Non-Symbolic Al lecture 8
CASY F

Backpropagation in a multi-layer perceptron

Ievpn Kinics

“%

it JA peompubed Trcess eTne o

CHILE Noases

I
- T = [§ K =gy g
& ol |'-I.'[.. ergh erbeeilk
J 'n'bll-u: -.r-;ll'll.

Non-Sumbolic Al lec 8 Summer 2005 /

Jiggling the weights in each layer

When we present the training sets, for each Input we have an
actual Output, compared with the Target gives the Error

ErrorE=T-0

Backprop allows you to use this error-at-output to adjust the
weights arriving at the output layer

... but then also allows you to calculate the effective error ‘1
layer back’, and use this to adjust the weights arriving there

.. and so on back-propagating errors through any number of
layers

Non-Sumbolic Al lec 8 Summer 2005

Differentiable sigmoid

The trick is the use of a sigmoid as the non-linear transfer
function 1

y=g(x)= —
l+e

Because this is nicely differentiable — it so happens that

Z’_g =g'(x)=g(x)(1-g(x))
x

Non-Sumbolic Al lec 8 Summer 2005

How to do it in practice

For the details, consult a suitable textbook

e.g. Hertx, Krogh and Palmer “Intro to the Theory of Neural
Computation” Addison Wesley 1991

But here is a step by step description of how you have to code it
up.

Non-Sumbolic Al lec 8 Summer 2005

Initial decisions

Truiat Unies

Decide how many inputs you have.

Add one more pseudo-input : ,;
(clamped to value 1) for biases in [f’zi A
next layer. LI et

Decide how many hidden nodes you have. Add one more,
clamped to value 1, for biases to next layer.

Probably you just have 1 hidden layer, tho in principle can be
more.

Decide how many output nodes you have.

Non-Sumbolic Al lec 8 Summer 2005

Weights

Now you can make vectors holding all the weights. Suppose
there are a input units, b hidden units, ¢ output units

float i_to_h_wts[a+1][b];
float h_to_o_wts[b+1][c];
The +1 in each case is to account for the biases.

Initialise all the weights to small random values.

Non-Sumbolic Al lec 8 Summer 2005

Presenting the inputs

Now we are going to present members of the training set to the
network, and see what outputs result — and how good they are.

We could present a whole batch from the training set, and
calculate how to jiggle the weights on the basis of all the errors

Or we can do it incrementally, one at a time. This is what we shall
do — present a single input vector, calculate the resulting
activations at the hidden and output layers.

First this single pass forward.

Non-Sumbolic Al lec 8 Summer 2005

Activations

We need vectors(or arrays) to hold the activations at each layer.

float inputs[a+1]; inputs[a]=1.0; /* bias */

float hidden[b+1]; hidden[b]=1.0; /* bias */

float outputs|c];

float targets|c]; [* what the outputs should be */

Pick out one of the training set, and set the input values equal to
this member.

Now calculate activations in hidden layer

Non-Sumbolic Al lec 8 Summer 2005

Forward to Hidden layer

for (i=0;i<b;i++) {
sum=0.0;
for (j=0;j<a+1;j++)
sum += inputs[j] * i_to_h_wts][j][i];

hidden[i] = sigmoid(sum);

}
Using a sigmoid function you have written to calculate
1
y=8(X)=——
l+e

Non-Sumbolic Al lec 8 Summer 2005

Forward to Qutput layer

CASU

for (iI=0;i<c;i++) {
for (j=0;]

output[i]

Non-Sumbolic Al lec 8

sum=0.0;

<p+1;j++)
sum += hidden[j] * h_to_o_wts[j][i];

= sigmoid(sum);

Summer 2005

10

End of forward pass

<AS Y/ L

Ievprun inics

That has got us all the way forward.

Non-Sumbolic Al lec 8

A poompubesd froes Srne e
il nie=tex

T -F-I-:Ir‘ & e T
[0 |.LI'IFl|1 ek
o i g el g hal

Summer 2005

]

Calculating delta’s

Now for all the nodes, in all bar the first input layer, we are going
to calculate deltas (appropriate basis for changes at those

nodes). e
float delta_hidden[b+1];

float delta_outputs|c];
—_ !
The underlying formula used is 0,=g (x)[Tl — Ol,]

Which convenientlyis 5 __ g(x)(1- g(x)[T. — 0-]

Non-Sumbolic Al lec 8 Summer 2005 19

Deltas on output layer

for (j=0;j<c;j++)
delta_outputs[j] = outputs[j]*(1.0 — outputs]j]) *
(target[j] — outputs][j]);

Store these deltas for the final output layer, and also use this to
propagate the errors backward (using the weights on the
connections) through to the hidden layer

Non-Sumbolic Al lec 8 Summer 2005

/5

Deltas on Hidden layer

for (j=0;j<b+1;j++) {
error =0.0;
for (k=0;k<c;k++)
error += h_to_o_wits][j][k] * delta_outputs[k];
delta_hidden(j] = hidden[j] * (1.0 — hidden[j]) * error;

Non-Sumbolic Al lec 8 Summer 2005

14

End of backward pass
A5y R

Ievprun inics

L _!l.;-:m1||_l|||r|| rcess =i nr c
el CHilpE noatas

T -F-I:Ir\-l!lH-l'.l'I:Frl-

ek ihrmngh etk

-n'l.l|.1_|: -\.r-ill'll.

That has got us all the way backward, calculating deltas.

Non-Sumbolic Al lec 8 Summer 2005 I5

Now the weight-changes

OK, we have calculated the errors at all the nodes, including
hidden nodes. Let’s use these to calculate weight changes
everywhere — using a learning rate parameter eta y

float delta_i_to_h_wts[a+1][b];
float delta_h_to_o_wts[b+1][c];

Non-Sumbolic Al lec 8 Summer 2005 16

Calculate the weight-changes

for (j=0; j<c; j++)
for (k=0; k<b+1; k++) {
delta_h_to_o_wts[K][j] = eta *
delta_outputs|j] * hidden[k];
h_to_o_wts|k][j] += delta_h_to_o_wis[k][j];

—

That gives new values for all the hidden-to-output weights

Non-Sumbolic Al lec 8 Summer 2005

I/

Calculate the weight-changes (2)

for (j=0; j<b; j++)
for (k=0; k<a+1; k++) {
delta_i_to_h_wts[k][j] = eta *
delta_hidden[j] * inputs[k];
I_to_h_wts[k][j] += delta_i_to_h_wts[K][]];

—

That gives new values for all the inputs-to-hidden weights

Non-Sumbolic Al lec 8 Summer 2005

18

How big Is eta ?

CASU

Non-Sumbolic Al lec 8

FIGURE 5.10 Gradient descent on a simple quadratic surface (the left and right
parts are copies of the same surface). Four trajectories are shown, each for 20
steps from the open circle. The minimum 1s at the + and the ellipse shows a con-
stant error contour. The only significant difference belween the trajectories is the
value of n, which was 0.02, 0.0476, 0.049, and 0.0505 from left to right.

For example, eta = 0.02 is a common rate to use.

Summer 2005

]9

End of forward and backward pass

CASU

Non-Sumbolic Al lec 8

Ievprun inics

Hidden Linica

e e Cheprul Lisils
o N aiilne. i ——
-
i o
f_h.l__ [T TS

A e _o A peompuies) Tross Srme on

aj =" il nie=tex

'n'b|.-|_|: -\.r-ill'll.

i ar -F-I-:Ir‘ AT
| ﬁ -;.:_J __-._J"F h-.-l-.lir-r-h rrbe el

Summer 2005 20

Repeat many times

That was a single pass, based on a single member of the training
set, and making small jiggles in the weights (based on the
learning rate eta, e.g. y = 1.0)

Repeat this lots of times for different members of the training set,
Indeed going back and using each member many times — each
time making a small change in the weights.

Eventually (fingers crossed) the errors (Target — Output) will get
satisfactorily small, and unless it has over-fitted the training set,
the Black Box should generalise to unseen test data.

Non-Sumbolic Al lec 8 Summer 2005 9]

Wrapping up in.a program

| presented the things-to-do in a pragmatic order, but for writing a
program you have to wrap it up a bit differently.

Define all your weights, activations, deltas as arrays of floats (or
doubles) first. Define your sigmoid function.

Write functions for a pass forward, and a pass backward.
Write a big loop that goes over many presentations of inputs.

All this is left as an exercise for the reader.

Non-Sumbolic Al lec 8 Summer 2005

99

Problems ?

If there are, for instance, 100 weights to be jiggled around, then
backprop is equivalent to gradient descent on a 100-dimensional
error surface — like a marble rolling down towards the basin of

minimum error.

(there are other methods, e.g. conjugate gradient descent, that
might be faster).

What about worries that ‘the marble may get trapped in a local
optimum’?

Actually, that rarely happens, though another problem is more
frequent.

Non-Sumbolic Al lec 8 Summer 2005 93

Using the marble metaphor,
there may well be valleys
like this, with steep sides
and a gently sloping floor.

Gradient descent tends to
waste time swooshing up
and down each side of the
valley (think marbles!)

Non-Sumbolic Al lec 8

Valleys

Summer 2005

94

Momentum

If you can add a
momentum term, that tends
to cancel out the back-and-
forth movements and
emphasise any consistent
direction, then this will go
down such valleys with
gentle bottom-slopes much
more successfully — faster.

Non-Sumbolic Al lec 8

Summer 2005

o5

Implementing momentum

This means keeping track of all the delta_weight values from the
last pass, and making the new value of each delta_weight
basically fairly similar to the previous value - l.e. give it
momentum or ‘reluctance to change'.

Look back a few slides to ‘Calculate the weight changes’ where |
put a purple arnoW —

Substitute
delta_wts[K][j] = eta * delta_outputs]j] * hidden[k] +
alpha * old_delta_wts[K][j];

Non-Sumbolic Al lec 8 Summer 2005

96

Value for momentum
E_HS(TJ ___)

Alpha is the momentum factor, between 0 and 1. Typical value to
use is 0.9.

0 o
|| 1 |[FIGURE 6.3 Gradient descent n:lnft!w
I ||| ﬁ H? '-,1 | simple {;llml.ltni_.m surface of Fig. k}.l.[l}.
lL | | j_ll |L'Tl*__ : e Both trajectories are for IEIRE-E"]?H with
""1-H| v I'_||]|f_ﬂl.'k; =T n = 0.0476, the best value in the ahsence
| I|I Illlllll‘ k) of momentum. On the left Lhﬂrnum no mno-
III Ii l \| mentum (& = 0), while & = (1.5 on the
A right.

S0 common parameter setting rates (to be changed when
appropriate) are: Learning rate eta 0.02, momentum alpha 0.9

Non-Sumbolic Al lec 8

Summer 2005 o7

Applications
ASY .

You know have all the knowledge to write a back-prop program to
tackle the most complex application — e.g. NETtalk (Sejnowski
and Rosenberg 1986)

} I I I nw LA L LY | AL LSE L B
il et leyer If'T_I '|:_;|'_-|”| ;.I|IT: ;'UIF'U e

M= !ml;l.;._-" E ;
,/ 1 \ A T
hidden lager - COCCOOOOOOOCCILCLE) N _
[T I-']
W1 \\‘\\\\ -ul
LLTL“ E'H'* xII_I rU_T ml] COED OO0 ngut ayee 1|
i Faad .:';" |
gl layer « T groups ol 28 il lnbarwm schemailcally g : i |
Hudidei leyer - B2 it :

CAalljran laver = 20 unils

Every hiikles unil seceives mpai Teem all inpad wiilis, giid sends ! ;)
e eanlpeet g @11 oEepil diidis, padar 3l Weardndi il !

HE upngiy, arad TEGZS weighid finchuling caresholis)

Non-Sumbolic Al lec 8 Summer 2005 98

Exercise for the reader

Construct an ANN with 2 input nodes, 2 hidden nodes and one
output node.

Use binary inputs — so there are 4 possible input vectors.
Train it on the XOR rule so that for these

Inputs there are these Target outputs

00 0
01 1
10 1
Non-sumbo//g ;/ lec 8 0 Summer 2005

1%

Any Questions ?

CASU

Non-Sumbolic Al lec 8

Summer 2005

30

