and only if ds < as and det M > 0. Sum-
marising the above results, we have proved the following about the
local stability of the DFSSs.

Proposition 1. The system given by Eqs. (9)–(13) can have two
disease-free steady states: a trivial DFSS ð1;0;0;0;0Þ and in the case
as > ds a non-trivial DFSS ð1� s0; s0; 0;0;0Þ, where s0 ¼ as�ds

as
.

1. The trivial DFSS is locally stable if and only if as < ds and bnr < cnr.
2. The non-trivial DFSS is locally stable if and only if ds < as and

�bnrð1� s0Þðcr þ di þ ais0Þ � brs0ðcnr þ di þ ais0Þ þ ais0cr

þ cnrcr þ cnrdi

> 0: ð17Þ
3.1.2. Basic reproduction number
The local stability of the DFSSs can be expressed in terms of the

basic reproduction number R0. First consider the trivial DFSS and
its stability. To determine R0 the next generation matrix approach
proposed by van den Driessche and Watmough [19] is used. The
rate of appearance of new infections F and the rate of transfer of
individuals out of the three compartments V are given by

ð18Þ

The basic reproduction number R0 is then defined as the leading
eigenvalue of the next generation matrix FV�1. Solving the resulting
equation, two eigenvalues are obtained and hence the basic repro-
duction number is given by

R0 ¼max Rr
0 ¼

as

ds
;Ri

0 ¼
bnr

cnr

� �
: ð19Þ

The non-trivial disease-free steady state can be perturbed through
the sr and/or inr class. If the initial seeding is in the sr class alone,
the disease cannot spread independently of the value of Ri

0. If
Rr
0 < 1, the trivial disease-free steady state is stable. However, if

Rr
0 > 1 more individuals become responsive and the system will

converge to the non-trivial DFSS. Rr
0 is equivalent to the basic

reproduction number and represents the number of new responsive
individuals to whom information about the disease has been trans-
mitted from a responsive individual. Thus the trivial DFSS is locally
stable if and only if Rr

0 < 1 and Ri
0 < 1.

Let us consider now the non-trivial DFSS that represents the case
when the responsive individuals have reached an ‘endemic’ level
and the spread of infection is not possible. The conditions of local sta-
bility in Proposition 1 can be conveniently rearranged to give

Rr ¼ as

ds
P 1; ð20Þ

Ri ¼ bnrð1� s0Þðcr þ di þ ais0Þ þ brs0ðcnr þ di þ ais0Þ
ais0cr þ cnrðcr þ diÞ

6 1: ð21Þ

where s0 ¼ as�ds
as

. The first condition is the obvious requirement that
Rr

0 ¼ as
ds
> 1. This means that the spread of responsiveness has to be

fast enough in order to reach the non-trivial DFSS. An initial small
proportion of infectious individuals can kick-start the spread of
responsiveness. If neither of the two conditions above (Eqs. (20)
and (21)) are fulfilled the non-trivial DFSS is not stable and the sys-
tem will tend to the trivial DFSS (1, 0, 0, 0, 0).

The present system bears some similarities to a ‘multi-strain’
model where individuals can become infected by the information
(i.e., becoming responsive) and/or by the disease. This is equivalent
to considering the spread of information (i.e., first strain) and the
spread of the disease (i.e., second strain) as two competing strains
[5] where unlike in traditional competing-strain-models, the pres-
ence of one strain contributes to increasing the prevalence of the
other. The second strain can infect individuals already infected
with the first strain. Hence, ‘superinfection’ is possible since dis-
ease can be transmitted to individuals that are already aware. Con-
sidering the stability of the non-trivial DFSS is equivalent to
establishing whether inr and ir can invade the population when sr

is already at equilibrium. We show that upon perturbing the trivial
DFSS the system will tend to either the non-trivial DFSS or an en-
demic equilibrium. The condition in Eq. (21) can be rewritten in
terms of Rr

0 and Ri
0 to give
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Ri
0 � 1 6 AðRr

0 � 1Þ; with A

¼ ðcr � brÞðai þ cnrÞ þ Bðcnr � brÞ
cnrðai þ cr þ BÞ ; B ¼ di �

ai

Rr
0
: ð22Þ

Therefore we can reformulate Proposition 1 in terms of Rr
0 and Ri

0.

Proposition 2.
0 1 2 3 4 5
0
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Increasing αi
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Fig. 3. Illustration of the long-term behaviour of the system as a function of Rr
0 and

Ri
0 for increasing values of ai ¼ 0:05 j ðj ¼ 0;1;2Þ and di ¼ 1=ð52 weeksÞ (a), and

a ¼ as ¼ ai ¼ 0:05 j ðj ¼ 0;1;2Þ (b). For both cases, cnr ¼ 1=ð26 weeksÞ; cr ¼ 1=ð13
weeksÞ and br ¼ cnr .
1. The trivial DFSS is locally stable if and only if Rr
0 < 1 and Ri

0 < 1.
2. The non-trivial DFSS is locally stable if and only if Rr

0 > 1 and
Ri

0 � 1 < AðRr
0 � 1Þ (A given in Eq. (22)).

In Fig. 3a, the local stability regions of the disease-free and en-
demic steady states are illustrated for a particular set of parame-
ters. In the case ai ¼ as; di ¼ ds (a reasonable assumption from
the biological point of view) we have B ¼ 0, hence A does not con-
tain Rr

0 and Ri
0 � 1 6 AðRr

0 � 1Þ gives a linear relation between Ri
0

and Rr
0. In Fig. 3b, the local stability regions are shown for the case

ai ¼ as; di ¼ ds. Numerical studies show that in the case when both
DFSSs are unstable there exists a unique endemic equilibrium and
this is discussed in the next subsection.

3.2. Existence and uniqueness of the endemic steady state

3.2.1. General case
In this subsection our aim is to show numerical evidence that in

the case Ri
0 > 1 and Ri

0 � 1 > AðRr
0 � 1Þ there exists a unique ende-

mic steady state. The analysis is based on reducing the five variable
system given by Eqs. (9)–(13) (with zeros in the l.h.s.) to two equa-
tions with two new unknowns x ¼ inr

i and n ¼ snr þ inr . Then the en-
demic equilibrium can be obtained as the intersection point of two
curves in the ðx;nÞ plane of the two new unknowns. For different
values of the parameters, we show numerically that the two curves
have a unique intersection point. In this subsection we assume that
ds ¼ di ¼ 0 to make the calculations easier, and for simplicity we
assume that as ¼ ai :¼ a and ds ¼ di :¼ d. We note that this is not
a restriction, and all our calculations can be carried out without
this assumption.

In Appendix A.1, we prove the following proposition.

Proposition 3. The number of endemic equilibria is equal to the
number of intersection points of the curves A0 þ A1xþ A2x2 ¼ 0 and
B0 þ B1n ¼ 0 in the domain given by the inequalities (46) and (47),
where the coefficients A0;A1;A2;B0;B1 are given by Eqs. (39)–(41)
and Eqs. (43) and (44).

Upon expressing one of the unknowns from these equations, a
graphical illustration of the two curves determined by the two
equations is possible. A systematic numerical study for different
parameter values allows us to show that these two curves have a
unique intersection point that determines the unique endemic
equilibrium.

In Fig. 4, for a particular set of parameters, the uniqueness of the
endemic equilibrium is illustrated numerically. The endemic steady
state can be computed based on the intersection point of the contin-
uous red and blue lines, provided that this point lies in the appropri-
ate area defined by positivity constraints given in Eqs. (46) and (47).
Fig. 4 illustrates that when close to the boundaries delimiting the
stability of the different steady states (see Fig. 3), the endemic equi-
librium approaches the trivial DFSS or the non-trivial DFSS. When
Rr

0 ¼ 0:5, the endemic equilibrium approaches (1, 0, 0, 0, 0) as Ri
0 ap-

proaches one from above. In the case of Rr
0 ¼ 2, the endemic equilib-

rium approaches ðd=a; ða� dÞ=a;0;0;0Þ ¼ ð0:5;0:5;0;0;0Þ as Ri
0

decreases to satisfy the condition given by Eq. (22).
Since we were not able to prove analytically that the two curves

in the above Proposition have a unique intersection point, it is
useful to look at a special case when the uniqueness of the endemic
equilibrium can be verified analytically. This is considered in the
next subsection.

3.2.2. The special case of bnr ¼ br and cnr ¼ cr

In this special, case the original system (Eqs. (9)–(13)) can be
rewritten in terms of s; i; snr; inr , where i ¼ ir þ inr . The original vari-
ables can be easily expressed in terms of the new ones as follows

ir ¼ i� inr; sr ¼ 1� s� i� snr:

The differential equations take the following form in terms of the
new variables,

_s ¼ cri� rs; ð23Þ

_i ¼ iðbr � cr � brs� br iÞ; ð24Þ

_snr ¼ �br isnr � asð1� snr � inrÞsnr �
dsi

kþ i
snr þ dsð1� s� i

� snrÞ þ prs; ð25Þ
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Fig. 4. Illustrationin terms of the ðx; nÞ coordinates of the uniqueness of the endemic equilibrium. Dashed lines represent the positivity conditions given in Eqs. (46) and (47) (Eq. (46)
B, black; Eq. (46) C, red; Eq. (47), green). Continuous lines correspond to the curves given by Eq. (38) (red) and Eq. (42) (blue). The intersection of these two curves determine the
ðx0;n0Þpair that is used to compute the endemic equilibrium in terms of the original variables. Theasterisks, in all panels, denote the ðsnr ; srÞpair. The top row corresponds toa ¼ 0:5d
(i.e., Rr

0 ¼ 0:5), while the bottom row illustrates the case of a ¼ 2:0d (i.e., Rr
0 ¼ 2). The other parameter values are cnr ¼ 1=ð26 weeksÞ; cr ¼ 1=ð13weeksÞ; r ¼

1=ð1 weekÞ;d ¼ ds ¼ di ¼ 1=ð12 weeksÞ; ds ¼ di ¼ 0;p ¼ 0:5 and br ¼ 0:025. For completeness, positivity bounds outside biologically plausible regions (0 < x < 1 and
0 < n < 1) are also shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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_inr ¼ brisnr � aið1� snr � inrÞinr �
dii

kþ i
inr � cr inr þ diði� inrÞ: ð26Þ

The main advantage of this special case and the choice of the vari-
ables is that the first two equations form an independent subsystem
within the whole system. It is easy to see that the steady states of
the subsystem given by Eqs. (23) and (24) are

ð0;0Þ and
br � cr

brðcr þ rÞ ðcr; rÞ:

Thus the endemic equilibrium may exist if br > cr and its s and i
coordinates are given by

s ¼ crðbr � crÞ
brðcr þ rÞ ; i ¼ rðbr � crÞ

brðcr þ rÞ : ð27Þ

The snr and inr coordinates of the endemic equilibrium are deter-
mined by

0 ¼ �brisnr � asð1� snr � inrÞsnr �
dsi

kþ i
snr þ dsð1� s� i

� snrÞ þ prs; ð28Þ

0 ¼ br isnr � aið1� snr � inrÞinr �
dii

kþ i
inr � crinr þ diði� inrÞ; ð29Þ

where s and i are given by Eq. (27). In Appendix A.2 we will prove
the uniqueness of the endemic equilibrium.

Proposition 4. If bnr ¼ br; cnr ¼ cr and br > cr , then the system given
by Eqs. (23)–(26), and hence the system given by Eqs. (9)–(13), have a
unique equilibrium with positive coordinates.
3.3. Global dynamical behaviour of the system

In Proposition 2, we determined the local stability of the dis-
ease-free steady states. Numerical investigations show that un-
der the assumptions given in the Proposition, the steady states
are not only locally but also globally stable, that is all trajecto-
ries starting from positive initial condition tend to the given
equilibrium. We can prove global stability analytically only in
the case Ri

0 < 1.

Proposition 5.

1. If Ri
0 < 1 and Rr

0 < 1, then the trivial disease-free steady state (1, 0,
0, 0, 0) is globally asymptotically stable in the positive orthant.

2. If Ri
0 < 1 and Rr

0 > 1, then the non-trivial disease free steady state
ðds=as;1� ds=as;0;0;0Þ is globally asymptotically stable in the
positive orthant.

Proof. Let us add Eqs. (11) and (12) and introduce i ¼ inr þ ii. In the
case of Ri

0 < 1, it follows that _i < 0, hence, i tends to zero as t !1.
Using Eq. (13), implies that also s tends to zero. Hence, the differ-
ential equation for snr , in the limit t !1, will give

_snr ¼ ðds � assnrÞð1� snrÞ:

This equation can have two equilibria, 1 and ds=as. If Rr
0 < 1, then

the only biologically relevant equilibrium is snr ¼ 1 and it is globally
stable. If Rr

0 > 1, then there are two equilibria, with snr ¼ 1 being
unstable, while sna ¼ ds=as is globally stable. h

The above proof does not work in the case Ri
0 > 1; however, we

have numerical evidence for the following full characterisation of
the global behaviour of the system (see Fig. 3).

1. If Ri
0 < 1 and Rr

0 < 1, then the trivial disease-free steady state (1,
0, 0, 0, 0) is globally asymptotically stable in the positive
orthant.

2. If Rr
0 > 1 and Ri

0 � 1 < AðRr
0 � 1Þ (A is given in Eq. (22)), then the

non-trivial disease-free steady state ðds=as;1� ds=as;0;0;0Þ is
globally asymptotically stable in the positive orthant.

3. If Ri
0 > 1 and Ri

0 � 1 > AðRr
0 � 1Þ then there exists a unique ende-

mic steady state and it is globally asymptotically stable in the
positive orthant.
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In the special case of bnr ¼ br and cnr ¼ cr , all the above state-
ments can be proved analytically. It is important to note that this
case corresponds to considering the limit of br

bnr
! 1 and cnr

cr
! 1 in

the full system. Hence, when close to this regime, the full system
can be viewed as a perturbed version of the special case with re-
sults from the special case expected to hold for the full system.
When bnr ¼ br and cnr ¼ cr;R

i
0 � 1 < AðRr

0 � 1Þ is equivalent to
Ri

0 < 1. Hence we have the following Theorem,

Theorem 1. If bnr ¼ br and cnr ¼ cr , three different cases follow:
0 0.2 0.4 0.6 0.8 1
0

0.1

δ, p

Fig. 5. Illustration of the level of prevalence once the endemic equilibrium is
reached (inr-red, ir-blue, inr þ ir-black). The starting point is the worst case scenario
when d ¼ ds ¼ di ¼ 0 and p ¼ 1:0. The case of constant p ¼ 1 (continuous lines,
increasing d) and constant d ¼ ds ¼ di ¼ 0 (dashed lines, decreasing p) are shown.
The other parameter values are cnr ¼ 1=ð26 weeksÞ; cr ¼ 1=ð13 weeksÞ; r ¼ 1=
ð1 weekÞ; d ¼ ds ¼ di ¼ 1=ð12 weeksÞ;bnr ¼ 3cnr ;br ¼ 0:5bnr ;a ¼ as ¼ ai ¼ 2d and k
¼ 0:01. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
1. If Ri
0 6 1 and Rr

0 < 1, then the trivial disease free steady state (1, 0,
0, 0, 0) is globally asymptotically stable in the positive orthant.

2. If Ri
0 6 1 and Rr

0 > 1, then there exists a non-trivial disease-free
steady state ðds=as;1� ds=as;0;0; 0Þ that is is globally asymptoti-
cally stable in the positive orthant.

3. If Ri
0 > 1, then there exists a unique endemic steady state that is

globally asymptotically stable in the positive orthant.

The proof of Theorem 1 is given in Appendix A.3.

4. Discussion

The spread and persistence of STIs is a result of the complex
interaction between the behaviour of the individuals, the charac-
teristics of the disease and various control programmes that are
aimed at limiting disease transmission or bringing prevalence of
infection to as low levels as possible [13]. While more and more
data describing the attitudes and lifestyle of individuals is becom-
ing available, it is challenging to capture the interaction of these
with the transmission dynamics. In this simple model, we relaxed
the assumption of a ‘passive’ population that will not react to the
presence of the disease and we also accounted for the spread of
the information about the diseases. The assumption of the model
is that individuals who choose to respond to information triggered
by the presence of the disease will lower their probability of
becoming infected through behavioural change or seek treatment
early. The spread of responsiveness competes with the spread of
infection and contributes to reducing the number of individuals
becoming infected.

We derived the characterisation of the global behaviour of the
system using a mixture of analytical and numerical methods and
investigated to what extent can the spread of information stop
the spread of the infection. For the most general case, the existence
and uniqueness of the endemic state is difficult to derive and so is
the proof of the global stability results of the disease-free steady
states. However, numerical investigations and complete analytical
results, for particular choice of parameters, provide a good descrip-
tion of the system. Given the negative feedback between the rate of
information transmission at the population level and infection
prevalence, the existence of a Hopf bifurcation is possible and in
future work this will be investigated further.

The proposed model incorporates two ways in which informa-
tion or responsiveness can spread and it is important to separately
consider the effect of these. The transmission of information due to
direct contact between individuals, under appropriate conditions,
changes the endemic threshold and can prevent the spread of
infection. However, the population-wide transmission does not af-
fect the endemic threshold (see Propositions 1, 2 and 5 and Theo-
rem 1), but leads to smaller levels of infection prevalence at the
endemic equilibrium (Fig. 5). While the effect of the information
transmission, due to direct contact between individuals, is clear
from the analysis, the precise implications of the population-wide
transmission (ds; di and k) and the proportion of treated individuals
that return to the non-responsive group ðpÞ are less obvious. These
parameters do not play a role in determining the stability of the
steady states, but have an impact on the prevalence level. Fig. 5
shows that the prevalence decreases considerably faster when
d ¼ ds ¼ di increases compared to the case when p decreases. We
also note that for different values of p, apart from a marginal differ-
ence in the time needed to reach the stable equilibrium, the
dynamical behaviour of the system is similar. Even though the
population-wide transmission cannot completely eradicate infec-
tion, it has a significant effect in reducing infection prevalence to
low levels.

The discrepancy between the potential impact of population-
wide and of individual to individual transmission of information
on endemic thresholds has important public health implications.
These are exemplified in the United Kingdom’s early AIDS epi-
demic, which was concentrated largely among men who have
sex with men (MSM). Informal information campaigns within the
male homosexual community can be dated to early 1983, prior
to dissemination in the gay press (1983–84) and long before the
wider government sponsored campaigns of 1986–87. It is esti-
mated that HIV transmission peaked around 1983 among MSM
[16], followed by a rapid decrease which was paralleled by a
marked fall in male syphilis incident cases, a disease which also
concentrates among MSM in the UK. The associated reduction in
the force of infection is thought to have been a major factor in lim-
iting the size of the HIV epidemic in the UK, both through reducing
spread among MSM, and limiting bridging to the heterosexual pop-
ulation. The wider population information campaigns of 1986–87
were however associated with much less dramatic changes both
in rates of STI diagnosis among women and heterosexual males.

This is a simple model that captures some important features,
and although contact heterogeneity is not accounted for, it illus-
trates how an active host population and the transmission of infor-
mation triggered by the disease can eradicate or minimise
infection levels. We have suggested different model choices, but
focused our analysis on the most basic one. Further analysis can
help to better understand how disease dynamics is affected by
the population-wide transmission of information and by how fast
the value of information decays over time.

We have recently learnt that in parallel Funk et al. [9] have
independently formulated and analysed a similar model with
results that are in line with our findings.
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Appendix A

A.1. Proof of Proposition 3

The existence and uniqueness of the endemic equilibrium can
be investigated via introducing the following new variables

i ¼ inr þ ir and n ¼ snr þ inr;

which denote total infection prevalence and the proportion of non-
responsive individuals, respectively. The system based on Eqs. (9)–
(13) has four independent variables since _snr þ _inr þ _sr þ _ir þ _s ¼ 0
implies that the sum of these variables is constant and equal to 1.
Instead of the original variables the following new variables s; i;n
and inr are used. The original variables can be expressed easily using
the new ones

snr ¼ n� inr; sr ¼ 1� s� i� nþ inr ; ir ¼ i� inr: ð30Þ

Hence, in terms of the new variables the system can be rewritten to
give

_s ¼ cri� cinr � rs; ð31Þ

_i ¼ iðbðn� inrÞ þ bað1� s� iÞÞ � criþ cinr; ð32Þ

_n ¼ ðd� anÞð1� nÞ � cnrinr þ ðpr � dÞs; ð33Þ

_inr ¼ bnriðn� inrÞ þ aninr � ðaþ cnr þ dÞinr þ di; ð34Þ

where b ¼ bnr � br and c ¼ cr � cnr .
Let us introduce an additional new variable

x ¼ inr

i
ð35Þ

and let us set the left hand side of Eqs. (31)–(34) to zero in order to
consider all possible steady states. From Eq. (31) we obtain

s ¼ i
cr

r
� x

c
r

� �
: ð36Þ

Substituting this expression for s in Eq. (32) we obtain

i ¼ r
br � cr þ bnþ cx

brðcr þ rÞ þ xðbr � brcÞ
: ð37Þ

Similarly, upon substituting s in Eq. (33) with the expression given
in Eq. (36), we get

ðd� anÞð1� nÞ þ i p� d
r

� �
ðcr � xcÞ � cnrx

� �
¼ 0:

Finally, by substituting i in the above equation, with the expression
given in Eq. (37), the following equation is obtained

ðd� anÞð1� nÞðbrðcr þ rÞ þ xðbr � brcÞÞ þ ðbr � cr þ bnþ cxÞððpr
� dÞðcr � xcÞ � rcnrxÞ ¼ 0

This gives a quadratic equation in x

A0 þ A1xþ A2x2 ¼ 0 ð38Þ

where

A0 ¼ ðd� anÞð1� nÞbrðcr þ rÞ þ ðbr � cr þ bnÞðpr � dÞcr ; ð39Þ
A1 ¼ ðd� anÞð1� nÞðbr � brcÞ � ðbr � cr þ bnÞððpr � dÞc
þ rcnrÞ þ cðpr � dÞcr; ð40Þ

A2 ¼ �cððpr � dÞcþ rcnrÞ: ð41Þ

Using that inr ¼ ix and upon dividing Eq. (34) by i, we obtain

bnrðn� ixÞ þ anx� ðaþ cnr þ dÞxþ d ¼ 0:

Now substituting i using the expression given in Eq. (37), the equa-
tion above yields

bnrnþ anx� ðaþ cnr þ dÞxþ d� bnrxr
br � cr þ bnþ cx

brðcr þ rÞ þ xðbr � brcÞ
¼ 0:

The equation above is a linear equation in terms of n

B0 þ B1n ¼ 0; ð42Þ

where

B0 ¼ ðd� ðaþ cnr þ dÞxÞðbrðcr þ rÞ þ xðbr � brcÞÞ � bnrxrðbr

� cr þ cxÞ; ð43Þ

B1 ¼ ðbnr þ axÞðbrðcr þ rÞ þ xðbr � brcÞÞ � bnrxrb: ð44Þ

Thus the endemic equilibrium can be obtained as follows. First, the
curves given by Eqs. (38) and (42) have to be plotted in terms of the
two independent variables ðx; nÞ. Their point of intersection defines
the x and n coordinate of the endemic equilibrium. Then Eqs. (35)–
(37) will yield the other coordinates of the equilibrium of the
system given by Eqs. (31)–(34). Finally, Eq. (30) gives the coordi-
nates of the endemic equilibrium in terms of the original variables.
Since all coordinates of the endemic equilibrium have to be positive
(i.e., snr; sr; inr; ir; s > 0), inequalities for the new variables can be
obtained. Using the transformation formulas given in Eq. (30), the
following conditions for the new variables are obtained. From
inr > 0 follows that i > 0 and x > 0. Similarly, snr > 0 yields n > ix.
From ir > 0 immediately follows that i > 0 and x < 1. These condi-
tions, through Eq. (36), automatically imply that s > 0 since
cr > c. Finally, sr > 0 yields 1� s� n� ið1� xÞ > 0 and upon using
Eq. (36) it follows that

i <
rð1� nÞ

cr þ r � xðcþ rÞ :

Thus the following conditions for the new variables ensure the pos-
itivity of the endemic equilibrium

0 < x < 1; 0 < i <
n
x
; i <

rð1� nÞ
cr þ r � xðcþ rÞ : ð45Þ

Using the expression for i given in Eq. (37), conditions in Eq. (45)
can be expressed in terms of x and n as follows

0 < x < 1 ðAÞ; br � cr þ bnþ cx > 0 ðBÞ;
rxðbr � cr þ cxÞ
brðcr þ rÞ � xcbr

< n ðCÞ; ð46Þ

n <
crðcr þ rÞ þ xððbnr � cnrÞr � 2cðcr þ rÞÞ þ x2cðcþ rÞ

bnrðcr þ rÞ � xðbr þ brcÞ
: ð47Þ
A.2. Proof of Proposition 4

We have seen that the subsystem given by Eqs. (23) and (24)
has a unique positive solution. Hence we have to prove that Eqs.
(28) and (29) have a unique positive solution such that sr > 0
and ir > 0 is fulfilled, that is
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snr < 1� s� i ¼ cr

br
; and inr < i: ð48Þ

Solving Eq. (28) for inr we obtain

inr ¼ 1þ a1 �
a0

snr
� snr :¼ h1ðsnrÞ ð49Þ

where

a0 ¼
dscr

asbr
þ pcr i

as
; a1 ¼

briþ ds

as
þ dsi

asðkþ iÞ ;

and i is given by Eq. (27). Solving Eq. (29) for snr we obtain

snr ¼
inrðb1 þ 1Þ � b0 � i2

nr

b2 þ inr
:¼ h2ðinrÞ; ð50Þ

where

b0 ¼
dii
ai
; b1 ¼

cr þ di

ai
þ dii

aiðkþ iÞ ; b2 ¼
bri
ai
:

Thus we have to prove that the curves inr ¼ h1ðsnrÞ in the domain
0 < snr < cr=br and snr ¼ h2ðinrÞ in the domain 0 < inr < i have a un-
ique intersection point. In order to prove the uniqueness it is en-
ough to show the following,

(i) The functions h1 and h2 are concave,
(ii) h1ðcr=brÞ > i,

(iii) h2ðiÞ > cr=br .

Namely, assume that there would be two intersection points.
Then the straight line determined by these two points separates
the endpoints of the two curves ðcr=br ;h1ðcr=brÞÞ and ðh2ðiÞ; iÞ be-
cause of the concavity of the curves. One can see from Fig. 6 that
this contradicts to (ii) and (iii). Hence we have to prove (i)–(iii).

The concavity of h1 is obvious. For the concavity of h2 the fol-
lowing equality can be used

inrðb1 þ 1Þ � b0 � i2
nr ¼ ðb2 þ inrÞðb2 þ b1 þ 1� inrÞ � b2ðb2 þ b1 þ 1Þ � b0;

hence

h2ðinrÞ ¼ b2 þ b1 þ 1� inr �
b2ðb2 þ b1 þ 1Þ þ b0

b2 þ inr

from which h002ðinrÞ < 0 easily follows. For (ii)
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Fig. 6. Illustration of the functions inr ¼ h1ðsnrÞ and snr ¼ h2ðinrÞ. As indicated by Eq.
(48), snr and inr are restricted to snr <

cr
br

and inr < i, respectively. The values of the
parameters are bnr ¼ br ¼ 1=13; cnr ¼ cr ¼ 1=26; as ¼ ai ¼ 0:02;ds ¼ di ¼ 1=52;
ds ¼ as ; di ¼ ai; r ¼ 1; p ¼ 0:5 and k ¼ 0:01.
h1
cr

br

� �
¼ 1� cr

br
þ ð1� pÞbri

as
þ dsi

asðkþ iÞ :

From Eq. (27) it follows that 1� cr
br
> i, implying h1ðcr=brÞ > i. In

order to verify (iii) we have

h2ðiÞ ¼
iðb1 þ 1Þ � b0 � i2

b2 þ i
¼ Dþ cr þ aið1� iÞ

br þ ai

where D ¼ dii=ðkþ iÞ. It is easy to prove that

cr þ aið1� iÞ
br þ ai

>
cr

br
:

However, this implies h2ðiÞ > cr=br .

A.3. Proof of Theorem 1

Let us first consider the case Ri
0 6 1, that is br 6 cr . In this case

the only nonnegative steady state of the system given by Eqs. (23)
and (24) is the origin. From Eq. (24) one can see that _i < 0 when i
and s are positive, thus iðtÞ ! 0 as t ! þ1. Hence Eq. (23) implies
that sðtÞ also tends to zero. Thus the origin is a globally stable equi-
librium of (23) and (24), and inrðtÞ ! 0; irðtÞ ! 0 as t ! þ1. The
dynamical behaviour of snr can then be determined from Eq. (25)
by substituting i ¼ 0 and s ¼ 0. In this case, sr ¼ 1� snr and Eq.
(25) takes the following form

_snr ¼ ðds � assnrÞð1� snrÞ:

This equation can have two equilibria 1 and ds=as. If ds=as > 1, then
the only biologically relevant equilibrium is snr ¼ 1 and it is globally
stable. If ds=as < 1, then there are two equilibria, and snr ¼ 1 is
unstable, while snr ¼ ds=as is globally stable. Thus, we have proved
the first two statements of Theorem 1.

Let us now consider the case of Ri
0 > 1, that is br > cr . In this

case, the system given by Eqs. (23) and (24) has two nonnegative
equilibria, the origin and the equilibrium given in Eq. (27). Linear-
isation shows that the origin is a saddle point and the endemic
equilibrium is stable. Upon adding Eqs. (23) and (24), immediately
follows that _sþ _i < 0 when sþ i P 1. This implies that all the tra-
jectories (in the nonnegative part of the phase plane) are bounded.
Thus the Poincaré-Bendixson theory implies that all trajectories
tend to the endemic equilibrium or to a periodic orbit. The exis-
tence of the periodic orbit can be excluded by the Bendixson-Dulac
criterion using the Bendixson function 1=i, since dividing the coor-
dinates of the vector field by i the divergence is �r=i� br < 0. Thus
we proved that the equilibrium given by Eq. (27) is a globally sta-
ble equilibrium of the system given by Eqs. (31)–(34). The dynam-
ical behaviour of snr and inr can then be determined from Eqs. (25)
and (26) by substituting i and s with the expressions given in Eq.
(27). Drawing the nullclines, given by Eqs. (28) and (29), and the
direction field of this two dimensional system, one can see that
the unique equilibrium is globally stable, since all trajectories are
bounded and the existence of a periodic orbit is excluded by the
position of the nullclines that are shown in Fig. 6.
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