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Abstract

The design of autonomous robots has an intimate relationship
with the study of autonomous animals and humans — robots pro-
vide a convenient puppet show for illustrating current myths about
cognition. Like it or not, any approach to the design of autonomous
robots is underpinned by some philosophical position in the designer.
Whereas a philosophical position normally has to survive in debate,
in a project of building situated robots one’s philosophical position
affects design decisions and is then tested in the real world — “doing
philosophy of mind with a screwdriver”.

Traditional Good Old Fashioned Artificial Intelligence (GOFAI)
approaches have been based on what is commonly called a Cartesian
split between body and mind — though the division goes back at
least to Plato. The Dynamical Systems approach to cognition, and
to robot design, draws on other philosophical paradigms. We shall
discuss how such varied philosophers as Heidegger, Merleau-Ponty
or Wittgenstein, in the improbable event of them wanting to build
robots, might be tempted to set about the task.

1 Introduction

Car manufacturers need robots that reliably and mindlessly repeat sequences
of actions in some well-organised environment. For many other purposes au-
tonomous robots are needed that will behave appropriately in a disorganised
environment, that will react adaptively when faced with circumstances that
they have never faced before. Planetary exploring robots, such as the So-
journer robot sent to Mars, cannot afford to wait the long time needed for



radio communication with people on earth for consultation on every indi-
vidual move they make. The user of a semi-autonomous wheelchair should
be able to delegate the same sort of decisions that a horse rider delegates to
her horse — how to manoeuvre around obstacles and react instinctively to
other traffic. We want such robots to behave to some extent intelligently,
or adaptively — in fact to behave in some small part as if they had a mind
of their own.

It has been tempting to think of this as ‘merely’ a technical, scientific
problem - we should study in an objective, scientific fashion the basic re-
quirements for adaptive intelligence, and then systematically engineer into
our robots what we have found to be necessary. But like it or not, any
approach to the understanding of cognition and adaptive intelligence, and
hence to the design of autonomous robots, is inevitably framed within some
philosophical position in the scientist or designer. In a project of building
situated robots one’s philosophical position affects design decisions and is
then tested in the real world — “doing philosophy of mind with a screw-
driver”.

We use basic working metaphors to make sense of scientific theories;
billiard balls and waves on a pond have been much used in physics. The
metaphor of animals or even humans as machines, as comparable to the
technical artefacts that we construct, is a powerful one. When we try to
build autonomous robots they are almost literally puppets acting to illus-
trate our current myths about cognition. The word 'myth’ sounds possibly
derogatory as it often implies a fiction or half-truth; it is not intended as
such here. I am merely trying to emphasise that our view of cognition is a
human-centred view, from the end of the second millennium, some 4 billion
years after the origin of life on this planet.

Someone coming from the conventional scientific perspective may sug-
gest that our current cultural context is irrelevant. After all, objectivity in
science is all to do with discounting the accidental perspectives of an ob-
server and discovering universal facts and laws that all observers can agree
on, from whatever place and time in which they are situated. However, to
pursue this line too far leads one into a paradox. What theories (if any)
did the organisms of 2 billion years ago have about the cognitive abilities of
their contemporaries? Clearly nothing like ours. What theories might our
descendants (if any) 2 billion years hence have about the cognition of their
contemporaries? It would be arrogant, indeed unscientific, to assume that
they would be similar to ours.

The Copernican revolutions in science have increased the scope of our
objective understanding of the world by recognising that our observations
are not context-free. Copernicus and Galileo used their imagination, and



speculated what the solar system might look like if our view from the planet
Earth was not a privileged view from the fixed centre of the universe, but
merely one possible perspective amongst many. Darwin opened up the way
to appreciating that Homo Sapiens is just one species amongst many, with a
common mode of evolutionary development from one common origin. Ein-
stein brought about a fresh Copernican revolution with Special Relativity,
showing how our understanding is increased when we abandon the idea of
some unique fixed frame of reference for measuring the speed of any object.
The history of science shows a number of advances, now generally accepted,
stemming from a relativist perspective that (surprisingly) is associated with
an objective stance toward our role as observers.

Cognitive science seems one of the last bastions to hold out against a
Copernican, relativist revolution. In this paper I will broadly distinguish
between the pre-Copernican views associated with the computationalist ap-
proach of classical Good Old Fashioned Artificial Intelligence (GOFAI), and
the contextual, situated approaches of nouvelle Al. The two sides will be
rather crudely portrayed, with little attempt to distinguish the many differ-
ing factions that can be grouped under one flag or the other. The different
philosophical views will be associated with the direct implications that they
have for the design of robots. It is worth mentioning that Brooks’ recent
collection of his early papers on robotics (Brooks, 1999) explicitly divides
the eight papers into four under the heading of ‘Technology’ and four as
‘Philosophy’ - though the division is somewhat arbitrary as the two aspects
go together throughout.

2 Cartesian or Classical approaches to Robotics

Descartes, working in the first half of the seventeenth century, is considered
by many to be the first modern philosopher. A scientist and mathematician
as much as philosopher, his ideas laid the groundwork for much of the
way we view science today. In cognitive science the term ‘Cartesian’ has,
perhaps rather unfairly to Descartes, come to exclusively characterise a
set of views that treat the division between the mental and the physical
as fundamental — the Cartesian cut (Lemmen, 1998). One form of the
Cartesian cut is the dualist idea that these are two completely separate
substances, the mental and the physical, which can exist independently of
each other. Descartes proposed that these two worlds interacted in just one
place in humans, the pineal gland in the brain. Nowadays this dualism is not
very respectable, yet the common scientific assumption rests on a variant
of this Cartesian cut: that the physical world can be considered completely



objectively, independent of all observers.

This is a different kind of objectivity from that of the Copernican sci-
entific revolutions mentioned above. Those relied on the absence of any
privileged position, on intersubjective agreement between observers, inde-
pendent of any specific observer. The Cartesian objectivity assumes that
there just is a way the world is, independent of any observer at all. The
scientist’s job, then, is to be a spectator from outside the world, with a
God’s-eye view from above.

When building robots, this leads to the classical approach where the
robot is also a little scientist-spectator, seeking information (from outside)
about how the world is, what objects are in which place. The robot takes in
information, through its sensors; turns this into some internal representation
or model, with which it can reason and plan; and on the basis of this
formulates some action that is delivered through the motors. Brooks calls
this the SMPA, or sense-model-plan-act architecture (Brooks, 1999).

The ‘brain’ or ‘nervous system’ of the robot can be considered as a Black
Box connected to sensors and actuators, such that the behaviour of the ma-
chine plus brain within its environment can be seen to be intelligent. The
question then is, ‘What to put in the Black Box?” The classical compu-
tationalist view is that it should be computing appropriate outputs from
its inputs. Or possibly they may say that whatever it is doing should be
interpretable as doing such a computation.

The astronomer, and her computer, perform computational algorithms
in order to predict the next eclipse of the moon; the sun, moon and earth
do not carry out such procedures as they drift through space. The cook
follows the algorithm (recipe) for mixing a cake, but the ingredients do
not do so as they rise in the oven. Likewise if [ was capable of writing a
computer program which predicted the actions of a small creature, this does
not mean that the creature itself, or its neurons or its brain, was consulting
some equivalent program in ‘deciding what to do’.

Formal computations are to do with solving problems such as ‘when is
the eclipse?’. But this is an astronomer’s problem, not a problem that the
solar system faces and has to solve. Likewise, predicting the next movement
of a creature is an animal behaviourist’s problem, not one that the creature
faces. However, the rise of computer power in solving problems naturally,
though regrettably, led Al to the view that cognition equalled the solving of
problems, the calculation of appropriate outputs for a given set of inputs.
The brain, on this view, was surely some kind of computer. What was
the problem that the neural program had to solve? — the inputs must be
sensory, but what were the outputs?

Whereas a roboticist would talk in terms of motor outputs, the more



cerebral academics of the infant AI community tended to think of plans, or
representations, as the proper outputs to study. They treated the brain as
the manager who does not get his own hands dirty, but rather issues com-
mands based on high-level analysis and calculated strategy. The manager
sits in his command post receiving a multitude of possibly garbled messages
from a myriad sensors and tries to work out what is going on. Proponents of
this view tend not to admit explicitly, indeed they often deny vehemently
that they think in terms of a homunculus in some inner chamber of the
brain, but they have inherited a Cartesian split between mind and brain
and in the final analysis they rely on such a metaphor.

3 What is the Computer Metaphor?

The concepts of computers and computations, and programs, have a variety
of meanings that shade into each other. On the one hand a computer is a
formal system with the same powers as a Turing Machine (...assuming
the memory is of adequate size). On the other hand a computer is this
object sitting in front of me now, with screen and keyboard and indefinite
quantities of software.

A program for the formal computer is equivalent to the pre-specified
marks on the Turing machine’s tape. For a given starting state of this
machine, the course of the computation is wholly determined by the program
and the Turing machine’s transition table; it will continue until it halts with
the correct answer, unless perhaps it continues forever — usually considered
a bad thing!

On the machine on my desk I can write a program to calculate a suc-
cession of co-ordinates for the parabola of a cricket-ball thrown into the
air, and display these both as a list of figures and as a curve drawn on the
screen. Here I am using the machine as a convenient fairly user-friendly
Turing machine.

However most programs for the machine on my desk are very different.
At the moment it is (amongst many other things) running an editor or word-
processing program. It sits there and waits, sometimes for very long periods
indeed, until I hit a key on the keyboard, when it virtually immediately pops
a symbol into an appropriate place on the screen; unless particular control
keys are pressed, causing the file to be written, or edits to be made. Virtually
all of the time the program is waiting for input, which it then processes near-
instantaneously. In general it is a good thing for such a program to continue
for ever, or at least until the exit command is keyed in.

The cognitivist approach asserts that something with the power of a



Turing machine is both necessary and sufficient to produce intelligence;
both human intelligence and equivalent machine intelligence. Although not
usually made clear, it would seem that something close to the model of a
word-processing program is usually intended; i.e., a program that constantly
awaits inputs, and then near-instantaneously calculates an appropriate out-
put before settling down to await the next input. Life, so I understand the
computationalists to hold, is a sequence of such individual events, perhaps
processed in parallel.

4 Time in Computations and in Connection-
ism

One particular aspect of a computational model of the mind which derives
from the underlying Cartesian assumptions common to traditional Al is
the way in which the issue of time is swept under the carpet — only the
sequential aspect of time is normally considered. In a standard computer
operations are done serially, and the lengths of time taken for each program
step are for formal purposes irrelevant. In practice for the machine on
my desk it is necessary that the time-steps are fast enough for me not to
get bored waiting. Hence for a serial computer the only requirement is that
individual steps take as short a time as possible. In an ideal world any given
program would be practically instantaneous in running, except of course for
those unfortunate cases when it gets into an infinite loop.

The common connectionist assumption is that a connectionist network is
in some sense a parallel computer. Hence the time taken for individual pro-
cesses within the network should presumably be as short as possible. They
cannot be considered as being effectively instantaneous because of the ne-
cessity of keeping parallel computations in step. The standard assumptions
made fall into two classes.

1. The timelag for activations to pass from any one node to another it
is connected to, including the time taken for the outputs from a node
to be derived from its inputs, is in all cases exactly one unit of time
(e.g. a back-propagation, or an Elman network).

2. Alternatively, just one node at a time is updated independently of the
others, and the choice of which node is dealt with next is stochastic
(e.g. a Hopfield net or a Boltzmann machine).

The first method follows naturally from the computational metaphor,
from the assumption that a computational process is being done in parallel.



The second method is closer to a dynamical systems metaphor, yet still
computational language is used. It is suggested that a network, after ap-
propriate training, will when presented with a particular set of inputs then
sink into the appropriate basin of attraction which appropriately classifies
them. The network is used as either a distributed content-addressable mem-
ory, or as a classifying engine, as a module taking part in some larger-scale
computation. The stochastic method of relaxation of the network may be
used, but the dynamics of the network are thereby made relatively simple,
and not directly relevant to the wider computation. It is only the stable
attractors of the network that are used. It is no coincidence that the at-
tractors of such a stochastic network are immensely easier to analyse than
any non-stochastic dynamics.

It might be argued that connectionists are inevitably abstracting from
real neural networks, and inevitably simplifying. In due course, so this ar-
gument goes, they will slowly extend the range of their models to include
new dimensions, such as that of time. What is so special about time —
why cannot it wait? Well, the simplicity at the formal level of connection-
ist architectures which need synchronous updates of neurons disguises the
enormous complexity of the physical machinery needed to maintain a uni-
versal clock-tick over distributed nodes in a physically instantiated network.
From the perspective advocated here, clocked networks form a particular
complex subset of all real-time dynamical networks ones need be, and if
anything they are the ones that should be left for later (van Gelder, 1992).

A much broader class of networks is that where the timelags on indi-
vidual links between nodes is a real number which may be fixed or may
vary in a similar fashion to weightings on such links!. A pioneering attempt
at a theory that incorporates such timelags as an integral part is given in
(Malsburg and Bienenstock, 1986).

In neurobiological studies the assumption seems to be widespread that
neurons are passing information between each other ‘encoded’ in the rate
of firing. By this means it would seem that real numbers could be passed,
even though signals passing along axons seem to be all-or-none spikes. This
assumption is very useful, indeed perhaps invaluable, in certain areas such
as early sensory processing. Yet it is perverse to assume that this is true
throughout the brain, a perversity which while perhaps not caused by the
computational metaphor is certainly aided by it. Experiments demonstrat-
ing that the individual timing of neuronal events in the brain, and the
temporal coincidence of signals passing down separate ‘synfire chains’, can

!For a simple model without loss of generality any time taken for outputs to be derived
from inputs within a node can be set to zero, by passing any non-zero value on instead
to the links connected to that node.



be of critical importance, are discussed in (Abeles, 1982).

5 What is a Representation?

The concept of symbolic reference, or representation, lies at the heart of
analytic philosophy and of computer science. The underlying assumption
of many is that a real world exists independently of any given observer; and
that symbols are entities that can ‘stand for’ objects in this real world —
in some abstract and absolute sense. In practice, the role of the observer in
the act of representing something is ignored.

Of course this works perfectly well in worlds where there is common
agreement amongst all observers — explicit or implicit agreement — on the
usages and definitions of the symbols, and the properties of the world that
they represent. In the worlds of mathematics, or formal systems, this is the
case, and this is reflected in the anonymity of tone, and use of the passive
tense, in mathematics. Yet the dependency on such agreement is so easily
forgotten — or perhaps ignored in the assumption that mathematics is the
language of God.

A symbol P is used by a person () to represent, or refer to, an object
R to a person S. Nothing can be referred to without somebody to do the
referring. Normally () and S are members of a community that have come
to agree on their symbolic usages, and training as a mathematician involves
learning the practices of such a community. The vocabulary of symbols can
be extended by defining them in terms of already-recognised symbols.

The English language, and the French language, are systems of symbols
used by people of different language communities for communicating about
their worlds, with their similarities and their different nuances and clichés.
The languages themselves have developed over thousands of years, and the
induction of each child into the use of its native language occupies a major
slice of its early years. The fact that, nearly all the time we are talking
English, we are doing so to an English-speaker (including when we talk
to ourselves), makes it usually an unnecessary platitude to explicitly draw
attention to the community that speaker and hearer belong to.

Since symbols and representation stand firmly in the linguistic domain,
another attribute they possess is that of arbitrariness (from the perspective
of an observer external to the communicators). When I raise my forefinger
with its back to you, and repeatedly bend the tip towards me, the chances
are that you will interpret this as ‘come here’. This particular European and
American sign is just as arbitrary as the Turkish equivalent of placing the
hand horizontally facing down, and flapping it downwards. Different actions



or entities can represent the same meaning to different communities; and the
same action or entity can represent different things to different communities.
In Mao Tse-Tung’s China a red traffic light meant GO.

In the more general case, and particularly in the field of connectionism
and cognitive science, when talking of representation it is imperative to
make clear who the users of the representation are; and it should be possible
to at a minimum suggest how the convention underlying the representation
arose. In particular it should be noted that where one and the same entity
can represent different things to different observers, conceptual confusion
can easily arise. When in doubt, always make explicit the () and S when P
is used by @) to represent R to S.

In a computer program a variable pop_size may be used by the pro-
grammer to represent (to herself and to any other users of the program)
the size of a population. Inside the program a variable : may be used to
represent a counter or internal variable in many contexts. In each of these
contexts a metaphor used by the programmer is that of the program de-
scribing the actions of various homunculi, some of them keeping count of
iterations, some of them keeping track of variables, and it is within the
context of particular groups of such homunculi that the symbols are repre-
senting. But how is this notion extended to computation in connectionist
networks?

6 Representation in Connectionism

When a connectionist network is being used to do a computation, in most
cases there will be input, hidden and output nodes. The activations on
the input and output nodes are decreed by the connectionist to represent
particular entities that have meaning for her, in the same way as pop_size
is in a conventional program. But then the question is raised — ‘what about
internal representations?’.

It a connectionist network is providing the nervous system for a robot, a
different interpretation might be put on the inputs and outputs. But for the
purpose of this section, the issues of internal representation are the same.

All too often the hidden agenda is based on a Platonic notion of repre-
sentation — what do activations or patterns of activations represent in some
absolute sense to God? The behaviour of the innards of a trained network
are analysed with the same eagerness that a sacrificed chicken’s innards are
interpreted as representing ones future fate. There is however a more prin-
cipled way of talking in terms of internal representations in a network, but
a way that is critically dependent on the observer’s decomposition of that



network. Namely, the network must be decomposed by the observer into
two or more modules that are considered to be communicating with each
other by means of these representations.

Where a network is explicitly designed as a composition of various mod-
ules to do various subtasks (for instance a module could be a layer, or a
group of laterally connected nodes within a layer), then an individual ac-
tivation, or a distributed group of activations, can be deemed to represent
an internal variable in the same way that ¢ did within a computer program.
However, unlike a program which wears its origins on its sleeve (in the form
of a program listing), a connectionist network is usually deemed to be inter-
nally ‘nothing more than’ a collection of nodes, directed arcs, activations,
weights and update rules. Hence there will usually be a large number of
possible ways to decompose such a network, with little to choose between
them; and it depends on just where the boundaries are drawn just who is
representing what to whom.

It might be argued that some ways of decomposing are more ‘natural’
than others; a possible criterion being that two sections of a network should
have a lot of internal connections, but a limited number of connecting arcs
between the sections. Yet as a matter of interest this does not usually hold
for what is perhaps the most common form of decomposition, into layers.
The notion of a distributed representation usually refers to a representation
being carried in parallel in the communication from one layer to the next,
where the layers as a whole can be considered as the () and S in the formula
“P is used by () to represent R to S”.

An internal representation, according to this view, only makes sense
relative to a particular decomposition of a network chosen by an observer.
To assert of a network that it contains internal representations can then only
be justified as a rather too terse shorthand for asserting that the speaker
proposes some such decomposition. Regrettably this does not seem to be
the normal usage of the word in cognitive science, yet I am not aware of
any well-defined alternative definition.

7 Are Representations Needed?

With this approach to the representation issue, then any network can be
decomposed (in a variety of ways) into separate modules that the observer
considers as communicating with each other. The interactions between such
modules can ipso facto be deemed to be mediated by a representation.
Whether it is useful to do so is another matter.

Associated with the metaphor of the mind (or brain, or an intelligent
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machine) as a computer go assumptions of functional decomposition. Since
a computer formally manipulates symbols, yet it is light waves that impinge
on the retina or the camera, surely (so the story goes) some intermediate
agency must do the necessary translating. Hence the traditional decompo-
sition of a cognitive system into a perception module, which takes sensory
inputs and produces a world model; this is passed onto a central planning
module which reasons on the basis of this world model; passing on its deci-
sions to an action module which translates them into the necessary motor
actions. This functional decomposition has been challenged, and an alter-
native behavioural decomposition proposed, by Brooks in, e.g., (Brooks,
1999).

In particular, the computationalist or cognitivist approach seems to im-
ply that communication between any such modules is a one-way process; any
feedback loops are within a module. Within for instance back-propagation,
the backward propagation of errors to adjust weights during the learning
process is treated separately from the forward pass of activations. This
helps to maintain the computational fiction, by conceptually separating the
two directions, and retaining a feed-forward network. But consider the fact
that within the primate visual processing system, when visualised as a net-
work, there are many more fibres coming ‘back’ from the visual cortex into
the Lateral Geniculate Nucleus (LGN) than there are fibres going from the
retina to the LGN in the ‘correct’ direction. How does the computationalist
make sense of this?

Marr (in (Marr, 1977), reprinted in (Boden, 1990)) classifies Al theories
into Type 1 and Type 2, where a Type 2 theory can only solve a problem
by the simultaneous action of a considerable number of processes, whose in-
teraction is its own simplest description. It would seem that type 2 systems
can only be decomposed arbitrarily, and hence the notion of representation
is less likely to be useful. This is in contrast to a Type 1 theory, where a
problem can be decomposed into a form that an algorithm can be formu-
lated to solve, by divide and conquer. Type 1 theories are of course the more
desirable ones when they can be found, but it is an empirical matter whether
they exist or not. In mathematics the 4-colour theorem has been solved in
a fashion that requires a large number of special cases to be exhaustively
worked out in thousands of hours of computation (Appel and Haken, 1989).
It is hoped that there were no hardware faults during the proof procedure,
and there is no way that the proof as a whole can be visualised and assessed
by a human. There is no a priori reason why the workings of at least parts

of the brain should not be comparably complex, or even more so?. This

2For the purposes of making an intelligent machine or robot, it has in the past seemed
obvious that only Type 1 techniques could be proposed. However evolutionary techniques
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can be interpreted as: there is no a priori reason why all parts of the brain
should be in such a modular form that representation-talk is relevant. The
answer to the question posed in the title of this section is no. This does
not rule out the possibility that in some circumstances representation-talk
might be useful, but it is an experimental matter to determine this.

8 Alternatives to Cartesianism

Hubert Dreyfus came out with a trenchant criticism of the classical Al
computationalist approach to cognition in the 1960s. He came from a very
different set of philosophical traditions, looking for inspiration to twentieth
century philosophers such as Heidegger, Merleau-Ponty and Wittgenstein.
Initially he produced a report for the RAND Corporation provocatively
entitled ‘Alchemy and Artificial Intelligence’in 1965 (Dreyfus, 1965). Later,
more popular, books are (Dreyfus, 1972) and with his brother (Dreyfus and
Dreyfus, 1986). These are amongst the easiest ways for somebody with a
conventional background in computer science, cognitive science or robotics
to approach the alternative set of philosophical views. Nevertheless, the
views are sufficiently strange to those brought up into the Cartesian way of
thinking that at first sight Dreyfus appears to be mystical, or anti-scientific.
This is not the case.

Another view of cognition from a phenomological or Heideggerian per-
spective is given in (Winograd and Flores, 1986); Winograd was instrumen-
tal in some of the classical early GOFAI work, before coming around to a
very different viewpoint. A different Heideggerian perspective is given in
(Wheeler, 1996) within (Boden, 1996). The relevance of Merleau-Ponty is
drawn out in (Lemmen, 1998). A different perspective that is similarly op-
posed to the Cartesian cut is given in (Maturana and Varela, 1987; Varela
et al., 1991). A much more general textbook on robotics that is written
from a situated and embodied perspective is (Pfeifer and Scheier, 1999).

Heidegger rejects the simplistic objective view, that the objective phys-
ical world is the primary reality that we can be certain of. He similarly
rejects the opposite idealistic or subjective view, that our thoughts are the
primary reality. Instead, the primary reality is our experience of the world,
that cannot exist independently of one or the other. Our everyday practical
lived experience, as we reach for our coffee or switch on the light, is more
fundamental than the detached theoretical reflection that we use as rational
scientists. Though Heidegger himself would not put it this way, this makes
sense from a Darwinian evolutionary perspective on our own species. From

need not restrict themselves in this fashion (Harvey et al., 1997).
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this perspective, our language using and reasoning powers probably arrived
in H. sapiens over just the last million or so years in our 4 billion year evo-
lutionary history, and is merely the thin layer of icing on the cake. From
both a phylogenetic and an ontogenetic view, we are organisms and animals
first, reasoning humans only later.

As humans, of course, detached theoretical reasoning is one of our hall-
marks; indeed the Darwinian view presented in the previous paragraph is
just one such piece of reasoning. However practical know-how is more fun-
damental than such detached knowing-that. This is a complete reversal
of the typical approach of a Cartesian cognitive scientist or roboticist, who
would attempt to reduce the everyday action of a human (or robot) reaching
for the coffee mug into a rational problem-to-be-solved: hence the Cartesian
sense-model-plan-act cycle.

The archetypal Heideggerian example is that of hammering in a nail.
When we do this normally, the arm with the hammer naturally and without
thought goes through its motions, driving the hammer home. It is only when
something goes wrong, such as the head of the hammer flying off or the nail
bending in the wood, that we have to concentrate and start reflecting on the
situation, rationalising what the best plan of action will be. Information
processing, knowing-that, is secondary and is built on top of our everyday
rhythms and practices of practical know-how - know-how which cannot be
reduced to a set of rules that we implement. This is true, Wittgenstein
suggests, even for our language skills:

In general we don’t use language according to strict rules - it
hasn’t been taught us by means of strict rules either. (Wittgen-
stein 1960:25)

For the roboticist, this anti-Cartesian alternative philosophy seems at
first sight negative and unhelpful. For everyday robot actions this implies
that we should do without planning, without the computational model,
without internal representations, but nothing has yet been offered to replace
such methods. The two lessons that need to be learnt initially is that
cognition is

e Situated: a robot or human is always already in some situation, rather
than observing from outside

e and Embodied: a robot or human is a perceiving body, rather than a
disembodied intelligence that happens to have sensors.

One nice example of a situated embodied robot is the simple walking
machine of McGeer which uses ‘passive dynamic walking’ (McGeer, 1990;
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Figure 1: MeGeer’s ‘passive dynamic walker’.

McGeer, 1993). This is a two-legged walking robot with each leg made of
just an upper and lower limb connected by a knee joint. This knee acts as a
human knee, allowing bending freely in one direction but not in the other.
At the bottom of each lower limb is a foot shaped in an arc, and the two
legs are hinged together at the waist. The dimensions are carefully worked
out, but then that is the complete walking robot with no control system
needed at all. When it is started off on a gently sloping incline, the legs will
walk along in a remarkably natural human-like motion — all the control has
come from the natural dynamics, through being situated and embodied.

The walking robot does not take in information through sensors, and
does not compute what its current position is and what its next move
should be. The designers, of course, carefully computed the appropriate
dimensions. In the natural world, organisms and animals have their bodily
dimensions designed through natural evolution.

9 The Dynamical Systems alternative

This last example is a robot designed on non-Cartesian principles, using an
alternative view that has gained favour in the last decade within AT circles,
though its origins date back at least to the early cybernetics movement.
One description of this is the Dynamical Systems view of cognition:

...animals are endowed with nervous systems whose dynamics

are such that, when coupled with the dynamics of their bodies
and environments, these animals can engage in the patterns of
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behavior necessary for their survival. (Beer & Gallagher 1992:
91)

At this stage we downgrade the significance of intelligence for Al in
favour of the concept of adaptive behaviour. Intelligence is now just one
form of adaptive behaviour amongst many; the ability to reason logically
about chess problems may be adaptive in particular refined circles, but the
ability to cross the road safely is more widely adaptive. We should note the
traditional priorities of Al: the computationalists’ emphasis on reasoning led
them to assume that everyday behaviour of sensorimotor coordination must
be built on top of a reasoning system. Sensors and motors, in their view,
are ‘merely’ tools for information-gathering and plan-execution on behalf
of the central executive where the real work is done. Many proponents of
an alternative view, including myself, would want to turn this on its head:
logical reasoning is built on top of linguistic behaviour, which is built on
prior sensorimotor abilities. These prior abilities are the fruit of billions of
years of evolution, and language has only been around for the last few tens
of thousands of years.

A dynamical system is formally any system with a finite number of state
variables that can change over time; the rate of change of any one such vari-
able depends on the current values of any or all of the variables in a regular
fashion. These regularities are typically summed up in a set of differential
equations. A Watt governor for a steam engine is a paradigmatic dynamical
system (van Gelder, 1992), and we can treat the nervous system plus body
of a creature (or robot) as one also. The behaviour of a dynamical system
such as the governor depends also on the current value of its external in-
puts (from the steam engine) which enter the relevant differential equations
as parameters. In a complementary way, the output of the governor acts
as a parameter on the equations which describe the steam engine itself as
a dynamical system. One thing that is very rapidly learnt from hands-on
experience is that two such independent dynamical systems, when coupled
together into (e.g.) steam-engine-plus-governor treated now as a single dy-
namical system, often behave in a counterintuitive fashion not obviously
related to the uncoupled behaviours.

Treating an agent — creature, human or robot — as a dynamical sys-
tem coupled with its environment through sensors and motors, inputs and
outputs, leads to a metaphor of agents being perturbed in their dynam-
ics through this coupling, in contrast to the former picture of such agents
computing appropriate outputs from their inputs. The view of cognition
entailed by this attitude fits in with Varela’s characterisation of cognition
as embodied action:
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By using the term embodied we mean to highlight two points:
first, that cognition depends upon the kinds of experience that
come from having a body with various sensorimotor capacities,
and second, that these individual sensorimotor capacities are
themselves embedded in a more encompassing biological, psy-
chological and cultural context. By using the term action we
mean to emphasise once again that sensory and motor processes,
perception and action, are fundamentally inseparable in lived
cognition. Indeed, the two are not merely contingently linked
in individuals; they have also evolved together. (Varela et al.,

1991: 172-173)

10 Evolutionary Robotics and Behaviourism

Moving from natural agents to artificial robots, the design problem that a
robot builder faces is now one of creating the internal dynamics of the robot,
and the dynamics of its coupling, its sensorimotor interactions with its en-
vironment, such that the robot exhibits the desired behaviour in the right
context. Designing such dynamical systems presents problems unfamiliar
to those who are used to the computational approach to cognition.

A primary difference is that dynamics involves time, real time. Whereas
a computation of an output from an input is the same computation whether
it takes a second or a minute, the dynamics of a creature or robot has to be
matched in timescale to that of its environment. A second difference is that
the traditional design heuristic of divide and conquer cannot be applied in
the same way. It is not clear how the dynamics of a control system should
be carved up into smaller tractable pieces; and the design of any one small
component depends on an understanding of how it interacts in real time
with the other components, such interaction possibly being mediated via
the environment. This is true for behavioural decomposition of control sys-
tems (Brooks, 1999) as well as functional decomposition. However, Brooks’
subsumption architecture approach offers a different design heuristic: first
build simple complete robots with behaviours simple enough to understand,
and then incrementally add new behaviours of increasing complexity or va-
riety, one at a time, which subsume the previous ones. Before the designer
adds a new control system component in an attempt to generate a new
behaviour, the robot is fully tested and debugged for its earlier behaviours;
then the new component is added so as to keep to a comprehensible and
tractable minimum its effects on earlier parts.

This approach is explicitly described as being inspired by natural evolu-
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tion; but despite the design heuristics it seems that there is a practical limit
to the complexity that a human designer can handle in this way. Natural
Darwinian evolution has no such limits, hence the more recent moves to-
wards the artificial evolution of robot control systems (Harvey et al., 1997).

In this work a genetic encoding is set up such that an artificial genotype,
typically a string of 0s and 1s, specifies a control system for a robot. This
is visualised and implemented as a dynamical system acting in real time;
different genotypes will specify different control systems. A genotype may
additionally specify characteristics of the robot ‘body’ and sensorimotor
coupling with its environment. When we have settled on some particular
encoding scheme, and we have some means of evaluating robots at the
required task, we can apply artificial evolution to a population of genotypes
over successive generations.

Typically the initial population consists of a number of randomly gener-
ated genotypes, corresponding to randomly designed control systems. These
are instantiated in a real robot one at a time, and the robot behaviour that
results when placed in a test environment is observed and evaluated. After
the whole population has been scored, their scores can be compared; for an
initial random population one can expect all the scores to be abysmal, but
some (through chance) are less abysmal than others. A second generation
can be derived from the first by preferentially selecting the genotypes of
those with higher scores, and generating offspring which inherit genetic ma-
terial from their parents; recombination and mutation is used in producing
the offspring population which replaces the parents. The cycle of instan-
tiation, evaluation, selection and reproduction then continues repeatedly,
each time from a new population which should have improved over the av-
erage performance of its ancestors. Whereas the introduction of new variety
through mutation is blind and driven by chance, the operation of selection
at each stage gives direction to this evolutionary process.

This evolutionary algorithm comes from the same family as Genetic Al-
gorithms and Genetic Programming, which have been used with success on
thousands of problems. The technique applied to robotics has been experi-
mental and limited to date. It has been demonstrated successtully on simple
navigation problems, recognition of targets, and the use of minimal vision
or sonar sensing in uncertain real world environments (Harvey et al., 1997;
Thompson, 1995). One distinguishing feature of this approach using ‘blind’
evolution is that the resulting control system designs are largely opaque and
incomprehensible to the human analyst. With some considerable effort sim-
ple control systems can be understood using the tools of dynamical systems
theory (Husbands et al., 1995). However, it seems inevitable that, for the
same reasons that it is difficult to design complexr dynamical systems, it is
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also difficult to analyse them.

This is reflected in the methodology of Evolutionary Robotics which,
once the framework has been established, concerns itself solely with the
behaviour of robots: “if it walks like a duck and quacks like a duck, it
is a duck”. For this reason we have sometimes been accused of being
‘the New Behaviourists’; but this emphasis on behaviour assumes that
there are significant internal states®, and in my view is compatible with
the attribution of adaptive intelligence. A major conceptual advantage
that Evolutionary Robotics has over classical Al approaches to robotics
is that there is no longer a mystery about how one can ‘get a robot to have
needs and wants’. In the classical version the insertion of a value function
robot_avoid_obstacle often leaves people uncomfortable as to whether it
is the robot or the programmer who has the desires. In contrast, genera-
tions of evolutionary selection that tends to eliminate robots that crash into
the obstacle produces individual robots that do indeed avoid it; and here it
seems much more natural that it is indeed the robot which has the desire.

11 Relativism

I take a Relativist perspective, which contrary to the naive popular view
does not imply solipsism, or subjectivism, or an anything-goes attitude to
science. The history of science shows a number of advances, now gener-
ally accepted, that stem from a relativist perspective which (surprisingly)
is associated with an objective stance toward our role as observers. The
Copernican revolution abandoned our privileged position at the centre of
the universe, and took the imaginative leap of wondering how the solar
system would look viewed from the Sun or another planet. Scientific ob-
jectivity requires theories to be general, to hold true independently of our
particular idiosyncratic perspective, and the relativism of Copernicus ex-
tended the realm of the objective. Darwin placed humans amongst the
other living creatures of the universe, to be treated on the same footing.
With Special Relativity, Einstein carried the Copernican revolution fur-
ther, by considering the viewpoints of observers travelling near to the speed
of light, and insisting that scientific objectivity required that their perspec-
tives were equally privileged to ours. Quantum physics again brings the
observer explicitly into view.

3Not ‘significant’ in the sense of representational — internal states are mentioned here
to differentiate evolved dynamical control systems (which typically have plenty of inter-
nal state) from those control systems restricted to feedforward input/output mappings
(typical of ‘reactive robotics’).
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Cognitive scientists must be careful above all not to confuse objects that
are clear to them, that have an objective existence for them, with objects
that have a meaningful existence for other agents. A roboticist learns very
early on how difficult it is to make a robot recognise something that is crystal
clear to us, such as an obstacle or a door. It makes sense for us to describe
such an object as ‘existing for that robot’ if the physical, sensorimotor,
coupling of the robot with that object results in robot behaviour that can
be correlated with the presence of the object. By starting the previous
sentence with “It makes sense for us to describe ...” T am acknowledging our
own position here acting as scientists observing a world of cognitive agents
such as robots or people; this objective stance means we place ourselves
outside this world looking in as godlike creatures from outside. Our theories
can be scientifically objective, which means that predictions should not be
dependent on incidental factors such as the nationality or location or star-
sign of the theorist.

When I see a red sign, this red sign is an object that can be discussed
scientifically. This is another way of saying that it exists for me, for you,
and for other human observers of any nationality; though it does not exist
for a bacterium or a mole. We construct these objects from our experience
and through our acculturation as humans through education®. Just as our
capacity for language is phylogenetically built upon our sensorimotor capac-
ities, so our objects, our scientific concepts, are built out of our experience.
But our phenomenal experience itself cannot be an objective thing that can
be discussed or compared with other things. It is primary, in the sense that
it is only through having phenomenal experience that we can create things,
objective things that are secondary.

12 Conclusion

Like it or not, any approach to the design of autonomous robots is un-
derpinned by some philosophical position in the designer. There is no
philosophy-free approach to robot design — though sometimes the phi-
losophy arises through accepting unthinkingly and without reflection the
approach within which one has been brought up. GOFAI has been predi-
cated on some version of the Cartesian cut, and the computational approach
has had enormous success in building superb tools for humans to use — but

It makes no sense to discuss (... for us humans to discuss . ..) the existence of objects
in the absence of humans. And (in an attempt to forestall the predictable objections)
this view does not imply that we can just posit the existence of any arbitrary thing as
our whim takes us.

19



it is simply inappropriate for building autonomous robots.

There is a different philosophical tradition which seeks to understand
cognition in terms of the priority of lived phenomenal experience, the pri-
ority of everyday practical know-how over reflective rational knowing-that.
This leads to very different engineering decisions in the design of robots,
to building situated and embodied creatures whose dynamics are such that
their coupling with their world leads to sensible behaviours. The design
principles needed are very different; Brooks’ subsumption architecture is
one approach, Evolutionary Robotics is another. Philosophy does make a
practical difference.
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