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Abstract 

 

This paper presents a new global patent map that represents all technological categories, 

and a method to locate patent data of individual organizations and technological fields on 

the global map. This overlay map technique can support competitive intelligence and 

policy decision-making. The global patent map is based on similarities in citing-to-cited 

relationships between categories of the International Patent Classification (IPC) of 

European Patent Office (EPO) patents from 2000 to 2006. This patent dataset, extracted 

from the PatStat database, includes 760,000 patent records in more than 400 IPC 

categories. The paper overlays nanotechnology-related patenting activities of two 

companies and two different nanotechnology subfields on the global patent map. The 

exercise shows the potential of patent overlay maps to visualize technological areas and 

potentially support decision-making. Furthermore, this study shows that IPC categories 

that are similar to one another based on citing-to-cited patterns (and thus are close in the 

global patent map) are not necessarily in the same hierarchical IPC branch, thus revealing 

new relationships between technologies that are classified as pertaining to different (and 

sometimes distant) subject areas in the IPC scheme.  
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Introduction 

 

The visualization of knowledge or technological landscapes has been a prominent part of 

publication and patent analyses since their origins (Hinze, Reiss, & Schmoch, 1997; 

Small, 1973). However, only in the last decades, improvements in computational power 

and algorithms have allowed the creation of large maps covering a full database, the so-

called global maps of science (see overviews by Klavans & Boyack, 2009; Rafols, Porter, 

& Leydesdorff, 2010).
i
 These science maps or scientograms are the visualization of the 

relations among areas of science using network analysis algorithms. 

Visualization procedures for science maps have generally been used to explore 

and visually identify scientific frontiers, grasp the extent and evolution of scientific 

domains, and analyze the frontiers of scientific research change (Van den Besselaar & 

Leydesdorff, 1996). Science mapping efforts have been also used to inspire cross-

disciplinary discussion to find ways to communicate scientific progress (see, for example, 

Mapping Science at http://www.scimaps.org/). Although science maps cannot replace 

other methodological approaches to data analysis, “visual thinking” can help to interpret 

and find meaning in complex data by transforming abstract and intangible datasets into 

something visible and concrete (Chen, 2003). Diverse approaches can be used to create 

visualizations. 

The purpose of this paper is twofold: first, to present the results of a global patent 

map and, second, to introduce the ‘overlay map’ technique to locate the relative 

technological position of an organization’s patent activity to support competitive 

intelligence and policy decision-making. This research draws on the concept of 
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technological distance to interpret linkages among technologies and elaborate a method 

for a meaningful visualization of technological landscapes. 

This visualization approach is a logical extension of the experience with science 

overlay maps. It draws closely on our previous work on science mapping (Rafols et al., 

2010) and opens up new avenues for understanding patent landscapes, which as we will 

see markedly differ from scientific landscapes. The need for development of tools to 

benchmark and capture temporal change of organizational innovation activities, or 

patterns of technological change, also motivates this work. More generally, this new 

approach also accompanies the broader change from hierarchical, structured knowledge 

in science and technology (i.e. with subdisciplines and specialties that match 

departmental structures) to a web of “ways of knowing” resulting from changing social 

contracts (Gibbons et al., 1994), increasing institutional hybridity (Etzkowitz & 

Leydesdorff, 2000), and dissonance between epistemic and social structures. 

To exemplify the kind of analytical support offered by this approach, this paper 

illustrates the application of patent overlay maps to benchmark the nanotechnology-

related patenting activities of two companies and to reveal the core structure of patenting 

activities in two different nanotechnology subfields. Nanotechnology is an umbrella term 

referring to a diverse set of emerging technologies that improve or enable materials, 

devices and systems using novel properties resulting from the engineering and assembly 

of matter at extremely small scales. At the nanoscale, scientific discoveries have unveiled 

novel properties that offer the potential for applications in a wide array of market 

segments such as energy, pharmaceuticals, and semiconductors. With a wide range of 

potential applications, nanotechnology is anticipated to have significant business and 
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economic impacts in future years. Our previous work illustrated how science overlay 

maps help to provide a better understanding of the characteristics and evolution of the 

nanotechnology field and its subfields (see, for example, Porter & Youtie, 2009; Rafols & 

Meyer, 2010). 

This paper is organized as follows. Section 2 reviews and discusses the concept of 

technological distance and the analysis of patent literature. Section 3 presents the 

methodological approach. Section 4 presents preliminary outputs based on the application 

of patent overlay maps to general patent datasets and the analysis of company patent 

portfolios and technological fields. Section 5 discusses the advantages and drawbacks of 

the method and elaborates on next steps and future of patent mapping. The paper also 

includes information to access supplementary material made available by the authors 

online as detailed in the Appendix. 

 

Technological distance and its operationalization 

 

Technological distance, or the extent to which a set of patents reflects different types of 

technologies, is a key characteristic in being able to visualize innovative opportunities 

(Breschi, Lissoni, & Malerba, 2003). Patent documents that reference other patents in 

similar technology areas have been suggested to offer incremental opportunities to 

advance an area whereas patent documents that refer across diverse categories may offer 

the potential for radical innovation (Olsson, 2004). Technological distance is often 

proxied by patent categories, with patents in a given patent category being considered 

more similar to one another than to those in other patent categories (Jaffe, 1986; 

Kauffman, Lobo, & Macready, 2000). For example, Franz (2009) uses patent citations 

between U.S. patent categories and assigns weights to a patent citing another patent in a 
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different category to reflect a larger technological distance. Hinze et al. (1997) look at co-

assignment of multiple IPC categories as a measure of the distance between 30 

technological fields. A challenge in relying on patent classifications is that, as technology 

changes, technology-oriented applications may draw from patents in different 

hierarchical categories, and subsequently lead to further diversity in patents that cite 

patents in these categories. 

This investigation draws on the concept of technological distance and proposes an 

alternative approach to relying on administrative patent categories, using patent mapping 

techniques to visualize technological landscapes. A patent map is a symbolic 

representation of technological fields that are associated with relevant themes. 

Technological fields are positioned in the map so that similar fields are situated nearby 

and dissimilar components are situated at a distance. The map is constructed from a 

similarity matrix based on citing-to-cited patents (i.e. a matrix that reflects similarities 

amongst IPC categories in how patent cite each other). The similarity measures are 

calculated from correlation functions among fields according to citations among patent 

categories. This multidimensional matrix is projected onto a two-dimensional space. 

Visual output provides for flexibility in interpreting the multidimensional relationships 

among the patent categories. In addition, this approach allows the user to “overlay” 

subsets of patent data–representing different types of technologies, institutions, or 

geographical regions–to understand the particular technological thrusts and areas of 

concentration of these actors (Rafols et al., 2010). 

Recently other scholars have pursued a similar patent record-level approach to 

create global maps of technology that characterizes the proximity and dependency of 
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technological areas  (see, for example, preliminary work in Boyack & Klavans (2008), 

and related approaches by Schoen et al. (2012), or Leydesdorff, Kushnir & Rafols (In 

Press).)
ii

 Those efforts have also sought to use the maps to benchmark industrial 

corporations to inform corporate and policy decision-making. The differences with the 

approach presented in this paper are primarily related to the definition of categories 

(which yields different number and composition of technology groups) and the 

relationships among them (generally based on citation-based co-occurrence of IPC 

categories, which yields maps with different structures). The Boyack & Klavans (2008) 

work is based on 3-digit level IPC categories, while Leydesdorff, Kushnir & Rafols (In 

Press) include 3- and 4-digit analyses based on USPTO data rather than EPO. These IPC-

based approaches work with the existing classification system, which is a product of 

patent office history, regardless of the intensive quantity of patents in certain categories. 

For example, categories such as A61 (“Medical or Veterinary Science”) has a very large 

quantity of patents, while categories such as A42B (“Hats”) have very few. This uneven 

distribution of patents limits visualization ability if using the native classification system 

as is. The contribution of this work is the development of a patent mapping approach 

based on IPC categories that corrects this uneven patent distribution as explained below. 

Schoen et al. (2012) patent map is based in technology-based categorization that 

combines different IPC branches. As it was the case in science maps (Klavans & Boyack, 

2009; Rafols & Leydesdorff, 2009), it is very important to compare the results of diverse 

global patent maps using different classification and visualization algorithms to test the 

robustness of patterns observed. Without significant consensus on the shape and relative 
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position of categories, global maps are meaningless as stable landscapes needed to 

compare organizational or technological subsets. 

The approach used in this paper draws on learning from the authors’ prior work 

on science mapping, particularly the trade-off between sufficient detail and not too much 

detail to be easily visualized by the user. The challenges faced when developing this kind 

of patent map include gathering patent data in appropriate quantity to create meaningful 

maps and the choice of an equivalent to citation patterns (because citations may not be 

functionally equivalent to journal citations) and an equivalent to Web of Science 

Categories (previously known as ISI Subject Categories,) for which IPC categories may 

not be suitable analogs. Using IPC categories from patent documents also involves 

specific challenges, such as deciding on the appropriate level of analysis to obtain 

satisfactory results. This latter point is related to the IPC classification scheme that offers 

Sections, Classes, Sub-Classes and Groups from which to choose. While the Sub-Class 

(i.e., four-digit IPC) level seems appropriate because of the degree of detail in subject 

matter definitions, it suffers a “population” problem related with the significant variation 

of the number of patents classified in each IPC Sub-Class, which is likely to lead to 

underrepresented technologies in maps. Some Sub-Classes have several hundred 

thousand patents, whereas others have only a few hundred. Thus, a more appropriate 

grouping of IPC categories is needed to more evenly represent the number of patents 

across the patent system. 

 

Implementation 

 

This global patent map is based on citing-to-cited relationships among IPCs of European 

Patent Office (EPO) patents from 2000-2006. This period was chosen because of its 
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stability with respect to IPC 7 categories. IPC 7, at the time we conducted this study, 

represented the longest period of stable classification, as IPC 8 was just rolling out at the 

time of this research and could potentially add and/or modify categories. Future work 

would involve comparing patent overlay maps based on IPC 7 and IPC 8, but first, the 

project team needed to make sure it could produce mapping process with a stable set of 

categories. The dataset containing IPCs relationships, extracted from the Fall, 2010, 

PatStat database version, represents more than 760,000 patent records in more than 400 

IPC categories. This data range begins with patent EP0968708 (which was published in 

January 2000) and ends with patent EP1737233 (published in December 2006.) An 

analysis with this kind of coverage benefits from a relative stability of the patent 

classification system version 7 maintained during the 2000-to-2006 time period. 

In this approach, the process of data gathering and pre-processing involves, first, 

going through each patent record to collect all the instances of IPC categories in the 

dataset and, second, solving the aforementioned “population” problem. The proposed 

solution for patent categories with relatively few patents is to fold the IPC category up 

into the next highest level of aggregation to create relatively similar sized categories. This 

solution comprises three rules: 1) for IPC categories with large population, use the 

smallest Sub Group level; 2) for small population IPC categories, aggregate up to General 

Group level, Sub-Class or Class; and, 3) establish a floor cut-off and drop very small 

aggregated populations. As a result, IPC categories with instance counts greater than 

1,000 in the dataset were kept in their original state. Those categories with instance 

counts less than 1,000 were folded up to the next highest level until the count exceeded 

1,000 or the Class level was reached. During the folding, any other IPC categories with 
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counts exceeding 1,000 in the same branch were left out of the folding count. If at the 

Class level (i.e. 3-digit), the population was less than 1,000, the IPC code was dropped 

for being too small to map. Table 1 illustrates this approach for the 4-digit IPC class 

A61K. 

 

Table 1. Data pre-processing to group IPC categories, selected examples
1
 

Original IPC in dataset Original Record Count 

A61B 25,808 

Authors’ process splits this out into: 

A61B 5/00 1,415 

A61B 17/00 1,493 

A61B 19/00 1,444 

and a reminder: 

A61B
2
 21,456 

Notes: 1. Each IPC with an instance count greater than 1,000 was kept in its original state.  

2. Each IPC with an instance count less than 1,000 was folded up to the next highest level until the count 

exceeded 1,000 or the class level was reached.  

 

 

This pre-processing yields IPC categories at the three digit, four digit, and seven 

digit levels, with levels that ensure broadly similar numbers (i.e. within two orders of 

magnitude) of patents across categories. Although we keep referring to these categories 

as ‘IPC categories’, they are not the standard IPC categories since they have a mixed 

hierarchical composition. The smallest categories in the dataset have 1,000 patents, with 

this bottom threshold chosen to yield a sufficient count for statistical analyses. The 

largest category—A61K (defined as “Preparations for Medical, Dental, or Toilet 

Purposes”) but subtracting 16 seven-digit IPCs with more than 1,000 patents each—has 

more than 85,000 patents. The initial implementation actually involved testing several 

cut-off values (e.g. 700, 1,000 and 1,500 records) that yielded different numbers of IPC 

categories. The cut-off at 1,000 was deemed suitable for this analysis, as it seems to 



10 

 

provide a sensible compromise between accuracy of the fields, and readability in the 

map. This choice produces 466 IPC categories that are mapped to a thesaurus for data 

pre-processing. 

The next step involves extracting from Patstat the patents cited by the target 

records. The IPCs of those patents are mapped to the 466 IPC categories. The result of 

this data collection allows the creation of a table containing, in each row, sets of Patent 

Number, IPC Number, Cited Patent Number, and Cited IPC Number. This data table has 

been further processed and saved in an appropriate file format for the next step using the 

software Pajek. This software also helped to create the global map and individual overlay 

maps for examples of companies and technological fields. 

The final data processing steps involve generating a cosine similarity matrix 

among IPC categories, and then factor analysis of the IPC categories (following the 

method used in global science maps by Leydesdorff and Rafols (2009). A factor analysis 

of the citing-to-cited matrix among IPC categories is then used to consolidate the 466 

categories into 35 “macro patent categories.” We tested different factor solutions from 10 

to 40. The 35-factor solution appears to provide a sensible and convenient classification 

of the IPC categories. These 35 factors form the basis for color-coding the 466 categories 

that are represented in visualizations. The list of 35 factors is available in Supplementary 

File 1 (see details at the Appendix). The visualizations also require converting IPC codes 

to succinct text labels, which we did by shortening lengthy IPC definitions. Therefore, 

labels may not fully capture all the technologies within a category. These IPC category 

labels were then used as a basis for creating descriptors for each factor as shown in the 

maps (next section.) 
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The creation of patent overlay maps using a wide range of IPC-based categories 

requires consideration of the classification system of reference. This research draws on 

the IPC 7 classification system that, compared to previous versions, includes class codes 

such as B82B that are relevant to the nanotechnology domain. The IPC 7 system is also 

more stable than the more recent IPC 8, but still received some updates during the time-

period relevant to this study, including the addition of the B82B technology 

classification. Those updates do not affect the structure of the maps because the newly 

added classifications represent a small number of patents (i.e. below our cut-off value) 

and do not affect the map-based analyses because patent records in newly added 

classifications are generally assigned to other technology categories as well.
iii

 Future 

developments of these maps will require updating the thesaurus developed to match the 

466 categories of the global patent maps. 

 

 

Test and preliminary results 

 

The global patent map 

The full map of patents shows all 466 categories in a Kamada-Kawai layout (using Pajek) 

that represents technological distances and groups of technologies in each of the 35 

factors or technological areas (Figure 1). Label and color related settings were adjusted to 

produce a reasonably clear map and facilitate its examination. The map suggests three 

broad dimensions of patenting interrelationships based on the overall position of 

technological areas. The left side of the map represents bioscience patents. The lower 

right part of the map includes semiconductor, electronics, and information & 

communications technologies. The upper right portion of the map is primarily comprised 
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of automotive and metal-mechanic related technology groups. This structure is consistent 

with previous technological maps based on patents that used different algorithms for 

aggregating IPC categories (Boyack & Klavans, 2008; Leydesdorff et al., 2012; Schoen 

et al., 2012) 

 

Figure 1. Full patent map of 466 technology categories and 35 technological areas 

 
Note: each node color represents a technological area; lines represent relationships between technology 

categories (the darker the line the shorter the technological distance between categories;) labels for 

technological areas are placed close to the categories with largest number of patent applications in each 

area. Higher resolution figures can be found in supplementary file 2, as indicated in the Appendix. An 

interactive version of this map is also available via supplementary file 3. 
 

 

 

A closer look shows that the structure of the map reflects technological 

relationships across the hierarchical administrative boundaries of the subject matter 

specifications in the IPC scheme. While counts of IPC sections (i.e. the first letter of IPC 

codes, A, B, C, D, E, F, G, H) are commonly used as a measure of technological distance 

in patents, the 35 technological areas that are derived from cross-citations in our patent 
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map often span multiple sections. For instance, the Vehicles area includes six different 

sections, and the Heating and Cooling, Construction, and Metals areas include five 

different sections. Only Medical Devices, Food, Recording, Computing, and Radio 

Communication areas encompass a single section. 

 Another interesting feature of the global patent map is the high level of 

interconnectedness of most of the 35 technological areas. This can be observed not only 

in many connections among technology groups within each technological area, as shown 

by the densest areas of the map, but also across them. Some exceptions are areas such as 

Food, Drugs & Med Chem, Biologics, TV Imaging & Comm, Cosm & Med Chem, and 

Radio & Comm that form more uniform clusters of technology groups (i.e. they appear as 

clusters of nodes of the same color) (Figure 1). Another notable feature is the short 

distance among technologies in a handful of groups such as Drugs & Med Chem and 

Biologics, as shown by denser areas and darker lines in the left hand side of the maps. 

The sparse areas of the map are those associated with technological areas that comprise 

fewer technology categories include, for example, Electric Power, Lighting, and 

Recording. 

 

Patent overlay maps 

Based on the global patent map, patent overlay maps allow, for example, benchmarking 

of companies and specific technological fields. To illustrate and test the application of 

patent map overlays, two corporate datasets of nanotechnology patent applications have 

been created for Samsung and DuPont, and two nanotechnology subfield datasets have 

been created for Nano-Biosensors and Graphene nanotechnology applications, using data 
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from the Georgia Tech Global Nanotechnology databases in the same time period (2000-

2006). 

The visual examination of maps shows nanotechnology development foci that 

vary across companies (even for those in similar industry sectors) and different patenting 

activity levels for the studied period. The two overlays presented herein appear 

diversified and encompass a number of technological areas. The patent overlay created 

for Samsung, for example, shows activity concentrated on semiconductors and optics, 

with a notable level of patenting activity across other areas as well (Figure 2a). The 

company has also some prominent activity on technological areas broadly defined as 

Catalysis & Separation, Photolithography, and Chemistry & Polymers. The focus of 

DuPont (Figure 2b), on the other hand, is more on Drugs, Medicine & Chemistry, 

Chemistry & Polymers, and Biologics. This company seems to have a portfolio of patent 

applications that is even more diversified, but it also is less active in terms of patenting 

activity, than Samsung. 
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Figure 2. Patent overlays applied to company benchmarking 

 

a) Samsung 

 
 

b) DuPont 

 
Note: labels shown only for top technological areas of the company patent portfolio; the size of nodes is 

proportional to the number of patent applications in the corresponding technology group. Higher resolution 

figures can be found in supplementary file 2, as indicated in the Appendix. 
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The application of patent overlays to the analysis of technological subfields can 

also help provide a better understanding of technologies involved in the development of 

these subfields and relationships between them and with the patent portfolio of 

companies. Yet, while the patent maps applied to companies reflect the result of a 

corporate strategy implemented by a single organization, patent maps applied to 

technological fields reflect the aggregation of activities of multiple (and usually 

numerous) categories in the same or different sectors.  

In the application of patent overlay maps to nanotechnology, technological 

developments in nano-biosensors are focused on categories such as Laboratory 

Equipment, Semiconductors and Biologics (Figure 3a). The subfield of Graphene, a more 

recent development that was recognized with the 2010 Nobel Prize in Physics, presents 

lower activity levels with a diversified focus on Catalysis & Separation, Chemistry & 

Polymers, Semiconductors and Optics among others (Figure 3b). 

 

Figure 3. Patent overlays applied to field mapping (2000-2006) 

 

a) Nano-biosensors 
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b) Graphene 

 
Note: labels shown only for top technological areas in the subfield; the size of nodes is proportional to the 

number of patent applications in the corresponding technology group. Higher resolution figures can be 

found in supplementary file 2, as indicated in the Appendix. 
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Discussion 

 

This paper presents the preliminary results of a new patent visualization tool with 

potential to support competitive intelligence and policy decision-making, following a 

methodology successfully used in science overlay mapping (Rafols et al., 2010). The 

approach involves a two-step visualization process. First, we build a global map that 

shows the technological distance among patent categories using citing-to-cited 

information for seven years of EPO data. Second, we overlay the patenting activity of 

specific organisations or in specific technological fields over the fixed “backbone” of the 

patent map. The aim of this superposition, or overlay, is to help understand the patent 

portfolio of an organisation in the context of the overall technological landscape.  

The approach offers distinctive visualization capability with parsimony. In 

contrast to prior IPC-based global patent maps, this approach recombines IPC categories 

to better reflect the distribution of patents. Thus, it enables improved differentiation 

ability in categories with a large amount of patenting activity such as drugs.  

The definition of categories and its implementation using a thesaurus to match 

IPC categories facilitates replicability by helping to trace back individual categories to 

verify results and make improvements. Nevertheless, these maps are only reliable to the 

extent that assignation of patents to IPC categories is accurate. Since patent assignation to 

IPCs is not always accurate, a large set of patents may be required to ensure that the 

portfolio of patents shown in an overlay map can be trusted to convey the patenting 

activities of an organisation represented (in the case of science maps, this was estimated 

to be above 1,500 publications for high resolution accuracy, and above 100 publications 

for lower resolution) (see Appendix 1 in Rafols et al. (2010).) 
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One of the most interesting findings is that IPC categories that are close to one 

another in the patent map are not necessarily in the same hierarchical IPC branch. This 

finding reveals new patterns of relationships among technologies that pertain to different 

(and sometimes distant) subject areas. The finding suggests that technological distance is 

not always well proxied by relying on the IPC administrative structure, for example, by 

assuming that a set of patents represents substantial technological distance because the set 

references different IPC sections. This paper shows that patents in certain technology 

areas tend to cite multiple and diverse IPC sections. For example, the Drugs & Medicine 

and Biologics dimensions include various drug-related Sub-Classes in IPC Class A61, but 

they also include several chemistry compound Sub-Classes in IPC Class C07; traditional 

measures would assume that technologies in these dimensions are distant because they 

include two different sections (sections A and C), but our network map shows that 

technologies in these two sections are closely interrelated, inasmuch as the patents in 

these Sub-Classes tend to cite one-another. An improved measure of technological 

distance would take into consideration patent citation characteristics.  

Potential applications of patent overlay maps include organizational and 

regional/country benchmarking (e.g. for the examination of competitive positions,) 

exploration of potential collaborations, and general analysis of technological changes 

over time. For example, the comparison of maps over time can reveal new patterns of 

relationship among categories that might help to understand the emergence of new fields 

and the extent of their impact. Patent maps may also reveal relatively unexplored 

technological areas that are more central to other technologies or highlight denser areas 

with more technological interdependency that might form platforms for the emergence of 
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future technology applications (like the Drugs & Medicine and Biologics categories in 

the maps shown in this paper.) Some of these explorations may require greater 

granularity for such analysis and policy decision-making (except in the case of large 

firms with extensive patent portfolios, such as the example of Samsung and DuPont 

illustrated). This need for granularity is a challenge that faces all global maps. Future 

work would enable greater ability to drill-down in certain areas, as well as to compare 

different global maps—for example, maps based on IPC 8 with maps based on IPC 7 

version—but a stable global map is required as an initial base for such an effort. 

Ongoing work has sought to overcome some issues found in the development of 

the original patent overlay maps. Among the most important issues is the coverage of the 

thesaurus developed to match 466 IPC categories based on the main patent dataset. While 

this dataset covers a wide range of IPC categories, the resulting thesaurus still does not 

match a number of IPC categories in the datasets created for patent overlay maps. This 

kind of issue varies across patent overlay datasets and may represent a significant 

proportion of the patent records in certain cases. This is, however, a problem that can be 

solved in future implementations by creating a new thesaurus based on a larger dataset 

that covers more than seven years of patent activity. 

Next steps in this research thrust include updates of the basemap based on the 

current version of the PatStat database and use of the most recent IPC classification, 

version 8. Refining the patent database to focus only on patent grants (it currently 

includes applications as well as grants) is one path for future work, while another is to 

develop a patent map for patents from other patent authorities besides the European 

Patent Office. In addition, the stability of the patent maps could be tested with the 
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segmentation of maps by year or year ranges. The backbone patent map in this paper can 

be compared with results from other global patent mapping efforts to determine the 

extent of consistency between these maps. Potential future research includes the analysis 

of connections between patent maps and science maps, with particular focus on 

technological fields with strong science links. 
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Appendix: Supplementary materials 

The authors made available three supplementary online files:  

 Supplementary File 1 is an MS Excel file containing the labels of IPC categories, 

citation and similarity matrices, factor analysis of IPC categories. It can be found 

at:  

 http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary1.xls   

 Supplementary File 2 is an MS PowerPoint file with examples of overlay maps 

of firms and research topics. It can be found at: 

 http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary2.ppt 

 Supplementary File 3 is an interactive version of map in Figure 1visualized with 

the freeware VOSviewer. It can be found at: 

http://www.vosviewer.com/vosviewer.php?map=http://www.sussex.ac.uk/Users/i

r28/patmap/KaySupplementary3.txt  

 

  

http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary1.xls
http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary2.ppt
http://www.vosviewer.com/vosviewer.php?map=http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary3.txt
http://www.vosviewer.com/vosviewer.php?map=http://www.sussex.ac.uk/Users/ir28/patmap/KaySupplementary3.txt
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i
 Lately, there has been a proliferation of global maps (see, for example, Bollen et al., 

2009; Boyack, Börner, & Klavans, 2009; Boyack, Klavans, & Börner, 2005; Janssens, 

Zhang, Moor, & Glänzel, 2009; Leydesdorff & Rafols, 2009; Moya-Anegon et al., 2004; 

Moya-Anegón, Vargas-Quesada, Chinchilla-Rodríguez, Corera-Álvarez, & Herrero-

Solana, 2007; Rosvall & Bergstrom, 2010). 
ii
 Thomson Reuters also has a patent visualization capability, Aureka, but it is a local 

rather than a global mapping application. 
iii

 The analysis shows that only 0.2 percent of the patents of Samsung and 2.6 percent of 

the patents of Dupont that are solely assigned to the B82B class are not represented in the 

maps.  


