THE ARTIFICIAL EVOLUTION OF CONTROL SYSTEMS

P Husbands, I Harvey, D Cliff, A Thompson, N Jakobi

University of Sussex, England

ABSTRACT

Recently there have been a number of proposals for
the use of artificial evolution as a radically new ap-
proach to the development of robot control systems.
This paper explains and justifies the evolutionary
robotics methodology developed and used at Sus-
sex University. Results are presented from research
into the concurrent evolution of dynamical network
controllers and visual sensor morphologies for an au-
tonomous mobile robot. Successful experiments to
evolve robot controllers directly in hardware, thus
allowing advantage to be taken of intrinsic silicon
physics, are also discussed. The implications of re-
cent work in using high quality engineering simula-
tions to evolve control systems for real robots will
are covered.

INTRODUCTION

When designing a control system for a robot, there
are at least three major problems:

e It is not clear how a robot control system should
be decomposed.

e Interactions between separate sub-systems are not
limited to directly visible connecting links, but also
include interactions mediated via the environment.
e As system complexity grows, the number of po-
tential interactions between sub-parts of the system
grows exponentially.

Classical approaches to robotics have often as-
sumed a primary decomposition into Perception,
Planning and Action modules. Many people now see
this as a basic error [3, 2]. Brooks acknowledges the
latter two problems above in his subsumption archi-
tecture approach. This advocates slow and careful
building up of a robot control system layer by layer,
in an approach that is explicitly claimed to be in-
spired by natural evolution — though each new layer
of behaviour i1s wired in by hand design.

An obvious alternative approach is to abandon
hand design and explicitly use evolutionary tech-
niques to incrementally evolve increasingly complex
robot control systems. Unanticipated interactions
between sub-systems need not directly bother an evo-
lutionary process where the only benchmark is the
behaviour of the whole system. The basic notion of
Evolutionary Robotics, then, 1s as follows. The evo-
lutionary process, based on a genetic algorithm [8],

involves evaluating, over many generations, whole
populations of control systems specified by artificial
genotypes. These are interbred using a Darwinian
scheme in which the fittest individuals are most likely
to produce offspring. Fitness is measured in terms of
how good a robot’s behaviour is according to some
evaluation criterion. The work reported here forms
part of a long-term study to explore the viability of
such an approach in developing interesting adaptive
behaviours in visually guided autonomous robots,
and, through analysis, in better understanding gen-
eral mechanisms underlying the generation of such
behaviours. It is one of the strands of the research
program of the Evolutionary and Adaptive Systems
Group, School of Cognitive and Computing Sciences,
University of Sussex. For further details see e.g. [5].

WHAT AND HOW TO EVOLVE

We must choose appropriate building blocks for evo-
lution to work with. Primitives manipulated by
the evolutionary process should be at the lowest
level possible. Any high level semantic groupings
inevitably incorporate the human designer’s preju-
dices. We agree with Brooks [3] in dismissing the
classical Perception, Planning, Action decomposition
of robot control systems. Instead we see the robot
as a whole — body, sensors, motors and ‘nervous
system’ — as a dynamical system coupled (via sen-
sors and motors) with a dynamic environment [1].
Hence the genotype should encode at the level of the
primitives of a dynamical system.

One such system 1s a dynamic recurrent neural net
(DRNN), with genetic specification of connections
and of the timescales of internal feedback. These
DRNNs can in principle simulate the temporal be-
haviour of any finite dynamical system, and are
equivalent (with trivial transformations) to Brooks’
subsumption architectures. We also deliberately in-
troduce internal noise at the nodes of DRNNs, with
two effects. First, it makes possible new types of
feedback dynamics, such as self-bootstrapping feed-
back loops and oscillator loops. Second, it helps to
make more smooth the fitness landscape on which
the GA is operating.

In ER a genotype will specify the control system of
a robot which is expected to produce appropriate be-
haviours. The number of components required may
be unknown @ priori; and when using incremental

evolution, through successively more difficult tasks,
the number of components needed will increase over
time. Such incremental evolution calls for GAs as
adaptive improvers rather than GAs as optimisers.

Species Adaptation Genetic Algorithms (SAGA)
were developed for this purpose [7]. It was shown
that progress through such a genotype space of in-
creasing complexity will only be feasible through
gradual increases in genotype length; this implies the
evolution of a species — the population is largely
genetically converged. With successive generations,
selection is a force which tends to move such a pop-
ulation up hills on a fitness landscape, and keep it
centred around a local optimum; whereas mutation
explores outwards from the current population. For
a given selection pressure, there is a maximum rate
of mutation which simultaneously allows the popu-
lation to retain a hold on its current hill-top, whilst
maximising search along relatively high ridges in
the landscape, potentially towards higher peaks. In
SAGA, this means that rank-based selection should
be used to maintain a constant selective pressure,
and mutation rates should be of the order of 1 mu-
tation per genotype [7].

SIMULATION?

A number of New-Wayve roboticists have consistently
warned of the dangers of working with over-simple
unvalidated robot simulations [3, 2, 12]. Indeed,
as Smithers has pointed out [12], the word simula-
tion has been somewhat debased in the fields of Al,
robotics, and animat research. Many so-called sim-
ulations are abstract computer models of imaginary
robot-like entities, not carefully constructed models
of realrobots. Whereas these abstract models can be
very useful in exploring some aspects of the problem
of control in autonomous agents, great care must be
taken in using them to draw conclusions about be-
haviour in the real world. Unless their limitations
are recognised, they can lead to both the study of
problems that do not exist in the real world, and the
ignoring of problems that do [2]. Behaviours devel-
oped in a simulation worthy of the name must cor-
respond closely to those achieved when the control
system is down-loaded onto the real robot.

One area of New-Wave robotics where these is-
sues may be particularly pertinent is evolutionary
robotics [9]. Two of the earliest papers on this topic
both stressed the likelyhood of having to work largely
in simulation to overcome the time consuming na-
ture of doing all the evaluations in the real world
[4, 9]. However, both discussed the potential prob-
lems with simulations and remarked on the great care
that would have to be taken. In [4], Brooks was
highly sceptical':

1Tt is likely that these comments were influenced by expe-
riences with devices rather different to the robot used in the

There is a real danger (in fact, a near
certainty) that programs which work well
on simulated robots will completely fail on
real robots because of the differences in real
world sensing and actuation — 1t is very hard
to simulate the actual dynamics of the real
world.

and later,

...[sensors] ...simply do not return
clean accurate readings. At best they de-
liver a fuzzy approximation to what they
are apparently measuring, and often they
return something completely different.

But since the aim of evolutionary robotics is to pro-
duce working real robots, if simulations are to be
used, these problems must be faced. The question is
how. In [9] it is argued that:

e The simulation should be based on large quan-
tities of carefully collected empirical data, and
should be regularly validated.

e Appropriately profiled noise should be taken
into account at all levels.

e The use of networks of adaptive noise tolerant
units as the key elements of the control systems
will help to ‘soak up’ discrepancies between the
simulation and the real world.

e Noise added n addition to the empirically de-
termined stochastic properties of the robot may
help to cope with the inevitable deficiencies of
the simulation by blurring them. A control
system robust enough to cope with such an
envelope-of-noise may handle the transfer from
simulation to reality better than one that can-
not deal with uncertainty over and above that
inherent in the underlying simulation model.

With these questions in mind Jakobi [10] built a
simulator, Khepsim, and conducted a number of ex-
periments. The simulation is based on a spatially
continuous, two dimensional model of the underly-
ing real world physics and not on a look-up table
approach as in [11] (parameters were set using em-
pirical information from a Khepera). This affords
greater generality with respect to new environments
and unmodelled situations although at some compu-
tational expense. The simulation is updated once
every 100 simulated milliseconds: the rate at which
the inputs and outputs of the neural network control
architectures are processed. This results in relatively
coarse time slicing, some of the effects of which may
be moderated by noise.

Neural networks evolved in simulation evoked
qualitatively similar behaviour on the real robot, the

experiments described later. This issue is returned to in the
Conclusions.

Zero Noise #3

O O]

ein e
S

Figure 1: Obstacle avoidance: from simulation to reality. These six pictures display the situated and simulated behaviours of
three different neural network controllers, one taken from each noise class. The #s refer to Table 1.

correspondence being a matter of degree rather than
binary valued. The following experiments were de-
signed to inspect two factors that affect this corre-
spondence: the nature of the behaviour itself and the
level of noise present in the simulation.

For each of two behaviours, obstacle avoiding and
light seeking, three sets of five evolutionary runs were
performed, one set for each of three different noise
levels. These three noise levels were set at zero noise,
observed noise and double observed noise. Observed
noise (on sensors, motors etc.) refers to a roughly
Gaussian distribution with standard deviation equal
to that empirically derived from experiments. Dou-
ble observed noise refers to the same distribution
with double the standard deviation. As expected,
it was found that in general, networks evolved in an
environment that is less noisy than the real world
will behave more noisily when downloaded onto the
Khepera and, conversely, networks evolved in an en-
vironment that is noisier than the real world will be-
have less noisily when downloaded. Simulation to sit-
uation correspondence seems to be maximised when
the noise levels of the simulation have similar ampli-
tudes to those observed in reality. The behaviours
shown in Figures 1 and 2 graphically illustrate this.

For both obstacle avoidance and light-seeking, the
set of experiments running under observed noise ob-
tained the highest average behaviour score. In a
zero noise environment, brittle ‘hit or miss’ strate-

gies tend to evolve which either score incredibly well
or incredibly badly on each fitness trial, depending
on their initial random starting positions. Although
noise, in general, blurs the fitness landscape, reduc-
ing the possibility of ‘hit or miss’ strategies evolving
(since they are far more likely to ‘miss’ rather than
‘hit’), too much randomness in the environment, as
in the double noise case, ensures that the same geno-
types may again achieve very different scores on two
otherwise identical fitness evaluations. A balance be-
tween these two cases seems to be achieved at the
observed noise level.

One conclusion from these experiments is that sim-
ulations can in some circumstances be good enough
to be used for artificial evolution, with the resulting
designs successfully downloaded onto a real Khep-
era. It seems likely that there are strong limitations
on how far it is realistic to extend this approach.

A second conclusion is that the noise used in such
simulations should be at a level similar to that ob-
served experimentally. If there is a significant differ-
ence in noise levels, then whole different classes of
behaviours become available which, while acquiring
high fitness scores in simulation, necessarily fail to
work in reality. This is true both for too little noise,
and for too much noise.

Zero Noise #1 Observed Noise #5 Double Noise #4
e
7 T

Figure 2: Light seeking: from simulation to reality. These six pictures display the situated and simulated behaviours of three
different neural network controllers, one taken from each noise class. The #s refer to Table 2.

REAL WORLD EVOLUTION

The research described in the previous section
showed that control systems evolved in carefully con-
structed simulations, with an appropriate treatment
of noise, transfer extremely well to reality, generating
almost identical behaviours in the real robot. How-
ever, this example involved relatively simple robot-
environment interaction dynamics. Once even low-
bandwidth vision is used, simulations become alto-
gether more problematic. They become difficult and
time consuming to construct and computationally
very intensive to run. Hence evolving visually guided
robots in the real world becomes a more attractive
option. The experiment described next uses a piece
of robotic equipment specially designed to allow the
real-world evolution of visually guided behaviours —
the Sussex gantry-robot.

THE GANTRY-ROBOT

The gantry-robot is shown in Figures 3 and 4. The
robot is cylindrical, some 150mm in diameter. It is
suspended from the gantry-frame with stepper mo-
tors that allow translational movement in the X and
Y directions, relative to a co-ordinate frame fixed to
the gantry . The maximum X (and Y) speed is about
200mm/s. Such movements, together with appro-
priate rotation of the sensory apparatus, correspond
to those which would be produced by left and right
wheels. The visual sensory apparatus consists of a
C¢CD camera pointing down at a mirror inclined at
45° to the vertical. The mirror can be rotated about

a vertical axis so that its orientation always corre-
sponds to the direction the ‘robot’ is facing. The
visual inputs undergo some transformations en route
to the control system, described later. The hard-
ware is designed so that these transformations are
done completely externally to the processing of the
control system.

The control system for the robot is run off-board
on a fast personal computer, the ‘Brain PC’. This
computer receives any changes in visual input by
interrupts from a second dedicated ‘Vision PC’. A
third (single-board) computer, the SBC, sends in-
terrupts to the Brain PC signalling tactile inputs re-
sulting from the robot bumping into walls or physical
obstacles. The only outputs of the control system are
motor signals. These values are sent, via interrupts,
to the SBC, which generates the appropriate stepper
motor movements on the gantry.

The Brain PC runs the top-level genetic algorithm
and during an individual evaluation, it is dedicated
to running a genetically specified control system for
a fixed period. At intervals during an evaluation,
a signal is sent from the Brain PC to the SBC re-
questing the current position and orientation of the
robot. These are used in keeping score according to
the current fitness function. The Brain PC receives
signals, to be fed into the control system, represent-
ing sensory inputs from the Vision PC and the SBC.
The visual signals are derived from averaging over
genetically specified circular receptive patches in the
camera’s field of view.

This setup, with off-board computing and avoid-
ance of tangled umbilicals, means that the apparatus

5

Figure 3: The Gantry viewed from above. The hori-
zontal girder moves along the side rails, and the robot is
suspended from a platform which moves along this girder.

Figure 4: The gantry-robot. The camera inside the top
box points down at the inclined mirror, which can be
turned by the stepper-motor beneath. The lower plastic
disk is suspended from a joystick, to detect collisions with
obstacles.

can be run continuously for long periods of time —
making artificial evolution feasible. A top-level pro-
gram automatically evaluates, in turn, each member
of a population of control systems. A new popula-
tion is produced by selective interbreeding and the
cycle repeats. For full technical details of the system

see [6].

EXPERIMENTAL SETUP

Full details of the experimental setup for the gantry-
robot can be found in [6]. This paper also explains
in full the genetic encodings used and the control
system primitives manipulated by the GA. Experi-
ments conducted with the gantry-robot to date have
all involved relatively simple vision based navigation
tasks. The experiment described below was one of

a series where a converged population of robots was
evolved through a series of increasingly complex be-
haviours.

These were based around the evolution of control
architectures built from recurrent dynamic realtime
networks, where the primitives were the nodes in a
network, and links between them. There were no
restrictions on network topologies, arbitrarily recur-
rent nets being allowed. When some of these nodes
are connected to sensors, and some to actuators,
the network acts as a control system, generating be-
haviours in the robot.

Rather than imposing a fixed visual sampling mor-
phology, we believe a more powerful approach is to
allow the visual morphology to evolve along with
the rest of the control system. Hence we genetically
specify regions of the robot’s visual field to be sub-
sampled, these provide the only visual inputs to the
control network. It would be desirable to have many
aspects of the robot’s morphology under genetic con-
trol, although this is not yet technically feasible.

Starting from a converged population of robots
that could move forward, but little else, the first task
was to move to a large white target from random
starting points and orientations. Once this was be-
ing achieved, the task was changed to approaching a
small white target and evolution continued.

RECTANGLES AND TRIANGLES

The experiment then continued with a distinguish-
between-two-targets task. Two white paper targets
were fixed to one of the gantry walls; one was a rect-
angle, the other was an isosceles triangle with the
same base width and height as the rectangle. The
robot was started at four positions and orientations
near the opposite wall such that it was not biased
towards either of the two targets. The evaluation
function &3, to be maximised, was:

1=20

Ea= Y [A(D1, —di,) = o(Daydo)] (1)

i=1

where D is the distance of target-1 (in this case the
triangle) from the gantry origin; d; is the distance
of the robot from target-1; and D, and d» are the
corresponding distances for target-2 (in this case the
rectangle). These are sampled at regular intervals, as
before. The value of 5 is (D1 — dy) unless dj is less
than some threshold, in which case it is 3 x (Dy —dy).
The value of o (a penalty function) is zero unless ds
is less than the same threshold, in which case 1t 1s
I — (D2 — da), where T is the distance between the
targets; 7 is more than double the threshold distance.
High fitnesses are achieved for approaching the tri-
angle but ignoring the rectangle. It was hoped that
this experiment might demonstrate the efficacy of
concurrently evolving the visual sampling morphol-
ogy along with the control networks.

1 '_\ 51 1 r
VoY 4 W
i Tf\. -7
N \
PAREE N -
4 1 . i
ey \'\. L
~ 2
“u .
ol
\\
[| W

Figure 5: Behaviour of a fit individual in the two target
environment. The rectangle and triangle indicate the po-
sitions of the targets. The semi circles mark the ‘penalty’
(near rectangle) and ‘bonus score’ (near triangle) zones
assoctated with the fitness function. In these 4 runs the
robot was started directly facing each of the two target,
and twice from a position midway between the two tar-
gets; once facing into the wall and once facing out.

+ve

_ve LEFT MOTOR

Key same as in earlier network diagrams.

VISUAL MORPHOLOGY

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 6: Active part of the control system that generated
fit behaviour for the rectangle and triangle experiment.
Visual morphology shown inset.

After about 15 generations of a run using as an ini-
tial population the last generation of the incremental
small target experiment, fit individuals emerged ca-
pable of approaching the triangle, but not the rect-
angle, from each of the four widely spaced starting
positions and orientations. The behaviour generated
by the fittest of these control systems is shown in
Figure 5. When started from many different posi-
tions and orientations near the far wall, and with the
targets in different positions relative to each other,
this controller repeatedly exhibited very similar be-
haviours to those shown.

The active part of the evolved network that gen-
erated this behaviour is shown in Figure 6. The
evolved visual morphology for this control system is
shown inset. Only receptive fields 1 and 2 were used
by the controller.

Detailed analyses of this evolved system can be
found in [6]. To crudely summarise, unless there is
a difference in the visual inputs for receptive fields
1 and 2, the robot makes rotational movements.
When there is a difference it moves in a straight line.
The visual sensor layout and network dynamics have
evolved such that it fixates on the sloping edge of the
triangle and moves towards it.

TRANSIENT BEHAVIOUR

Time plots of behaviour against this difference in vi-
sual inputs consistently revealed an interesting non-
reactive feature to the robot’s behaviour. Figure
7 shows such a plot. The behaviour axis (Z) is
discretized into simple observable motor behaviours
such as straight line motion, rotating on the spot,
movement in the arc of a circle and so on. The fi-
nal part of the plot, a line parallel to the time axis
and terminating at the point marked ‘finish’” at the
right hand side of the cube, represents the straight
line motion when the robot has fixated on the trian-
gle edge and is moving towards it. The parallel line
above this and immediately to the left represents a
short lived transient behaviour which such plots re-
vealed always occurred when the visual signal differ-
ence become large. Briefly, the onset of a large dif-
ference triggers a short sharp rotational movement
which has very different consequences depending on
whether the robot has fixated on a vertical or slop-
ing edge. With a vertical edge, the rotation tends
to move both receptors off the target, the visual sig-
nals become very different and rotational behaviours
ensue. However, with a sloping edge, the rotation
is not enough to move both receptive fields off the
target; the visual signal difference is still there and
a straight line motion follows. This is illustrated in
Figure 8. This behaviour can be interpreted as a
kind of ‘checking’ of edge orientation.

EVOLVABLE HARDWARE

The work discussed so far has generally used a ge-
netically specified dynamical system as the control
system for a simulated or real robot. But this dy-
namical system, for instance when conceptualised as
a DRNN, has in practice been implemented on a
computer. There is a related approach of evolving
control systems directly onto hardware, which has
been taken within our group by Thompson [13].
This work 1s intrinsic hardware evolution, in that
for each genetically specified piece of hardware, the
actual hardware is tested in situ; as contrasted with
extrinsic hardware evolution, where simulations of
the hardware are evaluated during evolution. The ac-
tual low-level physics of the hardware can be utilised,
and the realtime dynamics operate at their proper
timescales. Qur notion of the nature of electronic

(6000,0.4,4)

]/{ﬁmsh

(6000,0,0)

J0.-0:57,0)

Figure 7: Time plot of behaviour against difference in
visual inputs for receptive fields 1 and 2. The time axis
(X) runs left to right, the visual signal difference azis
(Y) runs bottom to top on the lower face of the cube,
the behaviour azis (Z) runs from lower to top face of the
cube. See text for further details.

O O P B receptive patches

== edge of paper target

- goes into rotational behaviour

small rotation

-

-

small rotation goes into straight-line behaviour

EDGE ORIENTATION ‘CHECKING” BEHAVIOUR

Figure 8: The top part of the figure illustrates the out-
come of the transient ‘checking’ behaviour when the re-
ceptive fields straddle a vertical edge, and the bottom part
shows the same when they straddle a sloping edge.

systems is heavily biased by our design methodolo-
gies and the constraints applied to facilitate their
abstractions, so evolvable hardware demands a rad-
ical rethink of what electronic circuits can be. Both
the spatial structure (modularity) and the temporal
structure (synchronisation and the role of phase in
general) need to be considered.

With digital design by conventional methods, care
must be taken to prevent switching transients (a fea-
ture absent from the designer’s model) from affecting
the system’s overall behaviour. Usually, this means
that the circuit is broken into modules, the inter-
nal transient dynamics of which are hidden from
each other. Real physical electronic circuits are
continuous-time dynamical systems. They can dis-
play a broad range of dynamical behaviour, of which
discrete-time systems, digital systems and even com-
putational systems are but subsets. These subsets

are much more amenable to design techniques than
dynamical electronic systems in general, because the
restrictions to the dynamics that each subset brings
support design abstractions. Intrinsic EHW does not
require abstract models, so there is no need to con-
strain artificially the dynamics of the reconfigurable
hardware being used.

In particular, there no longer needs to be an en-
forced method of controlling the phase (temporal co-
ordination) in reconfigurable hardware originally in-
tended to implement digital designs. The phase of
the system does not have to be advanced in lock-step
by a global clock, nor even the local phase-controlling
mechanisms of asynchronous digital design method-
ologies imposed.

In one simulation experiment [13], Thompson
demonstrated that a network of high-speed logic
gates could be evolved to oscillate at a much slower
timescale. At the start of the experiment, each of
100 logic nodes was assigned a real-valued propa-
gation delay, selected uniformly randomly from the
range 1.0 to 5.0 nanoseconds. The genotype spec-
ified the boolean function performed at each node,
and the connectivity between nodes. Evolution was
performed on a population of such genotypes, which
were evaluated on the basis of the average period
between logic transitions at one specified node: the
closer to a square wave oscillation of 1kHz, the fit-
ter. After 40 generations under this selection pres-
sure, the output of the best individual was approx-
imately 4% thousand times slower than the best of
the random initial population, and was six orders of
magnitude slower than the propagation delays of the
nodes. Fitness was still rising at generation 40 when
the simulation was terminated.

Thompson then used artificial evolution to design
a real EHW circuit as an on-board controller for a
two-wheeled autonomous mobile robot (diameter of
46cm, a height of 63cm) required to display simple
wall-avoidance behaviour in an empty 2.9mx4.2m
rectangular arena. For this scenario, the d.c. motors
driving the wheels were not allowed to run in reverse
and the robot’s only sensors were a pair of time-of-
flight sonars rigidly mounted on the robot, pointing
left and right. The sonars fire simultaneously five
times a second; when a sonar fires, its output changes
from logic 0 to logic 1 and stays there until the first
echo is sensed at its transducer, at which time its
output returns to 0.

Conventional design methods would preprocess
the sonar output pulses to give indications of the
range to the nearest objects. From these, a central
controller would be a hardware implementation of a
finite-state machine (FSM), with the next-state and
output functions designed so as to compute appro-
priate motor speeds for each wheel. For each wheel, a
pulse-width modulator would take the binary repre-
sentation of motor speed from the central controller

Sonars Evolved RAM Contents

= =

\ 1k by 8 bits RAM \
‘ 10 Address inputs ‘ 8 Data outputs ‘

===

1 1 10 6 11
G.L.

’/,] T

Evolved|
Clock
Motors

Figure 9: The hardware implementation of the evolv-
able DSM. ‘G.L.”stands for a bank of genetic latches:
it 1s under genetic control whether each signal is
passed straight through asynchronously, or whether
it 1s latched according to the global clock of evolved
frequency.

and vary the mark:space ratio of pulses sent to the
motor accordingly.

It would be possible to evolve the central controller
FSM as intrinsic EHW by implementing the next-
state and output functions as look-up tables held
in an off-the-shelf random access memory (RAM)
chip.2. The FSM would then be specified by the
bits held in the RAM, which could be reconfigured
under the control of each individual’s genotype in
turn. There would be no benefit in evolving this
architecture as hardware, however, because the elec-
tronics is constrained to behave in accordance with
the FSM design abstraction: all of the signals are
synchronised to a global clock to give clean, deter-
ministic state-transition behaviour as predicted by
the model. Consequently, the hardware would be-
have 1dentically to a software implementation of the
same FSM.

The alternative approach taken here is to relax the
constraint of synchronisation of all signals, and place
it under evolutionary control. The global clock fre-
quency is under genetic control, as also is the choice
of whether each signal is synchronised (latched) by
the clock or asynchronous. This new architecture is
termed a Dynamic State Machine (DSM). Tt is not a
finite-state machine because a description of its state
must include the temporal relationship between the
asynchronous signals, which is an real-valued ana-
logue quantity. In the conventionally designed con-
trol system there was a clear sensory/control/motor
decomposition (timers/controller/pulse-
width-modulators), communicating in atemporal bi-
nary representations which hid the real-time dynam-

2This is the well known ‘Direct Addressed ROM’ imple-

mentation of an FSM

"l
5

Figure 10: Wall avoidance in virtual reality and (bot-
tom right) in the real world, after 35 generations.
The top pictures are of 90 seconds of behaviour, the
bottom ones of 60.

ics of the sensorimotor systems, and the environment
linking them, from the central controller. Now, the
evolving DSM is intimately coupled to the real-time
dynamics of its sensorimotor environment, so that
real-valued time can play an important role through-
out the system. The evolving DSM can explore
special-purpose tight sensorimotor couplings because
the temporal signals can quickly flow through the
system being influenced by, and in turn perturbing,
the DSM on their way.

For convenience, evolution took place with the
robot in a kind of ‘virtual reality.” The real evolving
hardware controlled the real motors, but the wheels
were just spinning in the air. The wheels’ angular
velocities were measured, and used by a real time
simulation of the motor characteristics and robot dy-
namics to calculate how the robot would move. The
sonar echo signals were then artificially synthesised
and supplied in real time to the hardware DSM. Re-
alistic levels of noise were included in the sensor and
motor models, both of which were constructed by fit-
ting curves to experimental measurements, including
a probabilistic model for specular sonar reflections.

Fig. 10 shows the excellent performance which was
attained after 35 generations, with a good trans-
fer from the virtual environment to the real world.
The robot is drawn to scale at its starting posi-
tion, with its initial heading indicated by the ar-
row; thereafter only the trajectory of the centre of
the robot is drawn. The bottom-right picture is a
photograph of behaviour in the real world, taken by
double-exposing a picture of the robot at its start-
ing position, with a long exposure of a light fixed on
top of the robot, moving in the darkened arena. If
started repeatedly from the same position in the real
world, the robot follows a different trajectory each
time (occasionally wvery different), because of real-
world noise. The robot displays the same qualitative
range of behaviours in the virtual world, and the bot-

tom pictures of Fig. 10 were deliberately chosen to il-
lustrate this. One of the evolved wall-avoiding DSMs
was analysed, and found to be going from sonar echo
signals to motor pulses using only 32 bits of RAM
and 3 flip-flops (excluding clock generation): highly
efficient use of hardware resources, made possible by
the absence of design constraints.

Further experiments are demonstrating that evo-
lution may be an effective method of producing hard-
ware tolerant to single-stuck-at (SSA) faults in the
RAM’s memory array. Evolutionary search with a
population, tends to seek high local areas in the fit-
ness landscape, rather than single high points. A
local, area is here defined as nearby points in geno-
type space, points reachable from each other by a sin-
gle mutation, or a very small number. Experiments
reported in [14] show, by simulating the effects of
adverse SSA faults, that fault-tolerance does indeed
develop under evolution.

CONCLUSIONS

Evolutionary Robotics is a research area in its in-
fancy; the tests for all newborn Al philosophies are
whether they can grow up into the real world, and
scale up with increasing complexity. In the evolu-
tionary experiments at Sussex we have started to
demonstrate the possibilities in simulation, on real
robots, and directly in silicon.

References

[1] R.D. Beer and J.C. Gallagher. Evolving dy-
namic neural networks for adaptive behavior.

Adaptive Behavior, 1(1):91-122, 1992.

[2] R.A. Brooks. Intelligence without reason. In
Proceedings IJCAI-91, pages 569-595. Morgan
Kaufmann, 1991.

[3] R.A. Brooks. Intelligence without representa-
tion. Artificial Intelligence, 47:139-159, 1991.

[4] Rodney A. Brooks. Artificial life and real
robots. In F. J. Varela and P. Bourgine, editors,
Proceedings of the First Buropean Conference on
Artificial Life, pages 3—10. MIT Press/Bradford
Books, Cambridge, MA, 1992.

[5] D. Cliff, I. Harvey, and P. Husbands. Explo-
rations in evolutionary robotics. Adaptive Be-

havior, 2(1):73-110, 1993.

[6] I. Harvey, P. Husbands, and D. Cliff. Seeing the
light: Artificial evolution, real vision. In D. CIiff,
P. Husbands, J.-A. Meyer, and S. Wilson, edi-
tors, From Animals to Animats 3, Proc. of 3rd
Intl. Conf. on Simulation of Adaptive Behavior,
SAB’94, pages 392-401. MIT Press/Bradford
Books, 1994.

[7]

[10]

[11]

[13]

Inman Harvey. Evolutionary robotics and
SAGA: the case for hill crawling and tourna-
ment selection. In C. Langton, editor, Artificial
Lafe 111, pages 299-326. Santa Fe Institute Stud-
ies in the Sciences of Complexity, Proceedings
Vol. XVI, Addison-Wesley, Redwood City CA,
1994.

John Holland. Adaptation in Natural and Ar-
tificial Systems. University of Michigan Press,
Ann Arbor, USA, 1975.

P. Husbands and I. Harvey. Evolution versus
design: Controlling autonomous robots. In In-
tegrating Perception, Planning and Action, Pro-
ceedings of 3rd Annual Conference on Artificial
Intelligence, Simulation and Planning, pages

139-146. IEEE Press, 1992.

N. Jakobi, P. Husbands, and I. Harvey. Noise
and the reality gap: The use of simulation in
evolutionary robotics. In F. Moran, A. Moreno,
J.J. Merelo, and P. Chacon, editors, Advances
wm Artificial Life: Proc. 3rd European Confer-
ence on Artificial Life, pages 704-720. Springer-
Verlag, Lecture Notes in Artificial Intelligence
929, 1995.

S. Nolfi, D. Floreano, O. Miglino, and F. Mon-
dada. How to evolve autonomous robots: Dif-
ferent approaches in evolutionary robotics. In
R. Brooks and P. Maes, editors, Artificial Life
1V, pages 190-197. MIT Press/Bradford Books,
1994.

Tim Smithers. On why better robots make it
harder. In D. Cliff, P. Husbands, J.-A. Meyer,
and S. Wilson, editors, From Animals to Ani-
mats 3, Proc. of 3rd Intl. Conf. on Simulation of
Adaptive Behavior, SAB’94, pages b4-72. MIT
Press/Bradford Books, 1994.

A. Thompson. Evolving electronic robot con-
trollers that exploit hardware resources. In
F. Moran, A. Moreno, J.J. Merelo, and P. Cha-
con, editors, Advances in Artificial Life: Proc.
3rd Furopean Conference on Artificial Life,
pages 640-656. Springer-Verlag, Lecture Notes
in Artificial Intelligence 929, 1995.

A. Thompson, I. Harvey, and P. Husbands. Un-
constrained evolution and hard consequences. In
E. Sanchez and M. Tomassini, editors, Towards
Evolvable Hardware. Springer-Verlag, 1996.

