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Abstract

We present empirical evidence, from a wide
range of problem characteristics, suggesting
that the value of optimal mutation rates in
GAs differs according to whether recombi-
nation is used or not. Without recombina-
tion, a regime that starts with a high muta-
tion rate, decreasing it towards the end of the
run, appears to be optimal. With recombina-
tion, however, the optimal strategy proves to
be a constant, sufficiently low mutation rate.
Moreover, when recombination is used, the
choice of an excessively high mutation rate
might degrade the algorithm’s performance
considerably. These results are supported by
recent knowledge from the field of molecular
evolution about the effect of recombination
on the so called error thresholds. We con-
clude by proposing a novel argument favor-
ing the use of recombination in GAs. This
argument, which we call the dual-role of re-
combination, sheds new light on the role of
this operator in genetic search.

1 INTRODUCTION

It has long been acknowledged that a GA’s perfor-
mance depends heavily on the choice of its main pa-
rameters: mutation rate, crossover rate, and popula-
tion size. These parameters typically interact with one
another in a nonlinear fashion, so they cannot be in-
dependently optimized. Optimal parameter settings
have been the subject of numerous studies in the GA
literature, but there is no conclusive agreement on
what is best; most people use what has worked well
in previously reported cases.

Particular emphasis has been placed on finding opti-

mal mutation rates [Fogarty, 1989, Miihlenbein, 1992,
Hesser and Ménner, 1991, Béck, 1993]. Most theoret-
ical studies aimed at finding optimal mutation values,
however, neglect recombination in order to simplify
the analysis [Béck, 1993, Hesser and Minner, 1991,
Mihlenbein, 1992]. On the other hand, classical em-
pirical studies aimed at finding optimal parameter set-
tings, use a fixed set of test problems [DeJong, 1975,
Grefenstette, 1986, Schaffer et al., 1989]. One weak-
ness with these classical studies is that their results
may not generalize beyond the test problems used.

According to Spears [Spears, 1998] there are two ways
to strengthen the results obtained from empirical stud-
ies. The first is to remove the opportunity to hand-
tune algorithms to a particular set of problems. The
second is to always show results over the running time
of a GA (see section 3). In this paper we use these
methodological guidelines to show that the choice of an
optimal mutation scheme depends on whether recom-
bination is used or not. For a GA without recombina-
tion, the optimal strategy appears to be the generally
acknowledged heuristic of starting with a relatively
high mutation rate, reducing it over the course of a sin-
gle run [Fogarty, 1989, Miihlenbein, 1992, Bick, 1991,
Béck, 1993]. However, when recombination is used, a
fixed, sufficiently low mutation rate proves to be the
optimal strategy. Moreover, with recombination, the
GA performance is more sensitive to the use of an in-
appropriately high mutation rate.

These are more than just empirical results: theoretical
knowledge from the field of molecular evolution sup-
port them. The argument, explained in more detail in
section 2, is that the notion of optimal mutation rates
is related to the so called “error thresholds”. And thus
the effects of recombination on error thresholds are re-
flected on optimal mutation rates.

This explanation and further insight, lead us to
proposing a new argument favoring the use of recom-



bination in Evolutionary Algorithms (EAs). This ar-
gument, which we call the dual-role of recombination,
help us in understanding the role of this complex op-
eration in EAs (see section 5).

In the reminder of the paper we summarize the knowl-
edge from molecular evolution relevant to our argu-
ment, we describe the empirical methodology used, we
present the experimental results obtained, and we dis-
cuss the insight gained.

2 ERROR THRESHOLDS

The error threshold — a notion from molecular evo-
lution — is a critical mutation rate beyond which
structures obtained by the evolutionary process are de-
stroyed more frequently than selection can reproduce
them. With mutation rates above this critical value,
an optimal solution would not be stable in the pop-
ulation, i.e., the probability that the population loses
these structures is not negligible.

The notion of error threshold, then, seems to be in-
tuitively related to the idea of an optimal balance be-
tween exploitation and exploration in genetic search.
Too low a mutation rate implies too little exploration;
in the limit of zero mutation, successive generations of
selection remove all variety from the population, and
once the population has converged to a single point in
genotype space all further exploration ceases. On the
other hand, clearly, mutation rates can be too exces-
sive; in the limit where mutation places a randomly
chosen allele at every locus on an offspring genotype,
then the evolutionary process has degenerated into
random search with no exploitation of the information
acquired in preceding generations.

Any optimal mutation rate must lie between these two
extremes, but its precise position will depend on a
number of factors including, in particular, the struc-
ture of the fitness landscape under consideration. It
can, however, be hypothesized that a mutation rate
just below the error threshold is the optimal mutation
rate for the landscape under study. The close corre-
spondence between error thresholds and optimal mu-
tation rates may be assessed empirically. Given that
mutation rates should not be above error thresholds,
it cannot be immediately assumed that optimal mu-
tation rates are related to this upper bound; however,
experiments where the error threshold and the opti-
mal mutation rates could be assessed independently
showed that there was such a relationship. These ex-
periments will be reported in detail elsewhere.

Some biological evidence supports the relationship be-
tween error thresholds and optimal mutation rates.

Eigen and Schuster [Eigen and Schuster, 1979] have
pointed out that viruses — which are very efficiently
evolving entities — live within and close to the er-
ror thresholds given by the known rates of nucleotide
mutations. This correspondence has also been no-
ticed before in the GA community: Hesser and Man-
ner [Hesser and Méanner, 1991], devised an heuristic
formula for optimal setting of mutation rates in-
spired by Nowak and Schuster’s work on error thresh-
olds [Nowak and Schuster, 1989]. Moreover, Kauff-
man [Kauffman, 1993] (p. 107), talking about an opti-
mum mutation rate, suggests that “That rate is likely
to occur when populations are just beginning to melt
from peaks”.

2.1 RECOMBINATION AND ERROR
THRESHOLDS

A relatively recent work from the evolutionary biol-
ogy literature [Boerlijst et al., 1996], reports interest-
ing results about the role of recombination on evolving
population of viruses. In particular, they study the ef-
fect of recombination on the magnitude of the error
threshold. A mathematical model with infinite popu-
lations was used. Their results may be summarized as
follows: for low mutation rates, recombination can fo-
cus the population around a fitness optimum and thus
enhance overall fitness. For high mutation rates, how-
ever, recombination can push the population over the
error threshold, and therefore cause a loss of genetic
information. In other words, recombination shifts the
error threshold to lower mutation rates, and, in addi-
tion, makes this transition sharper. The explanation
given by the authors to this phenomenon is as follows
[Boerlijst et al., 1996] (p. 1581):

Near the error threshold, without recom-
bination, the fittest strain only makes up
a small percentage of the total population
[Eigen and Schuster, 1979]. Under such con-
ditions recombination acts as a diverging op-
eration, driving the population beyond the
error threshold. There can be selection for
recombination if fitness is correlated and if
the mutation rate is sufficiently small.

In [Ochoa and Harvey, 1998] we reproduce, using GAs
— and hence finite populations — some of the results
obtained by Boerlijst et al. GA simulation results were
strikingly similar qualitatively to those obtained ana-
lytically. Thus, the main results described above for
infinite populations also hold for an evolving (finite)
population of bit-strings using a standard GA.



3 METHODS

Recently, De Jong, Spears, and Potter proposed a
new empirical methodology for studying the behaviour
of EAs [DeJong et al., 1997, Spears, 1998]. This ap-
proach employs the so called problem generators. A
problem generator is an abstract model capable of pro-
ducing randomly generated problems on demand. The
advantages of using problem generators are two-fold.
First, they allow us to report results over a randomly
generated set of problems rather than a few hand-
chosen examples, increasing in this way the predictive
power of the results for the problem class as a whole.
Secondly, problem generators are quite easy to param-
eterize, allowing the design of controlled experiments
where particular features of a class of problems can be
varied systematically to study the effects on the EA
behavior.

For our study, we adopted this methodology and
selected two problems generators: (i) the NK-
Landscape generator (section 3.1), and (ii) the Mul-
timodal generator (section 3.2).

3.1 THE NK-LANDSCAPE GENERATOR

Kauffman [Kauffman, 1989], describes a family of fit-
ness landscapes determined by two parameters: N and
K. The points of the N K-Landscape are bit strings
of length N. The parameter K represents the degree
of epistatic interaction between the bits, that is, the
number of linkages each locus has to other loci in the
same string. To compute the fitness of the entire string
s, the fitness contribution from each locus is averaged
as follows:

f(s) = 5 SN f(locus;),

where the fitness contribution of each locus, f(locus;),
is determined by using the (binary) value of gene i to-
gether with values of the K interacting loci as an index
into a table T} of size 2¥*! of uniformly distributed
random numbers over [0.0,1.0]. For a given locus 4,
the set of K linked loci may be randomly selected or
consist of the immediately adjacent loci.

An interesting property of the N K-landscapes is that
the ruggedness of the fitness landscape can be tuned
by changing the parameter K. From a practical per-
spective, however, the N K-landscape presents some
difficulties (in particular the large space required to
store the tables to compute the fitness) which restrict
its use to relative small models.

3.2 THE MULTIMODAL GENERATOR

The multimodal generator was proposed recently by
De Jong, Potter, and Spears [DeJong et al., 1997].
The idea is to generate P random N-bit strings, which
represent the location of the P peaks in the space. To
evaluate any bit string s, first locate the nearest peak
(in Hamming space). Then the fitness of s is the num-
ber of bits s has in common with that nearest peak,
divided by N.

f(s) = x¥maz (N — Hamming(s, Peak;))

Problems with a small/large number of peaks are
weakly/strongly epistatic. The multimodal generator
is very efficient in terms of memory storage (only the
P peaks need to be stored). However, the computation
of fitness becomes very slow as the number of peaks is
increased.

4 EXPERIMENTAL RESULTS

Following the guidelines of De Jong et al., the
experimental methodology used was as follows
[DeJong et al., 1997]: for each of the selected settings
of the problem generator parameters, 20 problems
were randomly generated. The GA was run once per
problem, and the results were averaged over those 20
problems.

For all the experiments, a standard generational GA
with fitness proportional selection was employed. Pop-
ulation size and chromosome length were set to 100.
Two-point crossover and the standard bit mutation
operation were used. For the GA with recombination,
a crossover rate of 0.6 was selected. These are quite
typical settings for GAs. Experiments were run for a
maximum of 1000 generations.

To see how the mutation rate value affects the GA per-
formance with and without recombination, we selected
three mutation rates (0.001, 0.005, and 0.01), and ran
the algorithm in two modes. In the first mode (GA)
both mutation and recombination were used. In the
second mode (GA-m) only mutation was used. Table
1 summarizes the GA parameter setting used for the
experiments.

The performance metric we monitored is well-known —
namely “best-so-far” curves that plot the fitness of the
best individual that has been seen thus far by genera-
tion n. Each curve plots the average best-so-far values
of 20 runs. For the sake of clarity, the standard devia-
tions for these curves were not plotted. However, they
all showed to be quite low — in the range of [0.01,
0.02].



Chromosome length 100
Population size 100
Crossover rate 0.6 (GA), 0.0 (GA-m)
Mutation rate 0.001, 0.005, 0.01
Generations 1000
No. of Problems 20

Table 1: GA parameters

4.1 NK EXPERIMENTS !

Given that we selected relatively long chromosomes,
the storage requirements for the VK tables make it
difficult to explore large values of K. Thus, we tested
N K landscapes for K = 0, and K = 2. For more com-
plex landscapes we relied on the multimodal problem
generator results (section 4.2). The NK model with
K = 0, produces a very trivial “Mount Fuji” land-
scape. We used it, however, as a baseline comparison
before moving on to more interesting landscapes.

Figures 1 and 2 illustrate results for GA and GA-m on
the NK landscape with K equals zero.
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Figure 1: Average best-so-far curves. GA with distinct
mutation rates on the NK landscape (K = 0)

Figures 3 and 4 show the average best-so-far curves
for a level of epistasis K of two, with and without
recombination.

When recombination is used, it can be clearly noticed
that the lowest mutation rate explored (0.001) pro-

!For the NK experiments, we used the freeware imple-
mentation due to M. Potter
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Figure 2: Average best-so-far curves. GA-m with dis-
tinct mutation rates on the NK landscape (K = 0)
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Figure 3: Average best-so-far curves. GA with distinct
mutation rates on the NK landscape (K = 2)

duces the best results over the entire algorithm run
(Figures 1 and 3). This is more evident for the more
epistatic landscape — when K equals two (Figure 3).
On the other hand, for the GA without recombination
(GA-m), the higher mutation rates (0.005 and 0.01)
speed up noticeably the search process at the begin-
ning and intermediate stages of the search (Figures 2
and 4), however, by the final stages of the run the low-
est mutation rate curve (0.001) approaches the other
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Figure 4: Average best-so-far curves. GA-m with dis-
tinct mutation rates on the NK landscape (K = 2)

two, and finally reaches the highest fitness values.

4.2 MULTIMODAL GENERATOR
EXPERIMENTS *2

Experiments were run for 1, 100, and 500 peaks prob-
lems. Figures 5 and 6 show the average best-so-far
curves for a GA with and without recombination on
1 peak problems. Figures 7 and 8 show the average
best-so-far curves for for GA and GA-m on 100 peaks
problems, whereas Figures 9 and 10 do so on 500 peaks
problems.

Again, when recombination is used, the lowest muta-
tion rate explored (0.001) produces the best perfor-
mance over the entire algorithm run for 1, 100 and
500 peaks problems (Figures 5, 7, and 9). Moreover,
it can be clearly seen that while increasing the num-
ber of peaks, the effect is more pronounced. In other
words, the difference between the best-so-far curves is
more noticeable.

Without recombination, again, the higher mutation
rates explored (0.005 and 0.01) increased performance
at early stages (Figures 6, 8 and 10). Note, however,
that eventually the performance curves for the low-
est mutation rate (0.001) pick up in later generations.
This occurs earlier for the more complex landscapes
(those with 100 and 500 peaks — Figures 8 and 10).
What appears to be happening is that at later stages

2For the multimodal generator experiments, we used the
freeware implementation due to W. Spears
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Figure 5: Average best-so-far curves. GA with distinct
mutation rates on the multimodal landscape (1 peak)
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Figure 6: Average best-so-far curves. GA-m with dis-
tinct mutation rates on the multimodal landscape (1
peak)

of the search, only a few bits need to be changed, and
a high mutation rate might have a disruptive effect.

5 DISCUSSION

In this paper we used the so-called problem generators
to empirically explore optimal mutation rates for GAs
with and without recombination. The main conclusion
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Figure 7: Average best-so-far curves. GA with dis-
tinct mutation rates on the multimodal landscape (100
peaks)
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Figure 8: Average best-so-far curves. GA-m with dis-
tinct mutation rates on the multimodal landscape (100
peaks)

holds for all the scenarios studied: the optimal muta-
tion scheme for a genetic algorithm differs according to
whether recombination is used or not. For a GA with
mutation and selection only, the search process bene-
fits from starting with a relatively high mutation rate,
decreasing it towards the final stages of the search.
These results are in agreement with previous observa-
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Figure 9: Average best-so-far curves. GA with dis-
tinct mutation rates on the multimodal landscape (500
peaks)
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Figure 10: Average best-so-far curves. GA-m with
distinct mutation rates on the multimodal landscape
(500 peaks)

tions reported in the literature that a time-dependent
variation of the mutation rate may improve GA perfor-
mance [Fogarty, 1989, Miihlenbein, 1992, Bick, 1991,
Béck, 1993].

On the other hand, when recombination is used, a
constant, relatively low mutation rate seems to be



the optimal strategy. In this case, selecting an exces-
sively high mutation rate — over the error threshold
— considerably degrades the algorithms performance.
This effect was shown to be more pronounced for more
“complex” landscapes (i.e. with higher levels of epis-
tasis or multimodality or both).

The proposed explanation for the observed effect of re-
combination on optimal mutation rates, is as follows:
the notion of optimal mutation rates is related to the
notion of error thresholds. Thus, the effects of recom-
bination on error thresholds, described in some de-
tail in section 2.1, occurs as well on optimal mutation
rates.

Here, we highlight our interpretation of the observed
results, which proposes a novel argument about the
important role of recombination in EAs. Recombina-
tion performs a dual-role in genetic search according to
the level of genetic convergence of the population. At
the beginning of the algorithm’s run, when the popula-
tion is scattered over the search space, recombination
acts as a diverging operation, thus increasing the algo-
rithm’s search power and speeding up the process. In
this role, it can be said that recombination acts as a
sort of “macro-mutation” operator. Towards the final
stages of the search, however, when the population is
more genetically homogeneous, recombination can fo-
cus the population around the fitness optimum. In
this second role, recombination acts as an error repair
mechanism, helping in getting rid of deleterious mu-
tations. We conclude, then, that there is no need of
implementing a time-dependent mutation regime when
recombination is used: recombination implicitly does
this job for us. This confers a great advantage and
encourages, in our opinion, the use of recombination
in EAs.

About the generality of these results, we must add
that some other more traditional test functions were
also investigated: the one-max function, the royal road
function, and some functions from classical optimiza-
tion test suites. Due to space limitations, we can only
briefly state that similar results were obtained. We
know, however, that despite all these efforts, it cannot
be categorically assured that these results apply to all
problem domains. It would be interesting to test these
ideas on some real-world applications.

Another scenario where this ideas should be explored
is on landscapes with neutrality (the extent to which
distinct genotypes have the same or very similar fitness
values) [Barnett, 1997]. The concept of error thresh-
olds can be extended to such landscapes, and future
work will investigate whether there is a similar corre-
lation with optimal mutation rates in this scenario.

Preliminary experiments suggest that these results
also hold for other crossover operators, such as one-
point and uniform crossover. Higher crossover rates
were also tested, and results suggest that the main
conclusions not only hold but are more pronounced.
What remains to be studied is the effect of chang-
ing both population size and chromosome length. We
strongly believe that optimal mutation rates depend
on the values of the above two parameters. However,
the main conclusions presented here, most probably
hold qualitatively.

In the light of these results, we propose two general
heuristics for setting GA parameters:

e When recombination is used, the mutation rate
must be sufficiently small and constant over the
entire run.

e When recombination is not used, a regime that
starts with a high mutation rate, decreasing it
towards the end of the run, may accelerate the
search process.

We argue that these heuristics have to be specially
considered when empirically comparing the relative
importance of mutation and recombination in genetic
search. To be fair, comparisons should be made select-
ing the optimal mutation scheme for each strategy.

Some final words about methodology are worth men-
tioning. We strongly support the use of “test-problem
generators” as an empirical methodology, due to its ad-
vantages mentioned above. In particular, we strongly
agree that from both an engineering and scientific
standpoint, it is crucial to consider the dynamic as-
pects of EAs by including results throughout their en-
tire run.
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