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Abstract—ISP and commercial networks are complex and thus
difficult to characterise and manage. Network operators rely on
a continuous flow of event log messages to identify and handle
service outages. However, there is little published information
about such events and how they are typically exploited. In this
paper, we describe in as much detail as possible the event logs
and network topology of a major commercial network. Through
analysing the network topology, textual information of events and
time of events, we highlight opportunities and challenges brought
by such data. In particular, we suggest that the development
of methods for inferring functional connectivity could unlock
more of the informational value of event log messages and assist
network management operators.

I. INTRODUCTION

Today’s commercial and ISP networks are large, complex,
heterogeneous and fast-evolving. They usually contain a large
amount of servers placed in data centres that are made of
commodity, off-the-shelf network equipment to interconnect
them and make them accessible to the world. They span a large
number of geographical regions (commonly across continents)
and provide end-users with access to network and content
services and applications. Middleboxes, which implement a
diverse set of in-network functionality, are also crucial for
the provision of efficient and secure services [1]. Ensuring
continuous service availability for such networks is extremely
challenging [2]. Despite continuous innovation in the network
data and control planes, innovation in the management plane
has been slower [3].

Network operators rely on the continuous collection of
event data from all network devices (including servers and
workstations at the edges of the network) that are deemed to
be important; this is most commonly a very large amount of
devices. Event data is then collected and analysed either in
real-time or off-line, by specialised software.

A key requirement of any such event analysis technology is
the ability to identify (or even predict) an outage as quickly as
possible before user experience gets disrupted. This, however,
is rendered extremely challenging by two features of the data.
First, network events are commonly produced at a very high
rate, up to 10% events per second [4] making the outage
identification process both time- and resource-intensive [5].
Second, the vast majority of these events are just noise and
only a few of them correlate to ‘actionable events’.
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A lot of research has been done on algorithms performing
Root Cause Analysis (RCA) [6]; i.e. identifying network
events that escalate to actual network and service outages.
Steinder et al. identify three main approaches to extracting
the causal sources of events. Rule-based analysis is commonly
used [7]. In this approach, the network operator predefines
a set of rules to identify the causal sources of events and
exclude uninteresting devices. Rules need to be updated when
there are changes in the network. Knowledge from the network
topology and temporal correlations between events is exploited
to make those approaches more accurate and flexible [8].
In model traversing techniques one explores progressively
the neighbours of each entity emitting an event to identify
its source [9] using a formal representation of the network
structure. Finally, graph-theoretic approaches have also been
proposed. They require a priori knowledge of how failure of
one device affects other devices in order to build a causality
or dependency graph. Those graphs are then used to return a
number of fault hypotheses that best explain the observations.
This has been shown to be an NP-hard problem and several
heuristics have been developed to reduce the complexity of the
problem [10], [11], [12]. Most of those approaches require a
priori knowledge about the network and are therefore static.
They are ill-suited to networks with multiple layers of logical
connectivity and could be greatly improved by the use of tem-
poral correlation between events [13]. They scale poorly with
the number of events to be processed, therefore approaches to
eliminate insignificant events have been proposed, by manually
setting filters that exclude specific devices or types of events
from processing by an RCA algorithm. Such static approaches
are problematic in dynamic and fast-evolving networks like
the ones of modern service and content providers. Recently,
dynamic approaches for filtering network devices based on
the notion of graph vertex entropy [14], [4] and supervised
machine learning [15] have been proposed.

Despite this literature on efficient network event processing,
there is actually little published information on the character-
istics of network events from both in-network and end-host
devices in large, modern, commercial networks. Heterogeneity
in the functionality, and therefore the type of network events
produced, makes RCA even more challenging. In this paper,
we present a study of network events collected from a large
commercial network over a period of five months. Through
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attempting to reconcile information gathered from both event-
related data and the underlying network topology, we aim to
complement the community’s knowledge about this type of
data as well as illustrate some of the challenges faced by
network management operators with the view to stimulate
new research in that area. In particular, we will argue that
network management operators may benefit from methods
that can use event logs to infer functional connectivity, i.e.,
a logical topology involved in the provision of a particular
service, irrespective of the underlying physical topology. For
example, a cluster of load balancers, application and database
servers would comprise a meshed functional connectivity,
where all nodes are logically connected to one another. We
use this dataset to identify requirements and challenges for
such methods.

II. DATASET DESCRIPTION

This paper is based on a dataset of network events and
the underlying network topology, from a large commercial
network!. The network is comprised of a core of meshed
backbone routers and a distribution layer of switches. It
is primarily used to support the commercial operations of
a Fortune 500 technology company, including accounting,
human resources, research and development, communications
and telephony and sales support activities. There are points
of access to this network at almost every major city in the
United States and multiple cities in most European and Asian
countries. Network events span a duration of five months
(2/5/2015 to 25/11/2015). The network topology was recorded
at the end of that period.

Event log messages are collected from various sources in
the network (end-hosts, switches, routers and middleboxes)
and refer to functionality at various network layers; e.g.
application-layer notifications, such as runtime exceptions, as
well as network and link layer, such as routing protocol errors
and links going up or down. Emitted events that are recognised
as pertaining to the same network issue, warning or notification
are then grouped into a so-called network alert. An alert is
a Moogsoft construct’ defined as “a de-duplicated event or

IThe dataset is currently not publicly available due to its commercially
sensitive nature.
Zhttps://docs.moogsoft.com/display/060000/Glossary
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an instance of new data”. Our dataset contains alerts, which
consist of a human-readable type and description, the number
of de-duplicated events contained in the alert and timestamps
for when the first and last events for the alert were collected.
An alert is the user-presentable notion of a potential problem
and is therefore handled as a ticket that needs to be ‘actioned’
by an operator. Events can be extracted from alerts although
in this dataset not all event times will be known.

III. NETWORK TOPOLOGY

Network management providers may not always be in a po-
sition to maintain an accurate view of the network topology of
their clients. Indeed, although a client’s devices and software
(along with in-house management systems) are configured
to emit events to the provider’s server(s), changes in the
underlying topology are not necessarily visible to the net-
work management provider. This is typically because accurate
knowledge of the network topology is not necessary to run the
operations’ monitoring software. Additionally, it may also be
challenging to acquire the network topology, especially when
changes in it are frequent. Finally, providing access to such
information presents significant security risks. However, we
will argue in Section VI that it could be automatically inferred
from the events emitted by network devices.

The topology we were provided with was obtained by taking
a dump of the customer’s operations database. This database
is fed by the change management and connectivity discovery
systems. It is automatically updated when network links are
provisioned/de-provisioned or equipment is configured. The
network consists of 73,677 devices and 117,846 physical
connections among these devices. The underlying graph is
not fully connected; its largest connected component (referred
to as giant component thereafter) consists of 30,229 devices,
which is less than half of the total number of devices.
Figure 1 shows the degree distribution of the giant component
(left panel) as well as the size distribution of the connected
components (right panel). In the latter, we observe a very large
number of very small components (~ 15,000 components of
size less than 10 devices each). This is a striking observation
which, at first sight, could suggest a seriously flawed topology
collection and recording process. However, in Section IV-A,
we will show how an analysis of the recorded events enables
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the formulation of hypotheses for such a large number of
disconnected components. Importantly, an analysis of the
giant component alone reveals key network metrics that are
consistent with those typically found in large communication
networks [16], namely: scale free-like nature of its degree dis-
tribution (under the “super weak” definition of scale-freeness
proposed by Clauset et al. [17]), disassortativity (r = —0.22)
and almost-zero clustering coefficient (¢ = 0.00011).

We conclude this Section with the following two observa-
tions: (a) a large fraction of nodes (~ 67%) in the recorded
topology do not have any events associated with them; (b)
a large number of events are associated with nodes that are
not listed in the recorded topology. With respect to the former
observation, we speculate that these are ‘uninteresting’ devices
(probably workstations at the edges of the network), which
are not configured to communicate with the event processing
server but have been recorded in the topology nevertheless. On
the other hand, the latter observation highlights the incomplete
nature of the topology record, with a part of the network,
including a large number of edge devices, not recorded despite
its devices being configured to emit events to the server. How-
ever, this could also be because nodes that emitted events were
no longer in the network (or their identifier changed) when the
network topology was recorded. Note that events from these
devices are fully usable when it comes to identifying faults
with network components or applications, highlighting the fact
that partial only knowledge of the topology does not hinder the
operation of the network management system. In Section VI
we will suggest that such events may provide the substrate
to infer missing nodes as well as uncover information about
changes in the network topology over time.

IV. NETWORK EVENTS AND ALERTS

Among the 53,604 network devices that emit events, 23,919
are part of the recorded network topology (~ 32% of the
total number of nodes in the recorded network topology) and
13,025 are part of the giant component (~ 42% of the total
number of nodes in the giant component). As mentioned in
the previous section (and indicated by the percentages above),
a large number of nodes in the recorded topology do not
emit any events. We considered 21,223,756 events grouped
in 473,580 alerts. An analysis of the distribution of number of

emitted events per node, shown in Figure 2, reveals that most
nodes only emit a few events (~2 events per day). However,
there is heterogeneity in behaviour and a few devices in the
network emit a large number of events. The average number
of emitted events per node indicates that in this dataset there
is sparsity of information at node level. This sparsity is not
particularly consistent with published numbers but is specific
to the particular network presented here. More importantly, it
has computational and mathematical implications which we
will discuss in Sections V and VI

A. Event Types

Every emitted event is accompanied by a type field which
usually contains a single word. This field is mapped to specific
types of events at deployment time. Such mapping can be
manual, e.g. for events received from third-party event man-
agement/monitoring systems, or automatic, i.e., involving text
processing to extract meaningful types from raw log messages.
Out of a total of 41 distinct types®, 17 are found to account
for over 98% of all events in the record. These are shown in
Figure 3(left), with type “other” aggregating the remaining 24.
For each type, we plot the number of emitted events, recorded
alerts and the number of network devices involved in those.

The types of emitted events appear to fall under two
categories; those that refer to in-network functionality (‘LAN-
Switch’, ‘Router’) and those that refer to end-host/server
functionality (all other types). The former account for almost
half of all events (41%) whilst the three most prevalent types
in the latter category (‘JVM’, ‘NT’ and ‘Linux’) account for
36% of the events.

Devices emitting ‘LANSwitch’ or ‘Router’ events account
for only 6.6% of the total number of devices. This is consistent
with the assumption that those devices are in-network devices
(e.g., routers and switches) as in such a network we can expect
the number of devices at the edges of the network to be
significantly larger than that of in-network devices. Using the
provided network topology, and subject to the caveat of nodes
emitting events not being recorded, we found that there is very
little overlap between sets of nodes involved in the emission
of events of a particular type. Specifically, only 0.5% of all
devices emit events of more than one type. In the main, devices
seem to be emitting events that pertain to their functionality
in the network. For example, we identified that events of type
JVM are emitted by web back-end systems when failing to
connect to other back-end servers (e.g. database servers). It is
possible, of course, that the reason why devices only emit
events of a single type can be attributed to choices made
by the network management operator. In addition to having
a potential impact on the event rate (i.e., this deployment
may be less verbose than others), this consideration also has
implications for the notion of functional connectivity as we
will discuss in Section VI.

Devices within the giant component emit events of 13 (out
of all 41) types, namely: ‘Linux’ (8074) - ‘VMWare’ (2833)

3Roughly 0.5% of the emitted events have an unspecified type field and
were therefore excluded from further analysis.
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(Left) Number of devices (red), recorded alerts (blue) and emitted events (orange) for each event type. (Right) Average degree and betweenness

centrality (and their upper standard deviation) of nodes of the giant component who emitted events, organised by event type. For comparison purposes, the
dashed lines show the mean degree and betweenness centrality (a measure of centrality in a graph based on the number of shortest paths passing through a
vertex) for the full giant component (i.e., including devices that did not emit any event). Lower standard deviations are not shown due to log-scale plotting.

- ‘NT” (862) - “VirtualHost” (372) - ‘JVM’ (289) - ‘NetApp’
(228) - “‘UCSM’ (108) - ‘Solaris’ (15) - ‘InternalHost’ (12) -
‘LinuxApp’ (11) - ‘HPUX’ (2) - ‘Solaris_x86’ (2) - ‘Router’
(1). A striking observation is that none of these types pertain
to in-network functionality (with the exception of the single
event of type ‘Router’). This observation is counter-intuitive
at first. However, juxtaposed with our previous observation
in Section III that the recorded topology consisted of a
large number of small disconnected components, it begs the
question of whether some of the devices in the disconnected
components may be duplicate entries of devices that are in
the giant component. This is indeed plausible given that (a)
routers (and their connectivity with other network devices) are
typically known by, and recorded with, multiple IP addresses
(and respective canonical names) that correspond to interfaces
to different IP subnets they interconnect; (b) network switches
are also known by, and recorded with, multiple IP addresses
for administrative and monitoring purposes; and (c) it is
common to use different IP addresses for network management
functionality, i.e., for running SNMP and communicating with
custom network management software. In Section VI, we will
appeal to the network science notion of multiplex networks and
argue that a suitable functional connectivity inference method
should make it possible to match these devices.

Within the giant component itself, we find that devices
that emit alerts show great variation in their degree and
betweenness centrality (see right panel of Figure 3), suggesting
that devices associated with a type are not randomly distributed
within the network. For instance, devices that emit ‘VMWare’-
type events tend to be centrally located and more connected
than devices emitting events of other types. This yet again
brings to fore the notion of functional connectivity.

B. Alert Descriptions

The description field of each event contains textual informa-
tion produced by the source of the event (e.g., a specific Java
exception that is pushed to the management system through
the stderr stream). The vocabulary in the descriptions is very
context-specific, containing specialised words and technical

jargon (e.g. “host or interface down”, “Database Instance
Session exceeding temp threshold”). We used a custom it-
erative filtering approach to produce a minimal classification
of the descriptions. At each iteration, we visually inspected a
randomly selected set of unclassified alerts. From their descrip-
tion, we constructed a meaningful pattern of words (within the
specific context) as basis for a new class. We automatically
searched for all remaining alerts whose description matched
the pattern and assigned them to the newly created class.
The process was continued until the chosen pattern could not
classify more than 1% of the recorded alerts. This iterative
process led us to identify 14 classes that account for 94% of
the recorded alerts (or 97% of the emitted events). Ninety six
percent of all devices are involved in at least one of these
classes, which are as follows:

1) Interface:= [name] down (e.g. interface:=ethl down)
2) Host down: [canonical name]
3) Threshold Notification (e.g. [cpul0]=< 90.00)
4) Application down: [name] (e.g. application down: NTP)
5) Host CPU usage (e.g. Virtual Machine/Host CPU usage)
6) Server Inaccessible (along with chassis and blade infor-
mation)
7) Auto cleared (e.g. AutoCleared due to inactivity timeout:
null)
8) Memory usage problem
9) Database problem
10) Oracle related problem
11) Host not connecting to VC (e.g. ESX host [name] may
not be connecting to VC [name])
Host unreachable (e.g. [name] Agent is unable to com-
municate with the OMS (agent is unreachable))
User logging out (e.g. User [name] logged out [time])
Device rebooting (e.g. [name] rebooted [time])

12)

13)
14)

As shown by the left panel of Figure 4, classes ‘Interface
Down’ and ‘Host Down’ account for 24% of all recorded alerts
(50% of all emitted events). Furthermore, these two classes,
along with classes ‘Threshold Notification’, ‘Oracle Problem’
and ‘Application Down’, which are notifications or describe
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Fig. 4. Number of devices (red), alerts (blue) and events (orange) for each class of alert (left) and for each of the 15 most populated type-class pairings

(right).

application layer events, account for 38% of the recorded
alerts (87% of the emitted events). From a number of devices
perspective, the ‘Host Down’ class is the most common, with
59% of all devices emitting events of this type. On the other
hand, there are only 228 devices that emit events of class
‘Interface Down’ class.

An analysis of all type-class pairings revealed that just 15
pairings (right panel of Figure 4) account for 53% of the total
number of recorded alerts (80% of the total number of events).
Strikingly, one of those (LANSwitch and Interface Down)
account for 10% of all alerts (33% of all events) despite only
involving 33 devices, none of which are located in the giant
component (we refer the reader to Section IV-A for potential
reasons why devices that emit events relevant to in-network
functionality are not part of the giant component). Events of
this specific pair indicate links that go down, as identified by
neighbouring switches, and are unsurprisingly very common,
given the large size of the network, including end-devices.

V. ANALYSIS OF TEMPORAL CORRELATIONS

Since the presence of temporal correlations between emitted
event times can provide insights into possible functional
relationships between the devices that emit them [6], we used
standard correlation techniques (see [18], for example) to gain
further insights into the dataset. Namely, we assessed the
presence of a functional relationship between two devices in
terms of whether the Pearson’s correlation coefficient between
the time series of their respective recorded alert timestamps
significantly differed from that expected under the null hy-
pothesis that they were independent. Formally, this process
involves calculating the Pearson’s correlation coefficient and
applying the Fisher’s z-transformation. A pair of time series
of recorded alerts was considered to be significantly correlated
if their z value was greater than one standard deviation (95%
confidence level) [19].

In this dataset only recorded alerts were provided with
timestamps and therefore our analysis relied on alerts rather
than events. Further, since most network devices are linked to a
single type of recorded alerts, we associated each device to its
most frequent alert type. Note that due to the very low node-

level alert rate reported earlier, binning was needed before
analysis. An arbitrary bin size of one hour was used.

Since little could be expected from a pairwise analysis due
to the extreme sparsity of the data, we only report summary
statistics based on a group-level analysis. In what follows, we
will refer to as within-type pair a pair of devices that have the
same most frequent type of recorded alerts, and between-type
pair, a pair of devices whose most frequent types of recorded
alerts are distinct. For each of the alert types, we calculated
the proportion of within-type pairs who showed significant
correlations in the time series of their respective recorded alert
timestamps and compared it to the proportions of between-
type pairs that showed significant correlations. Statistical
differences between within-pair proportion and between-pair
proportions were assessed using a simple boxplot-based outlier
detection method [20].
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Fig. 5. Proportion of pairs of devices whose alert types are identical and
whose alert times are significantly correlated, for each of the 15 most common
types. An asterisk denotes the fact that this proportion is significantly higher
than expected when considering all possible pairs of devices, irrespective of
type.

This analysis revealed that for 18 of the 41 types, within-
type pairs, i.e., pairs of devices with recorded alerts of the
same type, were more likely to have correlated alert times
than between-type pairs, i.e., pairs of devices with recorded
alerts of a different type. On the one hand, this increased



likelihood is not particularly surprising (especially given that
in this dataset devices tend to only emit events of a single type)
and provides support to the notion that temporal correlations
could enable the identification of devices belonging to the
same functional topology. On the other hand, the analysis
also strongly suggests that these correlations are not trivial.
First, not all event types feature significant correlations in the
alert times of their devices. For example, types ‘Router’ and
‘LANSwitch’ (which account for 41% of all events) do not
show significant correlations. Further, the 18 types that do
show significant correlations only account for 29% of the alerts
(25% of the events). Second, as shown by Figure 5, in those
types that show significant correlations (see asterisk), less than
20% of the pairs show significant correlations. This therefore
suggests that correlations are not trivial but may be localised
spatially and temporally (see Section VI).

VI. DISCUSSION

Our analysis of a major commercial network has elicited a
number of insights which we believe highlight the need for
methods able to infer functional topologies within a network
deployment based on the temporal characteristics of events
emitted by its network devices.

Although the total number of events to be processed by
a network management server can be really large, device-
level event rates can be very low, which makes device-based
analysis very challenging. The reasons for such sparsity are
multiple and include whether the device exists at all times
during the record, whether or not it is monitored for specific
types of events, and indeed whether it is affected by such
types of event. In this deployment, network devices tended to
emit events of a single type. Although this increased sparsity,
it also helped with identifying the role of the devices in
the network (e.g., application or database servers, routers or
switches) which can be crucial to building a reliable view of
the underlying physical topology.

Getting access to reliable information about the physical
topology is not straightforward. Yet, such knowledge would
be beneficial for a network management provider that would
otherwise have to rely solely on incoming events to identify
service outages in an unknown (or partially known) network
topology. The presence of disconnected components presents a
challenge for a traditional graph-based analysis. An alternative
approach is to think of the network as a multiplex network, i.e.,
a network where the same set of nodes are linked by different
types of interaction. In this approach, each disconnected com-
ponent may provide a graph-representation of a given layer
of interaction. What is needed then is a means to match the
nodes across layers of interaction.

Our analysis of time series of recorded alerts in Section V
hints at a possible approach to elicit layers of interaction,
by showing that correlations exist for alerts of the same
type, recorded for different network devices. Although a
much more robust framework is needed (e.g., to deal with
sparsity and time-varying nature of the signals), the exis-
tence of correlations opens up the possibility of inferring

common functionality of different devices in the network,
i.e., functional topologies. Such functional topologies may
be application specific (e.g. a web application development
that consists of application and database servers), refer to in-
network functionality (e.g. an OSPF area), or cut across layers
(e.g. when switches report failed links to a database server
while application servers try to connect to the same database
server). This would provide an extremely powerful framework
for network management providers to identify (or even predict)
service outages, since functional topologies can be thought of
as defining spheres of influence for network devices whereby
the operational status or (mis)behaviour of one or more devices
would influence the operational status or behaviour of other
devices within its sphere of influence.
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