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Abstract

In this paper a random link activation-deletion (RLAD) model is proposed that
gives rise to a stochastically evolving network. This dynamic network is then coupled
to a simple (SIS) dynamics on the network and the resulting spectrum of model be-
haviour is explored via simulation and a pairwise model for dynamic networks. First,
the dynamic network model is systematically analysed by considering link-type in-
dependent and dependent network dynamics coupled with globally constrained link
creation. Finally, a pairwise model is proposed and used to study the interplay be-
tween SIS-type dynamics on the network and link-type dependent activation-deletion.
Assumptions of the pairwise model are identified and their implications interpreted in
a way that complements our current understanding. Furthermore, we also discuss how
the strong assumptions of the closure relations can lead to disagreement between the
simulation and pairwise model. Unlike on a static network, the resulting spectrum
of behaviour is more complex with the prevalence of infections exhibiting not only a
single steady-state but also bistability and oscillations.

Keywords: dynamic network, birth-and-death process, Markov Chain, epidemic, ODE,
pairwise model, bifurcation
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1 Introduction

Many real-world systems ranging from neuroscience and epidemiology to computer sciences
and socioeconomics can be represented as well defined units interacting via a static or dy-
namic set of links or connections, e.g., [12, 21, 19, 3]. The wide applicability of networks as
a modelling tool has captured the attention of many different research communities and has
led to the development of a large body of research at the interface of network/graph theory,
stochastic processes, probability theory, discrete mathematics and computer sciences [2, 14].
Initially, most of the research concentrated on the structure and properties of real-world
networks and aimed to understand and uncover the laws that gave rise to the observed or
empirical networks. In parallel a different research direction emerged, namely, the study of
how the properties and structure of the network impact on the dynamical processes taking
place on it (e.g. flow of information on the WWW, disease transmission on social networks,
self organization of neurons). While earlier research focused on the dynamics or evolution of
networks [4, 5] without considering the dynamical processes they support, latter research con-
sidered fixed and static networks and mainly focused on the dynamics on networks. However,
in many cases considering both the dynamics of the network and on the network is essential
to understand the problem that is being modelled, but, doing so raises several challenges.
Firstly, capturing and modelling the interaction between the two dynamics is non-trivial with
little empirical evidence and second, the increased complexity reduces analytical tractability
with results mainly relying on simulation.

Over the last few years various simple classes of models have been proposed where both
the dynamics of the network and on the network are considered [7]. For example, Saramäki
& Kaski [16] proposed a model where nodes are distributed on a ring and links are divided
into short-range (SR) and long-range (LR) links. SR links are considered to be fixed and
connect nodes to their nearest neighbours. LR links vary randomly, meaning that an infected
node tries to infect with some probability a node chosen at random and succeeds to do so
if the chosen individual is susceptible. The authors formulated a simple ODE model that is
similar to pairwise models and used this to derive analytic results for disease transmission
threshold and to validate simulation results.

Thilo et al. (2006) [8] proposed a network-based model where (SI) links are broken at a
certain rate with susceptible nodes immediately re-wiring to other susceptible nodes chosen
at random from the entire population. Again, a simple pairwise type model was used to
derive a low dimensional dynamical system that describes the interaction of network and
disease dynamics. This model operates on the strong assumption that the status of each
node is globally available. Risau-Gusman & Zanette (2009) [15] relaxed the assumptions of
the model proposed by Thilo et al. and considered the case when the susceptible node from
an (SI) pair re-wires to a node chosen at random from the entire network regardless of its
state. They generalised the model further and considered the case where not only susceptible
nodes are allowed to change their contacts but also the infectious nodes can do so. In this
model, when an SI link is cut, the I node will reconnect with probability q to a node chosen
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at random and independently of its state, and with probability 1 − q the susceptible node
will keep the contact and look to reconnect at random. Both papers use pair-approximation
models to validate simulation results.

Grindrod and Higham (2010) [6] proposed two simple models of undirected evolving
graphs by starting from the complete state space S with S = 2N(N−1)/2 possible elements or
different graphs over N nodes. With this in place, the evolution of a graph can be represented
as a path in the state space S governed by some stochastic process P (Gi+1|Gi, Gi−1, . . . ),
where Gi is the state of the graph, represented as a symmetric adjacency matrix, at discrete
time step i. While this formulation is exact and can be extended to continuous time, the
drawback of this approach comes from the large number of transition probabilities for time
independent processes (i.e. 2N(N−1)) or the Kolmogorov transition equations (i.e. 2N(N−1)/2).
The authors proposed an edge birth and death model where each edge can become activated
or deleted at a fixed probability that is independent of all other edges or the current state
of the graph. They extended this to a more sophisticated model where link activation and
deletion depends on some form of proximity between edges as given by the initial setup of
the nodes (e.g. fixed location on a line with nodes connected according to some connectivity
kernel). The aim of their study was twofold: first to use such models to simulate a series of
dynamic or evolving networks and second, to fit evolving network models to data and use
likelihood-based estimation of model parameters.

In this paper, we consider a set of simple dynamic networks based on the simple link
birth-and-death or activation-deletion model, and also a variant of this, where link bir-
rth/activation is globally constrained. The aims of the paper is to investigate the impact of
these simple network dynamics on the structure of the network when node dynamic is absent
and when the nodes are static but labeled. This is achieved by using the exact formulation
in terms of Markov Chains and Kolmogorov equations and a mean-field type approach with
further results from simulation. Furthermore, the dynamic network is coupled with SIS
(susceptible-infectious-suceptible) node dynamics and a pairwise and simulation model is
used to investigate and characterise the full spectrum of behaviour. In this case, the agree-
ment between simulation and pairwise model is discussed in detail. This is done by giving
some new insight into how the assumptions of the pairwise model can be interpreted and
how the strong assumptions of the closure relation can lead to disagreement between the
two models. Parameter regimes where agreement is excellent are identified, however, many
open questions remain regarding the exact relation between simulation results and output
from the pairwise model.

2 Simple models of stochastically evolving networks

In this Section, the impact of simple network dynamics on the structure and properties
of the network is explored. We present different modelling techniques to derive exact or
approximation models and compare these to simulation results. Two simple network dy-
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namics are considered: (a) Random Link Activation-Deletion (RLAD) whereby non-active
or non-existing links are activated with a given rate (e.g. α) while existing ones are deleted
with some other rate (e.g. ω) and (b) Globally-constrained RLAD whereby the above link
creation process is constrained globally, i.e. the higher the number of active links the lower
the rate at which new links are activated. Initially, the simple dynamics of the network are
studied without considering any dynamics on the network or any link activation or deletion
that may depend on node labels.

2.1 Random link activation-deletion: probabilistic approach

Let us consider an undirected and unweighted network with N nodes where the maximum
number of edges is M = N(N−1)/2. The dynamics of edges evolve according to the following
two simple rules. Non-active or absent links are activated independently at random at rate
α while existing links are broken independently at random at rate ω. Let (X(t))t≥0 be an
integer valued random variable that represents the number of edges/links in the network at
time t. If P (X(t) = k) = pk(t) then the Kolmogorov equations for pk are given by

pk(t)

dt
= α[(M − (k − 1)]pk−1(t)− [α(M − k) + ωk]pk(t) + ω(k + 1)pk+1(t), (1)

where k = 0, 1, 2, . . . , M with corresponding modifications for k = 0 (no link deletion) and
k = M (no link activation). The average number of edges in the graph at time t can be
defined as K1(t) =

∑M
k=0 kpk(t). Upon using Eq. (1) and after some simple algebra, the

equation for K1(t) follows easily and is given by

K̇1(t) =
M∑

k=0

kṗk(t) = αM − (α + ω)K1(t). (2)

Hence, at equilibrium

Keq
1 =

αM

α + ω
.

The equilibrium value can also be found heuristically by determining the number of edges
Keq

1 at which the total rate of link activation (α(M −Keq
1 )) is balanced by the total rate of

link deletion (ωKeq
1 ). For this setup, the average number of links per node or average node

degree is given by

〈k〉(t) =
2
∑M

k=0 kpk(t)

N
=

2K1(t)

N
.

A traditional and commonly used method to determine the probability distribution as
given by the forward Kolmogorov equations above (Eq. (1)) is via the probability generating
function (PGF) technique. This is defined as

G(t, s) =
M∑

k=0

pk(t)s
k, (3)
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where s is a placeholder variable that allows to concentrate all the information about the
probability distribution into one single function. Multiplying Eq. (1) by sk, followed by
summation for k = 0, 1, . . . , M and some simple calculations gives rise to the following
partial differential equation

∂G(t, s)

∂t
= (1− s)(αs + ω)

∂G(t, s)

∂s
− αM(s− 1)G(t, s), (4)

G(0, s) = sm0 for (t, s) ∈ [0,∞)× (0, 1), (5)

where the initial condition corresponds to starting with m0 edges (i.e. pm0(0) = 1 and
pk(0) = 0 for ∀k ∈ {0, 1, 2, . . . , M} \ {m0}). This is a first-order homogeneous partial
differential equation that can be solved using the method of characteristics and its solution
is given by

G(t, s) =

(
ω + αs + ω(s− 1)e−(α+ω)t

ω + αs + α(1− s)e−(α+ω)t

)m0 (
ω + αs + α(1− s)e−(α+ω)t

α + ω

)M

. (6)

From the equation above, K1(t), the expected number of edges in the network is given by
∂G(t,1)

∂s
, and in the limit of t →∞, K1(t) tends to its equilibrium value defined as

Keq
1 = lim

t→∞
∂G(t, 1)

∂s
=

αM

α + ω
. (7)

Moreover for t →∞
G(t, s) →

(
α

α + ω
s +

ω

α + ω

)M

, (8)

which is the generating function of the binomial distribution with M trials and a per-trial
probability of success p = α/(α+ω). The excellent agreement between the exact model and
simulation is shown in Fig. 1(a), and confirms that the formulation of the two models is
correct and consistent. The number of equations in the exact model scale as O(N2) which
restricts its applicability to small networks.

2.2 Random link activation-deletion: mean-field approach

To overcome the limitations of the exact model and to gain more insight into the properties
or structure of the network a different modelling approach is presented below. Here, the
network is considered as a population of nodes where nodes can be classified according
to their number of links/contacts and the rates of moving to either more highly or less well
connected classes. Hence, the modelling relies on deriving evolution equations for the number
of nodes with degree 0, 1, 2, . . . , N − 1. Let nk denote the number of nodes with k contacts
where 0, 1, 2, . . . , N − 1. Based on simple heuristic reasoning the evolution equations for nks
are given by

nk(t)

dt
= α[(N − 1)− (k − 1)]nk−1(t)− {α[(N − 1)− k] + ωk}nk(t) + ω(k + 1)nk+1(t). (9)
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This approach is similar to compartmental models where, in this case, transitions between
compartments represent link gain or link loss. Solving the equations above provides informa-
tion about the number of nodes with different connectivity but does not test whether such a
network is realisable. This bears strong similarities to some modelling approaches where net-
works are simply considered in terms of nodes and their stubs but without being connected
up in a coherent network ([1, 13]). The linear system of ordinary differential equations lends
itself to some simple analysis. The rates matrix is of particular interest as this determines
the eigenvalues (λj) and the corresponding eigenvectors (sj), where j = 0, 1, . . . N − 1, that
are used to construct the solution of the system. The solution of the system in terms of
these is given by

n(t) =
N−1∑
j=0

cjsj exp(λjt),

where cjs are some arbitrary constants. Due to the special structure of the rates matrix,
all eigenvalues but one have negative real parts. The single eigenvalue with a non-zero real
part is in fact a zero eigenvalue. Hence, when t → ∞, the solution of Eq. (9), n(t) =
(n0(t), n1(t), . . . , nN−1(t)) tends to the eigenvector associated with the 0 eigenvalue times
some constant, n(t) → Cs0 when t →∞. It is easy to show analytically that

sj
0 =

(
N − 1

j

)(
α

α + ω

)j (
ω

α + ω

)N−1−j

for j = 0, 1, . . . N − 1

. This is equivalent to the binomial distribution with N − 1 trials and a per trial probability
of success given by α/(α + ω). This is further illustrated in Fig. 1(b) where the degree
distribution, for large time, is plotted for different 〈k〉 values. Again, the agreement of the
mean-field model with simulation is excellent, and confirms that, as expected, the simple
RLAD model leads to simple Erdős-Rényi type networks.

2.3 Globally-constrained RLAD: probabilistic approach

Both real and theoretical networks are usually sparsely connected with 〈k〉 ¿ N and thus
with M ¿ N(N − 1)/2. In this sub-section, the simple RLAD model is extended to account
for this general network feature. To do this, a carrying capacity (Kmax

1 ) that can limit
link activation is included in the RLAD model. Following the same notation as above, the
globally-constrained RLAD (GC-RLAD) model leads to the following equations

pk(t)

dt
= α[(M−(k−1)]

(
1− k − 1

Kmax
1

)
pk−1(t)−[α(M−k)

(
1− k

Kmax
1

)
+ωk]pk(t)+ω(k+1)pk+1(t),

(10)
where k = 0, 1, 2, . . . , M with obvious modifications for k = 0 and k = M . Using a similar
approach as above, the equation for K1(t), the average number of edges in the graph at time
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t, is given by

K̇1(t) = αM −
(

α +
α

Kmax
1

M + ω

)
K1(t) +

α

Kmax
1

K2(t), (11)

where K2(t) =
∑M

k=0 k2pk(t) is the second moment of the edge number distribution at time
t. This equation cannot be solved directly since it involves the second moment of the edge
distribution and an equation for this is needed. As an alternative to this exact approach,
we consider the most obvious and simplest approximation whereby K2(t) = K2

1(t). The
following theorem shows that this approximation becomes exact in the limit of M →∞.

Theorem 1 For the solution K∗
1 of Eq. (11) upon substituting K2(t) by K2

1(t) the following
statement holds. Provided that Kmax

1 /M remains constant as M → ∞, then for any T > 0
there exists a constant C > 0 such that

|K1(t)−K∗
1(t)| ≤ C

M
for t ∈ [0, T ],

where K1(t) =
∑M

k=0 kpk(t).

The proof of the Theorem is rather technical and it will be presented in a more wider
context as part of an additional paper. However, Fig. 2(a) confirms our statement and
shows the excellent agreement between the exact and the approximation model even for
small networks where M is also small. Using this result, a quadratic equation for the edge
value at equilibrium (K∗,eq

1 ) follows easily,

K∗,eq
1 =

M

2




(
1 +

Kmax
1

M

(
1 +

ω

α

))
±

√(
1 +

Kmax
1

M

(
1 +

ω

α

))2

− 4
Kmax

1

M


 . (12)

While both solutions are positive, the smaller of the two can be confirmed as the correct
equilibrium value given that the number of edges in the network cannot be larger than the
carrying capacity. In the case of Kmax

1 = M our argument follows immediately.

2.4 Globally-constrained RLAD: mean-field approach

Following the same considerations as for the RLAD model and using the same notation, the
globally-constrained RLAD at the node level is characterised by the following equations

nk(t)

dt
= α[(N − 1)− (k − 1)]

(
1− e(t)

Kmax

)
nk−1(t)− {α[(N − 1)− k]

(
1− e(t)

Kmax

)

+ ωk}nk(t) + ω(k + 1)nk+1(t), (13)
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where e(t) is given by

e(t) =
1

2

N−1∑

k=0

knk(t).

In Fig 2(b), we show that the mean-field approach can again be used to successfully predict
the degree distribution of the network, and as before, networks based on the GC-RLAD
dynamics are randomly connected with binomial distribution. However, in this case the
good agreement with the binomial distribution is difficult to prove analytically directly form
Eq. (13).

3 Simple stochastically evolving networks in the pres-

ence of node labelling

The network dynamics so far has only been considered without the dynamics on the network
and independently of node and/or link type. To explore the full impact of the dynamics
on the network it is advisable that a step-by-step approach is taken as proposed by Thilo
et al. [8]. First, the impact of network dynamics can be investigated independently of
node and/or link characteristics which could either be imposed externally and be static
or be dynamic as a result of a separate dynamics running on the network. Second, the
network dynamics based on static node/edge labelling can be investigated, and finally, the
impact of coupling the dynamics of the network with the dynamics on the network needs
to be considered. In the latter and most interesting case, the state of the nodes will have
an impact on the network dynamics and viceversa (e.g. breaking susceptible-infected links
impacts on the networks with the converse also being true; neuronal activation impacts on
networks through experience-dependent plasticity and vice-versa).

3.1 SI labelling

Be it disease or information transmission, the manipulation of networks via preferential
node/link addition and/or deletion provides a powerful mechanism to influence and optimise
processes unfolding on the network. For example, disease transmission can be slowed or
halted if links between susceptible and infected individuals are cut fast enough [8]. Using
the analogy of simple epidemic models, such as the susceptible-infected-susceptible model,
nodes are labelled at random as S or I. In the spirit of the network dynamics so far, all
pair types can be activated or deleted at random with pair-type dependent rates. The rates
at which SS, SI and II links are activated are denoted by αSS, αSI and αII , respectively.
Similarly, ωSS, ωSI and ωII represent the rates at which SS, SI and II links are deleted.
These labels are permanent and do not change during the evolution of the network. In
this case, the Kolmogorov equations can be written down but are far more complicated
compared to the previous cases. The state space is now given in terms of three variables,
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namely the counts of the various link types {SS}, {SI} and {II}. These take values from
0 to {S}({S} − 1), {S}{I} and {I}({I} − 1), respectively, where {S} and {I} = N − {S}
are the initial number of nodes labelled S and I. It is more practical to use the mean-field
approach and write down ODEs for the number of different pair types. For brevity, only the
equations for the globally constrained case are given,

nSS(t)

dt
= αSS[{S}({S} − 1)− nSS(t)]

(
1− e(t)

K

)

− ωSSnSS(t), (14)

nSI(t)

dt
= αSI [{S}{I} − nSI(t)]

(
1− e(t)

K

)

− ωSInSI(t), (15)

nII(t)

dt
= αII [{I}({I} − 1)− nII(t)]

(
1− e(t)

K

)

− ωIInII(t), (16)

where e(t) is given by

e(t) =
N−1∑

k=0

k (nSS(t) + 2nSI(t) + nII(t))

and represents the number of doubly counted edges. It is worth noting that here nAB (where
A,B ∈ {S, I}) stands for doubly counted edges (i.e. a single SS pair counts for two SS edges
in nSS). Similarly, the carrying capacity K needs to be understood as such. The expected
number of pairs at equilibrium (SSeq, SIeq, IIeq) are given as the solutions of the following
simple equations,

αSS[{S}({S} − 1)− SSeq]
(
1− eeq

K

)
= ωSSSSeq, (17)

αSI({S}{I} − SIeq)
(
1− eeq

K

)
= ωSISIeq, (18)

αII [{I}({I} − 1)− IIeq]
(
1− eeq

K

)
= ωIIIIeq, (19)

where
eeq = SSeq + 2SIeq + IIeq

and {S}({S}− 1), {S}{I} and {I}({I}− 1) are constants determined by the initial number
of S and Is. These equations allow us to find the equilibrium values at which the total rate
of link activation equals the total rate of link deletion. The following Proposition shows that
the solution of Eqs. (17-19) is unique.
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Proposition 1 The system given by Eqs. (17-19) has a unique solution given as

SSeq =
K1y

A1 + y
, SIeq =

K2y

A2 + y
, IIeq =

K3y

A3 + y
,

where
K1 = {S}({S} − 1), K2 = {S}{I}, K3 = {I}({I} − 1),

A1 = K
ωSS

αSS

, A2 = K
ωSI

αSI

, A3 = K
ωII

αII

and y is the unique root of the function

h(y) =
K1A1

A1 + y
+

2K2A2

A2 + y
+

K3A3

A3 + y
− y + K − (K1 + 2K2 + K3)

in the interval [0, K]. Finding the solution of the equation h(y) = 0 reduces easily to finding
the root of a fourth degree polynomial.

Proof: Multiplying Eqs. (17-19) by K/αSS, K/αSI and K/αII , respectively, and introduc-
ing the following new notations

x1 = SSeq, x2 = SIeq, x2 = IIeq, y = K − (x1 + 2x2 + x3),

allows us to recast Eqs. (17-19) as follows,

x1 =
K1y

A1 + y
, x2 =

K2y

A2 + y
, x3 =

K3y

A3 + y
.

Substituting these expressions into the definition of y and using that

Kiy

Ai + y
= Ki − KiAi

Ai + y
,

the following equation for y is obtained

K1A1

A1 + y
+

2K2A2

A2 + y
+

K3A3

A3 + y
− y + K − (K1 + 2K2 + K3) = 0.

This shows that y is a root of function h. It is easy to see that h is a decreasing function,
hence it has at most one root. Moreover, h(0) = K > 0 and h(K) < 0, since KiAi

Ai+K
< Ki.

Therefore h has a unique root in the interval [0, K].
2

It is important to note that if the network dynamics is not globally constrained, Eqs.
(17-19) decouple and each equilibrium value can be found based on results from the non-
constrained random link creation-deletion case. The excellent agreement between the theo-
retical equilibrium, as defined above, and simulation is illustrated in Fig. 3.
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4 Interaction of network and disease dynamics: pair-

wise model and simulation

4.1 Pairwise model formulation and its bifurcation analysis

In this section the dynamics of network and the simple SIS (susceptible-infected-susceptible)
dynamics are studied concurrently using individual-based stochastic simulations and a low-
dimensional pairwise model. In line with the standard pairwise models [11, 18], we can now
heuristically write down equations for the rate of change of individuals and pairs for the
dynamic network as follows,

d[I]

dt
= τ [SI]− γ[I], (20)

d[SI]

dt
= γ([II]− [SI]) + τ([SSI]− [ISI]− [SI])

− ωSI [SI] + αSI((N − [I])[I]− [SI]), (21)

d[II]

dt
= −2γ[II] + 2τ([ISI] + [SI])− ωII [II] + αII(([I]− 1)[I]− [II]), (22)

d[SS]

dt
= 2γ[SI]− 2τ [SSI]− ωSS[SS] + αSS((N − [I])(N − [I]− 1)− [SS]), (23)

where τ is the rate of infection across an (SI) link and γ is the rate of recovery. The system
of equations is complemented by theoretical initial conditions or taken as expected counts
from the simulation model. Triples are closed according to the simple closure given by

[ABC] =
n− 1

n

[AB][BC]

[B]
,

where n is the average number of links per node. This closure implicitly assumes that the
precise type of nodes (e.g. S or I) around a node in state B are independent. This type of
closure is widely used for homogeneous random graphs [9, 11] with no clustering and also
for unclustered random graphs with close to Poisson degree distribution [20]. The equations
above account for link activation-deletion and, without any further constraints, have been
made dependent on the type of link being activated/deleted (e.g. αab with a, b ∈ {S, I}).
Activation/deletion is present in terms such as αSI((N − [I])[I]− [SI]) and ωSI [SI], where
(N− [I])[I]− [SI] is simply the count of potential (SI) type links that are not yet connected.

The resulting closed system is four dimensional and lends itself to standard bifurcation
analysis to determine all possible steady states and their stability as a function of the model
parameters. Using the parametric representation method (PRM) [17], a more rigorous ap-
proach used to investigate global bifurcations, four different regimes are identified (see Fig.
4). The analysis shows that the interaction of network and disease dynamics leads to a
spectrum of behaviours ranging from a single stable disease-free steady state to stable oscil-
lations. More precisely there are three types of bifurcations. First, a transcritical bifurcation



13

where the disease-free steady state loses stability with the disease becoming established and
thus giving rise to a stable endemic equilibrium. Second, a saddle-node bifurcation which
gives rise to the co-existence of two stable equilibria (one being disease-free and the other
endemic) with an unstable equilibrium, and finally, a Hopf bifurcation, where the stable
endemic equilibrium looses its stability and gives rise to a stable limit cycle. From a dis-
ease control viewpoint, of main interest is the region above the transcritical and saddle-node
bifurcation curves. In these regions, only the disease-free equilibrium is stable and this in-
dicates that the deletion or breaking of ωSI curtails the spread of the epidemic and leads
to a desirable disease-free steady state. As expected, the regions where different model be-
haviours are observed can vary and depend on model parameters. For example, in Fig. 4,
the region of bistability is small compared to the Hopf island that covers a considerable part
of the parameter space. This case was chosen to illustrate a range of potential outcomes
and the reach behaviour of a relatively simple model that can lead to outcomes other then
a stable disease-free or stable endemic state, as in the case of the simple SIS model on a
static network.

Due to the dynamic nature of the network, the average degree of the nodes (i.e. n as
given in the triple closure) is a variable itself and changes with time. Hence, the analysis
above performed for a fixed n serves only as an indicator of possible system behaviours but
can give good results if n is a slow variable where for example the network dynamics is much
slower compared to the epidemic or if n does not vary considerably. We also note that n only
enters via the (n− 1)/n term which for realistic networks that are well connected is close to
one. For dynamic networks with type dependent rates of link activation and deletion, the
average degree of a susceptible node can be different to that of infective nodes. It is therefore
more appropriate to use the following triple closure

[ABC] =
nB − 1

nB

[AB][BC]

[B]
,

where nB is the average degree of a node of type B. Replacing n by nS(t) = ([SS]+[SI])(t)/S
in the ODE prevents the straightforward derivation of analytical results but allows for fast
numerical exploration of the parameter space to identify different possible model outcomes.
If in good agreement with simulation, the ODE provides a simple and easy way to explore
the full spectrum of behaviour for a large number of parameters, a problem that is extremely
difficult to tackle via simulation alone.

4.2 Comparison of pairwise model to simulation: a general con-
sideration

In formulating such a low-dimensional model, the immediate key question is whether such a
simple system can approximate, at least qualitatively, results obtained from the simulation
model. The answer to this question depends strongly on the network structure, the type of
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dynamics and how the proposed closure performs when these factors combine. An important
observation that is generally valid for all pairwise models with the known closures is that
terms such as −τ [SI] are exact. Thus, the network structure and the formation of correla-
tions as measured by CAB = N [AB]/(n[A][B]), where A,B ∈ {S, I}, should be conserved.
However, the evolution equation for [SI] relies on the exact expectation of triples which is
approximated by the closure and thus is not exact. We note that values of the correlation
measure close to one indicate that the true expected number of pairs is close to the value
obtained in the case where nodes are labeled at random as S and I rather than as a result
of the dynamics unfolding on the network. The strong assumption of independence in the
closure leads to a closed ODE system that dissipates the true correlations to some degree
but, not completely. This argument follows simply from considering a simpler closure at the
pair level, i.e. [SI] can be approximated by [SI] = n[S][I]/N . This obviously removes al
correlations and gives rise to a system that is equivalent to the mean-field SIS model. Using
the closure at the level of triples, rather than pairs, will conserve some of the correlations
at pair level, however, a deviation from the simulation model is unavoidable. To shed some
further light on the impact of closure it is important to make a distinction between whether
nodes are labeled at random as S and I or whether (SS), (SI) and (II) links are placed at
random to form a labeled graph. Nodes labeled at random will lead to all pair correlation
being close to one, CAB = N [AB]/(n[A][B]) ' 1, where A,B ∈ {S, I}, in which case the
triples can be counted in terms of singles as follows

[ABC] =
n(n− 1)[A][B][C]

N2
.

This in turn is equivalent to the closure in terms of pairs. The main difference between the
two closures is that the first, more realistic one, allows for pair correlations that are different
from one, and thus not random, while keeping the distribution of links random. Thus, the
first closure can accommodate more realistic scenarios where non-random pair correlation
and random link distribution can coexist. For the agreement between simulation and ODE
to hold we can give the following sufficient conditions:

1. CAB = N [AB]/(n[A][B]) ' 1, where A,B ∈ {S, I},
2. [ABC] = (n−1)[AB][BC]

n[B]
holds and the pair correlation can differ from one, CAB 6= 1,

where A,B,C ∈ {S, I},
where the first implies the second but not vice-versa.

The conditions above are rather strong and are easily violated even for simple static
networks where the ODE model with an even more sophisticated closure [9] will fail to
match the outcome of simulation as shown by Taylor et al. [20]. However, these conditions
are not necessary to get good agreement. Even when the second condition is not fulfilled
(i.e. [ABC] 6= (n−1)[AB][BC]

n[B]
) it is still possible to get reasonably good agreement over time in

the expected number of infecteds as illustrated in Fig. 5.
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Our discussion of the results and agreement between the two models will revolve around
the arguments presented above and the concept of preferential link or edge dynamics. These
will be used to underpin our explanation of results from model comparisons. Preferential link
dynamics is a direct result of the model ingredients which allows us to tune link activation
and deletion such that certain type of links can be over- or under-represented compared to
a random link distribution scenario. Moreover, this means that nodes of certain type pref-
erentially connect to nodes of similar or different nature leading to non-trivial correlation
structures on the network. This alone can explain why the ODE with the triple approxima-
tion cannot capture such type of correlation structures on the network. In extreme cases this
can be easily illustrated by regimes where the graph breaks down into sub-graphs that are
dominated by either S or I nodes and where these sub-graphs can be close to fully connected
or with no edges. For example, if out of all link activation-deletion rates only ωSS and αII

are non-zero, while keeping all the other zero, it is straightforward to obtain a regime where
the network over time is such that S nodes are isolated and lose all their links while the I
nodes tightly cluster into an almost completely connected graph. In cases such as these the
ODE will fail to capture the true dynamics due to the isolation of susceptibles.

While correlations will not necessarily invalidate the agreement between the two models
we identify them as an important factor in determining whether the two models will agree.
Other important factors can contribute to whether good agreement is observed. For exam-
ple, the parameter values could be such that an initially unclustered network may become
clustered with higher link density and in this case the assumptions of the simple closure will
break down. The effect of clustering however can be counteracted by the network becoming
even more densely connected, at which point the mean-field limit can be approached.

4.3 Regimes of good agreement between pairwise model and sim-
ulation

Good agreement between pairwise model and simulation would demonstrate that the ODE
model can be used as an effective tool to investigate possible model outcomes. In what
follows, we identify parameter sets where such agreement an agreement exists for the cou-
pled dynamics case. The results are based on extensive individual-based stochastic network
simulations for a large selection of different parameter combinations.

The degree to which preferential link creation can be captured by the ODE depends
on the parameter values. As expected when all link activation-deletion rates are not type
dependent (i.e. αSS = αSI = αII and ωSS = ωSI = ωII) the agreement between ODE and
simulations is excellent as illustrated in Fig. 6 for a range of different parameter values. In
this regime the assumption of independence of links of the triple closure performs even better
than on a static network as the random breaking and creating of links helps to dissipate some
of the high correlation in triplets (e.g. [III]) observed with SIS type dynamics. Random
activation-deletion helps to decrease the building of correlation in the network that may
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otherwise invalidate the independence assumption.
Good agreement between the two models also holds for parameter values that are much

different from the equal activation and deletion rates scenario. Fig. 7 shows that agreement
can also be found for more realistic parameter values where for example, efforts to control
a disease may require a higher ωSI rate compared to other link deletion rates. In such
situations however, care has to be taken since the agreement depends on whether the precise
parameter values will lead to moderate correlations or correlations that can be captured by
the ODE model.

Finally, in Fig. 8 the bistability regime is illustrated for both simulation and the ODE
model. We note that the networks resulting from the coupled dynamics on the upper branch
have on average 6 nodes that become isolated. As expected, the ODE cannot capture this
but, we can take this into account by decreasing population size from N = 100 to N = 94.
This results in excellent agreement between the two models. The plots in Fig. 8 have been
obtained via continuation method where the steady state obtained at a value τ0 of the
transmission rate is used as the initial condition for a new set of simulations with a smaller
value of the transmission rate, i.e. τ0−δτ . This approach has also been used with the full set
of ODEs with time dependent average connectivity n(t). The qualitative agreement is good
and highlights that the pairwise model can be used as an exploratory tool when mapping out
full system behaviour. This is especially useful where models with many parameters make
this exploration almost impossible via simulations alone.

5 Discussion

The paper set out to carry out a systematic analysis of a model where network dynamics is
coupled with a simple disease dynamics model. Network dynamics is based on link activation
and deletion that can depend on link type. A step-by-step approach has been taken where
the network dynamics has been modeled and studied in isolation, without disease dynamics,
and then in presence of node labeling that was stationary in time. The key result is the
analysis of the pairwise ODE model and its comparison to simulation where both network
and disease dynamics act concurrently. Different modeling approaches have been proposed,
discussed and their performance relative to each other has been investigated. The models
studied have ranged from exact stochastic models based on Kolmogorov equations and simple
low dimensional ODE models to simulation with often good agreement between complex
simulations and ODE models. We have highlighted that approximate ODE models are
desirable as they are more easily tractable compared to simulation and can be used as a
more rigorous tool to investigate the full spectrum of behaviour, especially when faced with
more complicated models with a large number of parameters.

Pairwise models have been developed in the context of static networks with applications
in epidemiology and ecology. This approach has been generalised to dynamic networks
coupled with simple epidemics and have been shown to have the potential to be a useful
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modelling tool that complements simulation models and aids analysis. However, many open
problems remain regarding the validity of these simple ODE models when compared to full
simulation. To date there is no coherent framework with theoretical results where for example
the convergence, in some appropriate limit, of the simple ODE models to simulation is
formalised. This holds even for the static network case where the need for such developments
has been highlighted [10]. In our particular case, there are many parameter regimes where
agreement between the ODE model and simulation is good. These include for example
regimes where either of the two dynamics is fast or slow compared to the other. This time-
scale separation reflects that when considered separately, the ODE model tends to perform
better. Furthermore, if the parameters are such that the system is dominated by nodes in
either susceptible or infected state, then the agreement is again good given that many of
the link activation and deletion processes are dormant. Hence, the dynamics of the network
is predominantly governed by the creation and deletion of a unique link type, i.e., non-
preferential link dynamics.

As previously highlighted, and also confirmed here, the interaction of the two dynamical
process can lead to networks that are either highly clustered, display some specific structure
or are fragmented in sub-networks dominated by S or I nodes even with some being com-
pletely isolated. Obviously in such cases the current pairwise model will fail to approximate
the simulation correctly but alternatives models, more sophisticated pairwise or other type
of models that keep track of the number of links or even the type of neighbours a node
has [13] may prove to give a more satisfactory result. Such models could better capture
the correlations driven by preferential link dynamics, heterogeneity in node degree or other
node, pair of larger scale property, that cannot be captured by the basic pairwise model.
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Figure 1: (a) Time evolution of 〈k〉 given by Eq. (2) (solid line, Kolmogorov model) compared
to simulation (◦). (b) Degree distribution at equilibrium as given by Eq. (9) (continuous,
mean-field model) compared to simulation (◦). Results from the mean-field model are iden-

tical to the binomial distribution Bin(N − 1, 〈k〉
N−1

= α
α+ω

). For both (a) and (b), ω = 1 and
α is set to obtain the desired average degree at equilibrium. All simulations start from a
completely sparse graph with N = 100.
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Figure 2: (a) Time evolution 〈k〉 given by Eq. (10)(solid line, Kolmogorov model) compared
to the approximation obtained from Eq. (11)(◦). Here, N = 50. (b) Degree distribution at
equilibrium based on Eq. 13 (thick grey line, mean-field model) compared to simulation (◦)
and to the binomial distribution Bin(N − 1, 〈k〉

N−1
) (solid black line) with N = 100. For both

(a) and (b), ω = 1, Kmax
1 = M and α set to obtain the desired average degree at equilibrium.

All simulations start from a completely sparse graph.
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Figure 3: The time evolution of the number of (SS), (SI) and (II) pairs from simulation
compared to analytic equilibrium values ((SS)-continuous, (SI)-dashed and (II) - dotted)
predicted by the mean-field model. All simulations start from a completely sparse graph
with N = 100 and with 80% of nodes labelled initially as S. The other parameters are
αSS = αSI = αII = 0.317 and ωSS = ωSI = ωII = 1.0.
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Figure 4: Bifurcation diagram showing the full possible spectrum of behaviour. The pa-
rameter space is divided into four distinct regions as follows: the disease-free is the only
stable equilibrium (above the transcritical and saddle-node bifurcation curves), two stable
(disease-free and endemic) and one unstable equilibria with non-zero infectious prevalence
(between the transcritical and saddle-node bifurcation curves), one unstable (disease-free)
and a stable endemic equilibria (below the transcritical curve and outside the Hopf bifur-
cation island), and finally, Hopf island with a stable limit cycle and unstable disease-free
and endemic equilibria. Parameter values are as follows: N = 100, n = 10, αSS = 0.004,
αSI = 0.005, αII = 0, ωSS = 0.005, ωII = 0 and γ = 1.0.
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Figure 5: Results from the average of 100 realisations on networks of size N = 100 with an
initial average degree 〈k〉 = 10, and corresponding output from the ODE model (simulation
results - black line, ODE - red line). The other parameter values are γ = 0.05, τ = 0.025,
ωSI = 0.5, ωSS = 0.5, ωII = 0.5, αSI = 0.02, αSS = 0.02 and αII = 0.02. The networks were
seeded with 10 infectious nodes. The prevalence of infection is plotted over time (a), and the
true expected number of triples from the simulation is compared to the approximate value
of triples from the closure with singles and pairs taken from the ODE (b).
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Figure 6: Results from the average of 50 realisations on networks of size N = 100 with an
initial average degree 〈k〉 = 10, and corresponding output from the ODE model for various
values of τ (simulation results - (4, ¤,◦), ODE - solid lines). The other parameter values
are γ = 1.0, ωSS = ωSI = ωII = 0.5. The blue, black and red lines correspond to all αs
being equal to 0.06, 0.04 and 0.02, respectively. The networks were seeded with 20 infectious
nodes. The prevalence from the ODE is plotted after 200 time units and the simulation
results are normalised from time 160 to 200, this is a region where the average prevalence
settles to a steady state.
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Figure 7: Results from the average of 100 realisations on networks of size N = 100 and
initial average degree 〈k〉 = 10. The other parameter values are γ = 0.2, τ = 0.1, ωSI = 0.5,
ωSS = 0.3, ωII = 0.6, αSI = 0.03, αSS = 0.04 and αII = 0.03. The networks were seeded
with 20 infectious nodes. The inset shows the good agreement in the average degree of the
evolving network.



26

0.05 0.1 0.15 0.2 0.25 0.3 0.35
τ

Figure 8: Results based on simulation and pairwise model showing bistability. The upper
branch (◦) obtained using the continuation method on networks of size N = 100 and 50
realisations. The solid black line and grey lines are the corresponding results based on the
pairwise model for N = 100 and N = 94, respectively. The lower branch from the simulation
(red dots) and the continuation from the upper branch (◦) all show zero prevalence. Results
from the ODE also predict zero prevalence and are omitted to increase clarity. When tracing
out the upper branch via simulation, only epidemics that did not become extinct have
been considered (unless all died out). For a large enough value of τ , the lower branch will
eventually move away from the zero prevalence state. The parameter values are 〈k〉 = 10
(for the starting network and on the lower branch), ωSS = 2.0, αII = 0.06, γ = 1.0 with all
other rates set to zero. The upper and lower branches were seeded with 50 and 5 infectives,
respectively.


