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Abstract

The bifurcations in a four-variable ODE model of an SIS type epidemic on an
adaptive network are studied. The model describes the propagation of the epidemic on
a network where links (or edges) of different type (i.e. SI, II and SS) can be activated
or deleted according to a simple rule consisting of random link activation and deletion.
In the case when II links cannot be neither deleted nor created it is proved that
the system can have at most three steady states with the trivial, disease-free steady
state being one of them. It is shown that a stable endemic steady state can appear
through a transcritical bifurcation, or a stable and an unstable endemic steady state
arise as a result of saddle-node bifurcation. Moreover, at the endemic steady state a
Hopf bifurcation may occur giving rise to stable oscillation. The bifurcation curves in
the parameter space are determined analytically using the parametric representation
method. For certain parameter regimes or bifurcation types, analytical results based on
the ODE model show good agreement when compared to results based on individual-
based network simulations. When agreement between the two modelling approaches
holds, the ODE-based model provides a faster and more reliable tool that can be used
to explore full spectrum of model behaviour.
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1 Introduction

Recently, it has become more and more important to understand the relation between the
dynamics on a network and the dynamics of the network [4]. In the case of epidemic prop-
agation on networks it is straightforward to assume that the propagation of the epidemic
has an effect on the structure of the network. For example, susceptible individuals try to
cut their links in order to minimise their exposure to infection. This leads to a change in
network structure which in turn impacts on how the epidemic spreads. This phenomenon
can be modeled by using two main approaches: (i) individual based stochastic simulations
or micro models and (ii) macro models where variables at the population level are given in
terms of a system of ordinary differential equations. These types of models can have several
parameters and, especially in the latter case, the behaviour of the system can be rigorously
investigated via bifurcation analysis techniques. The aim this paper is twofold. First, we
revisit the formulation of a dynamic network model which is coupled with a simple epidemic
dynamics and, second, we use bifurcation analysis to analyse the full spectrum of model be-
haviour. We use our results to highlight the importance of coupled models in understanding
real world processes.

Over the last few years several models have been proposed where both the dynamics of
the network and on the network are considered [4]. For example, Saramki and Kaski [9]
proposed an SIR model where in a cycle graph long-range links are introduced randomly.
These links account for occasional, far away infection, i.e. an infected node, at some rate,
can infect nodes that are not immediate local neighbours. They formulate a simple ODE
model that is similar to pairwise models [6] and use this to derive analytic results for disease
transmission threshold and to validate simulation results. Gross et al. [3] proposed a model
where (SI) links are cut at a certain rate with susceptible nodes immediately re-wiring to
other susceptible nodes chosen at random from the entire population. Again, a simple
pairwise type model was used to derive an ODE that describes the interaction of network
and disease dynamics. Risau-Gusman and Zanette [8] considered a more general case when
the susceptible node from an (SI) pair re-wires to a node chosen at random from the entire
network regardless of its state, with the infected node in an (SI) pair being able to perform
the same re-wiring.

Recently, we have proposed a model in which the immediate re-wiring is not assumed and
all type of contacts (i.e. SS, SI and II) can be activated or deleted at a certain rate. The
first aim of that paper was to investigate the impact of these simple network dynamics on the
structure of the network when node dynamic was absent and when the nodes were static but
labeled. Then the dynamic network was coupled with SIS node dynamics and a pairwise and
simulation model were used to investigate and characterise the full spectrum of behaviour.
In that paper, the analysis mainly focused on the agreement between simulation and pairwise
models with the detailed analytical study of bifurcations postponed to the present paper.
The proposed model has 8 parameters and hence a numerical bifurcation study is difficult to
perform in order to reveal the full spectrum of behaviour. Thus the main aim of this paper is
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the detailed analytical study of bifurcations that occur in the system and to identify regions
where the different behaviours can be observed. To achieve this we apply the parametric
representation method which is a useful tool that can be used to find the bifurcation curves
analytically and has already been used successfully to analyse different systems [1, 7, 11].

In the paper the following pair approximation model for an SIS epidemic propagating
on a dynamically changing graph with N nodes is considered,

˙[I] = τ [SI]− γ[I], (1)
˙[SI] = γ([II]− [SI]) + τ([SSI]− [ISI]− [SI])− ωSI [SI] + αSI([S][I]− [SI]), (2)
˙[II] = −2γ[II] + 2τ([ISI] + [SI])− ωII [II] + αII([I]([I]− 1)− [II]), (3)
˙[SS] = 2γ[SI]− 2τ [SSI]− ωSS[SS] + αSS([S]([S]− 1)− [SS]). (4)

Here [I](t) is the expected number of infected nodes in the graph at time t and [SI](t),
[II](t), [SS](t) denote the expected number of SI, II and SS edges at time t. Similar
notation is used for the triples SSI and ISI. The parameters of the epidemic propagation
are τ , the infection rate and γ the recovery rate. The parameters of the dynamic of the
graph are αSI , αII , αSS, the rates of activation of the corresponding links, and ωSI , ωII , ωSS

the rates of deletion of the corresponding links. The deletion of links is simply assumed to be
proportional to the number of existing links, for example, the deletion of SI edges is given by
the term ωSI [SI]. Similarly, the activation of links is proportional to the number of potential
links that are not yet connected, for example, the activation of SI edges is described by the
term αSI([S][I]− [SI]).

The following simple closures are used for the triples,

[SSI] =
n− 1

n

[SS][SI]

[S]
, [ISI] =

n− 1

n

[IS][SI]

[S]
,

where n is the average degree of the nodes. This type of closure is widely used for
homogeneous random graphs [5, 6] with no clustering (i.e. neighbours of a node are not or
very unlikely to be neighbours of each other) and also for unclustered random graphs with
close to Poisson degree distribution [13]. Due to the dynamic nature of the network, the
average degree of the nodes, where degree is simply the number of links or edges a node
has, is a variable itself and changes with time as n(t) = 2[SI](t) + [II](t) + [SS](t). Hence,
the analysis above performed for a fixed n serves only as an indicator of possible system
behaviours but can give good results if n is a slow variable where for example the network
dynamics is much slower compared to the epidemic or if n does not vary considerably. We
also note that n only enters via the (n− 1)/n term which for realistic networks that are well
connected is close to one. In [14] we showed that for wide parameter regions the simulation
model justifies the use of the above closure and explained why for some parameters the
agreement breaks down. We briefly revisit this aspect in the Discussion section and we
present further evidence of good agreement between the ODE model and simulation.
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In order to make the notations simpler the following new variables will be used,

x = [I], y = [SI], z = [II], u = [SS].

Using these notations and the above closure relations our system (1)-(4) takes the form

ẋ = τy − γx, (5)

ẏ = γ(z − y) + τ
n− 1

n

y(u− y)

N − x
− τy − ωSIy + αSI((N − x)x− y), (6)

ż = −2γz + 2τ(
n− 1

n

y2

N − x
+ y)− ωIIz + αII(x(x− 1)− y), (7)

u̇ = 2γy − 2τ
n− 1

n

uy

N − x
− ωSSu+ αSS((N − x)(N − x− 1)− u). (8)

The aim of the paper is to determine the number of stationary states and their local
bifurcations analytically. It will be shown that a relatively rich bifurcation behaviour can be
identified with respect to other epidemic adaptive network models. There are three types
of bifurcations. First, a transcritical bifurcation where the disease-free steady state loses
stability giving rise to a stable endemic equilibrium. Second, a saddle-node bifurcation
which gives rise to the co-existence of two stable equilibria (one being disease-free and the
other endemic) with an unstable equilibrium, and finally, a Hopf bifurcation, where the
stable endemic equilibrium looses its stability and gives rise to a stable limit cycle.

The paper is structured as follows. In Section 2 we show how the algebraic system
determining the steady states can be reduced to a single equation, then the saddle-node
bifurcation curve is calculated by using the parametric representation method [11], and the
exact number of steady states for different domains of the parameter space is determined. In
Section 3 the transcritical bifurcation of the trivial steady state is determined analytically,
and a semi-analytic way of finding the Hopf bifurcation curve in a plane of two parameters
is shown.

2 Number of steady states

The steady states are determined by the system of four equations obtained from (5)-(8) by
putting zeros to the left hand sides. This four variable system can easily be reduced to
a single (higher degree) equation for the variable x. This reduction will be shown in the
first Subsection. Then in the next two Subsections the number of solutions of this reduced
equation will be studied.
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2.1 Reduction to a single equation

Let us consider system (5)-(8) with zeros in the left hand sides. From the first equation y
can be expressed in terms of x, then from the third equation z can be expressed in terms of
x, and finally, from the fourth equation u can be expressed in terms of x as follows:

y =
γ

τ
x, z = xfz(x), u = (N − x)fu(x), (9)

where

fz(x) =
2γ(n−1

n
γx

τ(N−x)
+ 1) + αII(x− 1)

2γ + ωII + αII

, fu(x) =
2γ2x/τ + αSS(N − x)(N − x− 1)

2γ n−1
n
x+ (ωSS + αSS)(N − x)

.

(10)
Substituting these expressions of y, z and u into the second equation we get the following

equation for x

γx(fz(x)−
γ

τ
)+γx

n− 1

n
(fu(x)−

γx

τ(N − x)
)−γx−ωSI

γ

τ
x+αSI((N −x)x− γ

τ
x) = 0. (11)

One can see that x = 0 is a solution, hence there is a trivial (disease-free) equilibrium
corresponding to

x = 0, y = 0, z = 0, u = u∗ =
N(N − 1)αSS

ωSS + αSS

(12)

Besides this trivial solution there can be endemic equilibria the x coordinate of which are
given by (11), that is a fourth degree equation after multiplying by the product of the
denominators. One can observe that in the case αII = ωII = 0 the terms containing N − x
in the denominator cancel, and hence the equation only needs to be multiplied with the
(linear) denominator of fu(x). Therefore the resulting equation will be of third degree, and
analytically, this is more tractable. This assumption is also supported from the biological
point of view, since neither the activation nor the deletion of [II] are likely to happen
in a real situation. Our analytical calculations are carried out under the assumption of
αII = ωII = 0, and we will show numerical evidence that, for non-zero values of these
parameters the qualitative behaviour of the bifurcation curves do not change.

In the case αII = 0 = ωII the function fz(x) takes a much simpler form:

fz(x) =
n− 1

n

γx

τ(N − x)
+ 1.

Then (11) simplifies to

−γ2x+ γx
n− 1

n
τfu(x)− ωSIγx+ αSI(τ(N − x)x− γx) = 0, (13)

which is a third degree equation once it is multiplied by the denominator of fu(x) and by τ .
Summarising the above, we have shown the following concerning the equilibria.
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Proposition 1 In the case αII = 0 = ωII system (5)-(8) has at most three steady states.
One of them is the trivial steady state given by (12). The point (x, y, z, u) is a non-trivial
steady state if and only if x is a non-zero solution of (13) and y, z, u are given by (9).

2.2 The discriminant (saddle-node or fold bifurcation) curve

Now our aim is to determine the exact number of solutions of equation (13) for all possible
parameter values. Since the two most important parameters τ and ωSI (that are also used
in [3]) are involved linearly in the equation the parametric representation method (PRM)
[11] can be used to investigate the number of solutions of the third degree equation (13). In
order to use this method, equation (13), after dividing by x, can be written in the form

f0(x) + τf1(x) + ωSIf2(x) = 0 (14)

where

f0(x) = −γ(2αSIγqx+ (γ + αSI)ρSS(N − x)), (15)

f1(x) = (N − x)(αSSγq(N − x− 1) + αSI(2γqx+ ρSS(N − x))), (16)

f2(x) = −γ(2γqx+ ρSS(N − x)), (17)

q = n−1
n

and ρSS = ωSS+αSS. Our first aim is to divide the (τ, ωSI) parameter plane accord-
ing to the number of steady states, i.e. the number of solutions of (14). The discriminant
curve, that is also called saddle-node or fold bifurcation curve divides the parameter plane
according to the number of solutions. We will refer to this curve shortly as D-curve, it will
be defined in the next Subsection.

2.2.1 Determination of the D-curve

According to the Implicit Function Theorem the number of solutions of (14) can change
when the derivative of the left hand side is also zero, that is

f ′
0(x) + τf ′

1(x) + ωSIf
′
2(x) = 0. (18)

Equations (14) and (18) determine the singularity set or the so-called discriminant curve in
the (τ, ωSI) parameter plane as follows

S = {(τ, ωSI) ∈ R2 : ∃x ∈ R, such that (14), (18) hold }

This set, along which the number of solutions can change, is usually determined by elimi-
nating x from system (14), (18). This way an expression can be derived relating τ to ωSI .
This expression used to be quite complicated, hence it is not easy to plot the singularity set
numerically or determine its properties analytically. The essence of the parametric represen-
tation method is to exploit the fact that system (14), (18) contains the parameters τ and ωSI
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linearly, hence these can be expressed in terms of x. Thus the singularity set can be given as
a curve parametrised by x, this curve will be referred to as D-curve or discriminant curve.
The point of the D-curve corresponding to x will be denoted by D(x) = (D1(x), D2(x)),
where D1(x) yields τ and D2(x) yields ωSI . Thus solving the linear system (14), (18) for τ
and ωSI we get

D1(x) =
f ′
0(x)f2(x)− f0(x)f

′
2(x)

f1(x)f ′
2(x)− f ′

1(x)f2(x)
, D2(x) =

f0(x)f
′
1(x)− f ′

0(x)f1(x)

f1(x)f ′
2(x)− f ′

1(x)f2(x)
. (19)

It is straightforward to express these functions in terms of the original parameters since f0, f2
are linear and f1 is quadratic function of x. After some algebra we get

f ′
0(x)f2(x)− f0(x)f

′
2(x) = −2Nγ4qρSS, (20)

f1(x)f
′
2(x)− f ′

1(x)f2(x) = −2Nγ2q((N − 1)qγαSS +NαSIρSS) (21)

+ (γq(αSS − 2αSI) + αSIρSS)(2γ
2qx2 − γρSS(N − x)2),

f0(x)f
′
1(x)− f ′

0(x)f1(x) = 2Nγ2αSIq((N − 1)qγαSS +NαSIρSS) (22)

−(γq(αSS − 2αSI) + αSIρSS)(2γ
2αSIqx

2 − γ(γ + αSI)ρSS(N − x)2).

Thus for given values of the parameters N,n, αSI , αSS, ωSS the D-curve can be easily plotted
as a parametric curve in the (τ, ωSI) parameter plane, the parameter x runs in the interval
[0, N ]. The typical shape of the curve is shown in Figure 1.

2.2.2 Main results of the PRM concerning the D-curve

Now we explain how can the number of steady states be determined by using the parametric
representation method. The first advantage of the PRM, that was exploited in the previous
Subsection, is that the singularity set can easily be determined. The second one is the
so-called tangential property [11, 12] that says the following.

Lemma 1 (Tangential property) For a given parameter pair (τ, ωSI) the number of so-
lutions of equation (14) is equal to the number of tangents that can be drawn to the D-curve
from the given (τ, ωSI) parameter pair. The values of the solutions can be read as the value
x of the tangent point on the D-curve.

Moreover, the so-called convexity property helps to count the number of tangents easily
[11, 12].

Lemma 2 (Convexity property) The D-curve consists of convex arcs, meaning that ev-
ery arc lies on one side of its tangents. These arcs join at cusp points of the D-curve. There
is a cusp point at x0, if the function f ′′

0 (x)+f ′′
1 (x)D1(x)+f ′′

2 (x)D2(x) changes sign at x = x0.
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The use of the convexity property is based on the fact that to each convex arc there can be
drawn at most two tangents. The exact number of tangents depends on the position of the
point as it is shown in Figure 2.

Thus in order to use the PRM to determine the exact number of steady states we need the
following characteristic properties of the D-curve, that help to determine the exact number
of tangents from different points: the cusp points, the tangents at the endpoints and the
position of the curve. These characteristic properties will be studied in the next Subsection.

2.2.3 Characterisation of the D-curve

In our case the functions f0, f2 are linear and f1 is quadratic, hence it can be shown that
the D-curve has no cusp point, which yields that it consists of a single convex arc (as it also
can be seen in Figure 1).

Let us now investigate the tangent lines belonging to the endpoints x = 0 and x =
N . According to the tangential property, the equation of these lines are f0(0) + τf1(0) +
ωSIf2(0) = 0 and f0(N) + τf1(N) + ωSIf2(N) = 0. The second line is easier to plot, since
f1(N) = 0, hence its normal vector is vertical. This line contains the point D(N), which is
below the ωSI = 0 coordinate axis, hence this line, as being horizontal, does not enter the
positive quadrant of the (τ, ωSI) parameter plane. Let us consider now the other tangent
line f0(0) + τf1(0) + ωSIf2(0) = 0. It is easy to see that f2(0) < 0 < f1(0), hence this line
enters the positive quadrant. Substituting x = 0 into (15)-(17) we get for the equation of
this line

γ(γ + αSI)ρSS − τ((N − 1)αSSγq +NαSIρSS) + ωSIγρSS = 0. (23)

Thus the D-curve and its tangents at the endpoints can divide the positive quadrant of
the (τ, ωSI) parameter plane into three regions as it is shown in Figure 3.

The convexity of the D-curve and the position of its tangents at the endpoints do not
depend on the value of the parameters in the system. Hence for all values of the parameters
we can have the above regions according to the number of tangents. The only thing that
the parameter values can change is the position of the endpoint D(0). This may be pushed
down below the ωSI = 0 coordinate axis, and then region 3 disappears. Let us now investi-
gate the position of the D-curve in detail. It is determined by the signs of the nominators
and denominators in (19). The nominator in D1 is negative. The signs of the other two
expressions are given in the following Proposition.

Proposition 2 1. The functions f1f
′
2−f ′

1f2 and f0f
′
1−f ′

0f1 are monotone in the interval
[0, N ].

2. For any values of the parameters we have f1(0)f
′
2(0)− f ′

1(0)f2(0) < 0 and

f1(N)f ′
2(N)−f ′

1(N)f2(N) = 2γ3q2N(αSS−2NαSI) = − 1

αSI

(f0(N)f ′
1(N)−f ′

0(N)f1(N)).
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3. Inequality f0(0)f
′
1(0) − f ′

0(0)f1(0) < 0 holds if and only if the following condition is
satisfied

2q2αSIαSS(1−
1

N
) + (qαSS +

αSI

γ
ρSS)(1 +

αSI

γ
)ρSS < 2qαSIρSS. (24)

Proof:
1. We have (f1f

′
2−f ′

1f2)
′ = f1f

′′
2 −f ′′

1 f2 = −f ′′
1 f2 since f

′′
2 = 0 (f2 is linear). The function

f1 is quadratic, hence the derivative (f1f
′
2 − f ′

1f2)
′ is a linear function, the sign of which is

determined by the sign of f2. It is easy to see that f2 does not change sign in the interval
[0, N ], therefore the derivative (f1f

′
2−f ′

1f2)
′ also has constant sign in this interval. The proof

of the monotonicity of f0f
′
1 − f ′

0f1 is similar.
The statements in 2 and 3 can be proved by straightforward calculations using (21)-(22).
�
According to the Proposition both the nominator and denominator in D1(0) are negative,

hence D1(x) > 0 when x is small. For the function D2 we have D2(N) = −αSI , that is
D2(x) < 0 when x is close to N . The D-curve enters the positive quadrant if and only
if the nominator of D2(0) is negative, that is when (24) holds. Otherwise, the D-curve is
completely below the ωSI = 0 coordinate axis, which means that region 3 does not exist.
Summarising, we can say that the position of the D-curve is determined by condition (24).

2.2.4 Determination of the number of steady states using the D-curve

Let us consider now the D-curve as it is shown in Figure 3. From the points in region 1 there
cannot be drawn tangents to the given arc (belonging to x ∈ [0, N ]) of the D-curve. Hence,
if the pair (τ, ωSI) is in this region then equation (14) has no solution in [0, N ]. Therefore
equation (13) has only the trivial solution x = 0, i.e. there is only the trivial disease-free
steady state. From the points in region 2 there can be drawn one tangent to the given arc
(belonging to x ∈ [0, N ]) of the D-curve (see Figure 2). Hence, if the pair (τ, ωSI) is in this
region then equation (14) has one solution in [0, N ]. Therefore equation (13) has the trivial
solution x = 0 and another solution x ∈ (0, N ], i.e. there are two steady states. From the
points in region 3 there can be drawn two tangents to the given arc (belonging to x ∈ [0, N ])
of the D-curve (see Figure 2). Hence, if the pair (τ, ωSI) is in this region then equation (14)
has two solutions in [0, N ]. Therefore equation (13) has the trivial solution x = 0 and two
other solutions in (0, N ], i.e. there are three steady states. As it was mentioned earlier,
region 3 can disappear if condition (24) does not hold. Hence our results concerning the
number of steady states can be summarised as follows.

Theorem 1 Let us assume αII = 0 = ωII and consider the line given in (23) and the D-
curve, given by (19). According to the position of the D-curve there are the following two
cases.
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• If the inequality (24) does not hold, then the D-curve is outside the positive quadrant
and the line given in (23) divides the (τ, ωSI) parameter plane into two regions. If the
parameter pair (τ, ωSI) is in the left region, then there is only the trivial steady state
given in (12). If the parameter pair (τ, ωSI) is in the right region then there are two
steady states (one of them is the trivial steady state).

• If the inequality (24) holds, then the D-curve and the line given in (23) divide the
(τ, ωSI) parameter plane into three regions. If the parameter pair (τ, ωSI) is in the
right region then there are two steady states (one of them is the trivial steady state).
If the parameter pair (τ, ωSI) is in the left region above the D-curve, then there is only
the trivial steady state given in (12). If the parameter pair (τ, ωSI) is in the left region
below the D-curve, then there are three steady states (one of them is the trivial steady
state).

In the case when αII and ωII are non-zero then the D-curve can be given similarly, how-
ever, formulas become more complicated hence the analytic characterisation is not available.
Our numerical investigations show that there are the above two cases also for non-zero values
of αII and ωII . In Figure 4 the second case is shown, when the D-curve and its tangent at the
end point divide the parameter plane into three regions according to the number of steady
states.

3 Bifurcations

In this Section the local bifurcations of the steady states are investigated. Hence we will
need the linearisation at the equilibria. The Jacobian takes the form

J =


−γ τ 0 0
Jyx Jyy γ Jyu

Jzx Jzy −2γ 0
Jux Juy 0 Juu

 (25)

where

Jyx = τqy
u− y

(N − x)2
+αSI(N − 2x), Jyy = −γ+ τq

u− 2y

N − x
− τ −ωSI −αSI , Jyu =

τqy

N − x
,

Jzx = 2τq
y2

(N − x)2
, Jzy = 4τq

y

N − x
+ 2τ,

Jux = −2
τquy

(N − x)2
+ αSS(1− 2N + 2x), Juy = 2γ − 2

τqu

N − x
, Juu = −2

τqy

N − x
− ρSS.
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For a given steady state the eigenvalues of matrix J have to be investigated. When x = 0,
that is for the disease-free steady state, the spectrum of J can be investigated analytically.
This will be done in Subsection 3.1, where it will be shown that the disease-free steady state
can undergo only a transcritical bifurcation. For the endemic steady states the spectrum of
the Jacobian can only be investigated numerically. This will be studied in in Subsection 3.2,
where it will be shown that Hopf-bifurcation may occur and the Hopf-bifurcation curve will
be determined numerically.

3.1 Transcritical bifurcation

Let us substitute now the coordinates of the disease-free steady state (given by (12)) into the
Jacobian matrix J . Then the only non-zero entry in the last coloumn will be the lower most
one −ρSS. Hence this is a negative eigenvalue of the matrix and remaining three eigenvalues
are the same as those of the upper-left 3× 3 matrix given as

A =

 −γ τ 0
NαSI Ayy γ
0 2τ −2γ

 (26)

where

Ayy = −γ + τq
(N − 1)αSS

ρSS
− τ − ωSI − αSI .

The characteristic polynomial of this matrix is

λ3 − λ2TrA+ λ(A11 + A22 + A33)− detA

where Aii is the sub-determinant corresponding to the element aii. The coefficients can be
expressed in terms of the parameters as

TrA = −4γ + τq
(N − 1)αSS

ρSS
− τ − ωSI − αSI ,

A11 + A22 + A33 = −3γ(τq
(N − 1)αSS

ρSS
− ωSI − αSI)− τNαSI + τγ + 5γ2,

detA = 2γ2(−γ + τq
(N − 1)αSS

ρSS
− ωSI − αSI) + 2τγNαSI .

According to the Routh-Hurwitz criterion all the roots of the characteristic polynomial
have negative real part, i.e. the steady state is asymptotically stable, if and only if the
following three conditions hold

−TrA > 0, −(A11 + A22 + A33)TrA > − detA, − detA > 0.

11



Now we will prove that these three conditions are equivalent to the last one, detA < 0,
when τ > 0. In order to do so we write the above three Routh-Hurwitz conditions in terms
of the parameters.

c1 + ωSI − a1τ > 0, (27)

3(c1 + ωSI − a1τ)(c2 + ωSI − a2τ) > 2γ(c3 + ωSI − a3τ), (28)

c3 + ωSI − a3τ > 0, (29)

where

a1 = r − 1, a2 = r +
NαSI − γ

3γ
, a3 = r +

NαSI

γ
, r = q

(N − 1)αSS

ρSS
,

c1 = αSI + 4γ, c2 = αSI +
5

3
γ, c3 = αSI + γ.

Proposition 3 If τ > 0, then condition (29) implies conditions (27) and (28).

Proof:
The proof is based on the following simple inequalities:

a1 < a2 < a3, c3 < c2 < c1.

Using these inequalities we simply get

c1 + ωSI − a1τ > c3 + ωSI − a3τ > 0,

that is (29) implies (27).
Using that c1 = c3 + 3γ we get

c1 + ωSI − a1τ > c1 − c3 + c3 + ωSI − a3τ > 3γ.

Moreover, we have c2 + ωSI − a2τ > c3 + ωSI − a3τ > 0. Hence

3(c1 + ωSI − a1τ)(c2 + ωSI − a2τ) > 9γ(c3 + ωSI − a3τ) > 2γ(c3 + ωSI − a3τ),

that is (29) implies (28).
�
Thus we have proved the following Theorem.

Theorem 2 The disease-free steady state, given by (12), is asymptotically stable if and only
if (29) is satisfied, that is when

ωSI > τ

(
q(N − 1)

αSS

ρSS
+N

αSI

γ

)
− γ − αSI

holds.
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It is important to note that the border line of the stability, given in this Theorem, is the
same as the tangent line of the D-curve at the point D(0) given in (23). Hence along this
line transcritical bifurcation occurs, i.e. In the left hand side of this line the trivial steady
state is stable and there is no endemic steady state (in fact, this steady state has negative
coordinates), while in the right hand side of this line the trivial steady state is unstable and
there is (at least one) endemic steady state.

3.2 Hopf bifurcation

In this Subsection our aim is to investigate the Hopf-bifurcation curve in the (τ, ωSI) pa-
rameter plane. A (τ, ωSI) parameter pair is said to be on this curve, if there exists a steady
state at which the Jacobian (25) has a pair of pure imaginary eigenvalues. We note that
this is only a necessary condition of the Hopf-bifurcation, however, the calculation of the
Liapunov-number after center manifold reduction would be too complicated analytically,
hence instead we will simply solve the differential equations numerically to decide whether
the Hopf-bifurcation is subcritical or supercritical.

In order to give a condition for the existence of pure imaginary eigenvalues let us introduce
the characteristic polynomial of (25) in the form

λ4 − b3λ
3 + b2λ

2 − b1λ+ b0.

We note that b3 = TrJ , b0 = det J and b1, b2 can be given as the sum of some subdeterminants
of J , the concrete form of which is not important at this moment. In [2] a general formula is
given for an n×n matrix to have purely imaginary eigenvalues. In the case of 4×4 matrices
the necessary and sufficient condition for the existence of pure imaginary eigenvalues is

b0b
2
3 = b1(b2b3 − b1), and signb1 = signb3, (30)

see [7]. Thus the Hopf-bifurcation set can be defined as

H = {(τ, ωSI) ∈ R2 : ∃x ∈ R, such that (14), (30) hold }.

This set can also be given as a curve in the (τ, ωSI) parameter plane, however, equation (30)
is not linear in the parameters τ and ωSI , hence system (14), (30) cannot be easily solved
for τ and ωSI . Nevertheless, we want to express H as a curve parametrised by x in the
(τ, ωSI) parameter plane. We have seen in the previous Section that once the x coordinate
of the steady state is given, then the other coordinates are determined by (9). Moreover,
according to the Tangential property (Lemma 1), if the x coordinate of the steady state is
given, then the parameter pair (τ, ωSI) lies on the tangent line of the D-curve drawn at the
point D(x). Therefore we will determine the points of H in the following way. For a given
x we introduce a distance parameter d along the tangent line of the D-curve at D(x), the
equation of which is (14). From this equation we determine the τ and ωSI value along the
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tangent, which determines a point being in distance d from the tangent point D(x). The
value of y, z and u are given by (9). Hence in the Jacobian J everything is determined by x
and d. Hence for a given x the coefficients bi of the characteristic polynomial are functions
of d. Thus in order to find the Hopf bifurcation points along the tangent line, we have to
solve the first equation in (30) for d. Our numerical experiments show that there are two
x values: x1 and x2, such that for x ∈ (x1, x2) there two values of d, denoted by dH1(x)
and dH2(x), that are solutions of the first equation in (30). If x is outside this interval,
then the first equation in (30) does not have a solution for d. The dH1(x) and dH2(x) values
determine the value of τ and ωSI along the tangent, denoted by τH1(x), τH2(x) and ωH1

SI (x),
ωH2
SI (x). Hence for a given value of x ∈ (x1, x2) we can determine two points of the set H:

(τH1(x), ωH1
SI (x)) and (τH2(x), ωH2

SI (x)). Thus the set H can be given as a union of two curves
that are parametrised by x ∈ (x1, x2). In Figure 5 the set H is shown for different values
αSS. We can see that as the value of αSS decreases the interval (x1, x2) shrinks and below a
critical value of αSS it disappears, hence then H is the empty set.

Solving the ODE system (5)-(8) numerically one can see that if the parameter pair
(τ, ωSI) is inside the Hopf bifurcation curve then there is a stable limit cycle, see Figure
8D. If the parameter pair (τ, ωSI) is outside the Hopf bifurcation curve then there is no
limit cycle. Thus along the Hopf bifurcation curve supercritical Hopf bifurcation occurs at
the endemic steady state. We note that at the disease-free steady state there is no Hopf
bifurcation, namely according to Proposition 3 the second condition of the Routh-Hurwitz
criterion cannot be violated and it is known that the condition of the Hopf bifurcation is
equivalent to the n− 1-th Routh-Hurwitz condition [2, 10].

4 Discussion

We investigated the propagation of an SIS type epidemic on a network where edges of
different type (i.e. SI, II and SS) can be activated or deleted according to a simple rule.
This and similar phenomena can be modeled either via direct individual-based stochastic
simulations or some type of ODE-based model that aims to approximate the evolution of
average behaviour seen in simulations. The question of the agreement between the two
different approaches is important and, for the model proposed here, we studied it in a previous
paper [14]. Here we only illustrate the good agreement for the transcritical bifurcation,
where the expected number of infected nodes is plotted as a function of τ , see Figure 6. The
figure shows that the transcritical bifurcation, from both simulation and the ODE model, is
observed at approximately τ = 0.17, where the disease-free steady state looses its stability
and an endemic steady state arises. In this paper our aim was to investigate the bifurcations
of the ODE model in detail, and in the case when the II links cannot be neither deleted nor
created, we proved that the system can have at most three steady states one of them being
the trivial, disease-free steady state. Three different kinds of bifurcation may occur. First, we
have shown that the transcritical bifurcation of the trivial steady state leads to an endemic
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(non-trivial) steady state. We have also shown that saddle-node bifurcation takes place for
a certain combination of parameter values, and the parametric representation method was
used to give explicit analytic formulas yielding the saddle-node bifurcation curve in the plane
of two important parameters, namely τ , the infection rate and ωSI the rate of deletion of
infecting, SI edges. Using this bifurcation curve, the exact number of steady states were
determined in Theorem 1. Finally, we have derived formulas for the Hopf bifurcation curve
in the above mentioned (τ, ωSI) parameter plane, and have determined a parameter region
where a stable periodic orbit exists. The full bifurcation picture is shown in Figure 7, and
the phase portraits corresponding to the four regions in the bifurcation diagram are shown
in Figure 8. Provided that the agreement between simulation and ODE models hold, the
ODE-model provides a fast and reliable method that can quickly shed light on possible model
behaviours. This is especially important when dealing with models with a large number of
parameters where simulations alone are time consuming and it is difficult to explore possible
model outcomes fully.
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Figure 1: The D-curve and its tangents at the endpoints forN = 100, n = 5, αSI = 0.3, αSS =
0.1, αII = 0, ωSS = 0.3, ωII = 0, γ = 1. The blue endpoint belongs to x = 0 and the red one
belongs to x = N .
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Figure 3: The D-curve and its tangent at the endpoint belonging to x = 0 divide the
parameter plane into three domains according to the number of tangents. The numbers in
the regions denote the number of steady states of system (5)-(8). The value of the parameters
are N = 100, n = 5, αSI = 0.05, αSS = 0.01, αII = 0, ωSS = 0.2, ωII = 0, γ = 1.
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the endpoint belonging to x = 0 divide the parameter plane into three domains according
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are N = 100, n = 5, αSI = 0.007, αII = 0, ωSS = 0.007, ωII = 0, γ = 1. The blue curves
correspond to (τH1(x), ωH1

SI (x)), the green ones correspond to (τH2(x), ωH2
SI (x)). The small

curves belong to αSS = 0.007, 0.0065, 0.006, 0.0059.

18



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

τ

[I]
stac

Figure 6: The comparison of simulation results (circles) and the steady state value of I
obtained from the ODE (continuous line) for different values of τ . The values of the other
parameters are N = 100, n = 3, αSI = αSS = αII = 0.04, ωSI = ωSS = ωII = 0.5, γ = 1.

0 0.2 0.4 0.6 0.8 1
0

5

10

15 Transcritical
Hopf

τ

ω
SI

0.024 0.025
0

0.001

0.002
Trans−  
critical

Saddle−
node   

A

A

C

B

B

D
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Figure 8: The (I, SI) projection of the phase portraits belonging to (τ, ωSI) parameter pairs
in the four different regions of the bifurcation diagram shown in Figure 7. The values of the
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0, γ = 1.
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