
Summer 2005Non-Symbolic AI lec 8 1

EASy
Non-Symbolic AI lecture 8NonNon--Symbolic AI lecture 8Symbolic AI lecture 8

Backpropagation in a multi-layer perceptron

Summer 2005Non-Symbolic AI lec 8 2

EASy
Jiggling the weights in each layerJiggling the weights in each layerJiggling the weights in each layer

When we present the training sets, for each Input we have an
actual Output, compared with the Target gives the Error

Error E = T – 0

Backprop allows you to use this error-at-output to adjust the
weights arriving at the output layer

… but then also allows you to calculate the effective error ‘1
layer back’, and use this to adjust the weights arriving there

… and so on back-propagating errors through any number of
layers

Summer 2005Non-Symbolic AI lec 8 3

EASy
Differentiable sigmoidDifferentiable sigmoidDifferentiable sigmoid

The trick is the use of a sigmoid as the non-linear transfer
function

xe
xgy −+
==
1
1)(

Because this is nicely differentiable – it so happens that

))(1)(()(xgxgxg
dx
dg

−=′=

Summer 2005Non-Symbolic AI lec 8 4

EASy
How to do it in practiceHow to do it in practiceHow to do it in practice

For the details, consult a suitable textbook

e.g. Hertx, Krogh and Palmer “Intro to the Theory of Neural
Computation” Addison Wesley 1991

But here is a step by step description of how you have to code it
up.

Summer 2005Non-Symbolic AI lec 8 5

EASy
Initial decisionsInitial decisionsInitial decisions

Decide how many inputs you have.
Add one more pseudo-input
(clamped to value 1) for biases in
next layer.
Decide how many hidden nodes you have. Add one more,
clamped to value 1, for biases to next layer.

Probably you just have 1 hidden layer, tho in principle can be
more.

Decide how many output nodes you have.

Summer 2005Non-Symbolic AI lec 8 6

EASy
WeightsWeightsWeights

Now you can make vectors holding all the weights. Suppose
there are a input units, b hidden units, c output units

float i_to_h_wts[a+1][b];

float h_to_o_wts[b+1][c];

The +1 in each case is to account for the biases.

Initialise all the weights to small random values.

Summer 2005Non-Symbolic AI lec 8 7

EASy
Presenting the inputsPresenting the inputsPresenting the inputs

Now we are going to present members of the training set to the
network, and see what outputs result – and how good they are.

We could present a whole batch from the training set, and
calculate how to jiggle the weights on the basis of all the errors

Or we can do it incrementally, one at a time. This is what we shall
do – present a single input vector, calculate the resulting
activations at the hidden and output layers.

First this single pass forward.

Summer 2005Non-Symbolic AI lec 8 8

EASy
ActivationsActivationsActivations

We need vectors(or arrays) to hold the activations at each layer.

float inputs[a+1]; inputs[a]=1.0; /* bias */

float hidden[b+1]; hidden[b]=1.0; /* bias */

float outputs[c];

float targets[c]; /* what the outputs should be */
Pick out one of the training set, and set the input values equal to
this member.

Now calculate activations in hidden layer

Summer 2005Non-Symbolic AI lec 8 9

EASy
Forward to Hidden layerForward to Hidden layerForward to Hidden layer

for (i=0;i<b;i++) {

sum=0.0;

for (j=0;j<a+1;j++)

sum += inputs[j] * i_to_h_wts[j][i];

hidden[i] = sigmoid(sum);

}

Using a sigmoid function you have written to calculate

xe
xgy −+
==
1
1)(

Summer 2005Non-Symbolic AI lec 8 10

EASy
Forward to Output layerForward to Output layerForward to Output layer

for (i=0;i<c;i++) {

sum=0.0;

for (j=0;j<b+1;j++)

sum += hidden[j] * h_to_o_wts[j][i];

output[i] = sigmoid(sum);

}

Summer 2005Non-Symbolic AI lec 8 11

EASy
End of forward passEnd of forward passEnd of forward pass

That has got us all the way forward.

Summer 2005Non-Symbolic AI lec 8 12

EASy
Calculating delta’sCalculating deltaCalculating delta’’ss

Now for all the nodes, in all bar the first input layer, we are going
to calculate deltas (appropriate basis for changes at those
nodes).

float delta_hidden[b+1];

float delta_outputs[c];

The underlying formula used is []iii OTxg −=∂)('

Which conveniently is []iii OTxgxg −−=∂)(1)((

Summer 2005Non-Symbolic AI lec 8 13

EASy
Deltas on output layerDeltas on output layerDeltas on output layer

for (j=0;j<c;j++)

delta_outputs[j] = outputs[j]*(1.0 – outputs[j]) *

(target[j] – outputs[j]);

Store these deltas for the final output layer, and also use this to
propagate the errors backward (using the weights on the
connections) through to the hidden layer … …

Summer 2005Non-Symbolic AI lec 8 14

EASy
Deltas on Hidden layerDeltas on Hidden layerDeltas on Hidden layer

for (j=0;j<b+1;j++) {

error = 0.0;

for (k=0;k<c;k++)

error += h_to_o_wts[j][k] * delta_outputs[k];

delta_hidden[j] = hidden[j] * (1.0 – hidden[j]) * error;

}

Summer 2005Non-Symbolic AI lec 8 15

EASy
End of backward passEnd of backward passEnd of backward pass

That has got us all the way backward, calculating deltas.

Summer 2005Non-Symbolic AI lec 8 16

EASy
Now the weight-changesNow the weightNow the weight--changeschanges

OK, we have calculated the errors at all the nodes, including
hidden nodes. Let’s use these to calculate weight changes
everywhere – using a learning rate parameter eta γ

float delta_i_to_h_wts[a+1][b];

float delta_h_to_o_wts[b+1][c];

Summer 2005Non-Symbolic AI lec 8 17

EASy
Calculate the weight-changesCalculate the weightCalculate the weight--changeschanges

for (j=0; j<c; j++)

for (k=0; k<b+1; k++) {

delta_h_to_o_wts[k][j] = eta *

delta_outputs[j] * hidden[k];

h_to_o_wts[k][j] += delta_h_to_o_wts[k][j];

That gives new values for all the hidden-to-output weights

Summer 2005Non-Symbolic AI lec 8 18

EASy
Calculate the weight-changes (2)Calculate the weightCalculate the weight--changes (2)changes (2)

for (j=0; j<b; j++)

for (k=0; k<a+1; k++) {

delta_i_to_h_wts[k][j] = eta *

delta_hidden[j] * inputs[k];

i_to_h_wts[k][j] += delta_i_to_h_wts[k][j];

That gives new values for all the inputs-to-hidden weights

Summer 2005Non-Symbolic AI lec 8 19

EASy
How big is eta ?How big is How big is etaeta ??

For example, eta = 0.02 is a common rate to use.

Summer 2005Non-Symbolic AI lec 8 20

EASy
End of forward and backward passEnd of forward and backward passEnd of forward and backward pass

Summer 2005Non-Symbolic AI lec 8 21

EASy
Repeat many timesRepeat many timesRepeat many times

That was a single pass, based on a single member of the training
set, and making small jiggles in the weights (based on the
learning rate eta, e.g. γ = 1.0)

Repeat this lots of times for different members of the training set,
indeed going back and using each member many times – each
time making a small change in the weights.

Eventually (fingers crossed) the errors (Target – Output) will get
satisfactorily small, and unless it has over-fitted the training set,
the Black Box should generalise to unseen test data.

Summer 2005Non-Symbolic AI lec 8 22

EASy
Wrapping up in a programWrapping up in a programWrapping up in a program

I presented the things-to-do in a pragmatic order, but for writing a
program you have to wrap it up a bit differently.

Define all your weights, activations, deltas as arrays of floats (or
doubles) first. Define your sigmoid function.

Write functions for a pass forward, and a pass backward.

Write a big loop that goes over many presentations of inputs.

All this is left as an exercise for the reader.

Summer 2005Non-Symbolic AI lec 8 23

EASy
Problems ?Problems ?Problems ?

If there are, for instance, 100 weights to be jiggled around, then
backprop is equivalent to gradient descent on a 100-dimensional
error surface – like a marble rolling down towards the basin of
minimum error.

(there are other methods, e.g. conjugate gradient descent, that
might be faster).

What about worries that ‘the marble may get trapped in a local
optimum’?

Actually, that rarely happens, though another problem is more
frequent.

Summer 2005Non-Symbolic AI lec 8 24

EASy
ValleysValleysValleys

Using the marble metaphor,
there may well be valleys
like this, with steep sides
and a gently sloping floor.

Gradient descent tends to
waste time swooshing up
and down each side of the
valley (think marbles!)

Summer 2005Non-Symbolic AI lec 8 25

EASy
MomentumMomentumMomentum

If you can add a
momentum term, that tends
to cancel out the back-and-
forth movements and
emphasise any consistent
direction, then this will go
down such valleys with
gentle bottom-slopes much
more successfully – faster.

Summer 2005Non-Symbolic AI lec 8 26

EASy
Implementing momentumImplementing momentumImplementing momentum

This means keeping track of all the delta_weight values from the
last pass, and making the new value of each delta_weight
basically fairly similar to the previous value – I.e. give it
momentum or ‘reluctance to change’.

Look back a few slides to ‘Calculate the weight changes’ where I
put a purple arrow

Substitute

delta_wts[k][j] = eta * delta_outputs[j] * hidden[k] +

alpha * old_delta_wts[k][j];

Summer 2005Non-Symbolic AI lec 8 27

EASy
Value for momentumValue for momentumValue for momentum

Alpha is the momentum factor, between 0 and 1. Typical value to
use is 0.9.

So common parameter setting rates (to be changed when
appropriate) are: Learning rate eta 0.02, momentum alpha 0.9

Summer 2005Non-Symbolic AI lec 8 28

EASy
ApplicationsApplicationsApplications

You know have all the knowledge to write a back-prop program to
tackle the most complex application – e.g. NETtalk (Sejnowski
and Rosenberg 1986)

Summer 2005Non-Symbolic AI lec 8 29

EASy
Exercise for the readerExercise for the readerExercise for the reader

Construct an ANN with 2 input nodes, 2 hidden nodes and one
output node.

Use binary inputs – so there are 4 possible input vectors.

Train it on the XOR rule so that for these

Inputs there are these Target outputs

00 0

01 1

10 1

11 0

Summer 2005Non-Symbolic AI lec 8 30

EASy
Any Questions ?Any Questions ?Any Questions ?

