
Summer 2005Non-Symbolic AI lec 7 1

EASy
Non-Symbolic AI lecture 7NonNon--Symbolic AI lecture 7Symbolic AI lecture 7

Different types of ANNs for different jobs.

So far we have looked primarily at ANNs for robot control, varying
from simple feedforward for simple Braitenberg vehicles (for
reactive behaviour, in the sense of no internal memory)

… to simple Hebbian plasticity (‘learning’) for exploring the
relationship between Learning and Evolution

… to more complex recurrent networks with time involved –

E.g. subsumption architecure considered as a kind of ANN

Or Dynamic Recurrent NNs

Summer 2005Non-Symbolic AI lec 7 2

EASy
Pattern recognitionPattern recognitionPattern recognition

A lot – probably by far the most – of ANNs used are not
recurrent, are feedforward with no timing issues involved, and
can be trained in various possible ways to learn (statistical)

input -> output relationships.

Let’s recognise that these ANNs probably have near-zero
relationship to what actually goes on with real neurons in the
brain, and just consider them as potentially really useful pattern-
recognisers – all sorts of practical applications.

Summer 2005Non-Symbolic AI lec 7 3

EASy
Rapid reviewRapid reviewRapid review

Rapid review of the basics of feedforward ANNs -- which most of
you should have covered already in Further AI and perhaps
elsewhere.

BLACK
BOX

INPUTS OUTPUTS

Summer 2005Non-Symbolic AI lec 7 4

EASy
Inputs and OutputsInputs and OutputsInputs and Outputs

Inputs are a set (or vector) of real numbers (or could be limited to
eg just 0s and 1s).

Could be data from the stockmarket, past performance of horses
in races, pixels from an image etc etc.

Summer 2005Non-Symbolic AI lec 7 5

EASy
Inputs and OutputsInputs and OutputsInputs and Outputs

Outputs: there might be just one, or many outputs of real values
(vector).

These outputs are, roughly, what a (properly trained) Black Box
predicts from the Inputs.

E.g. what the Stockmarket index will be tomorrow, how fast the
horse will run in the 2:30pm at Newmarket, is the picture like a
dog (output 1 high) or a cat (output 2 high) or neither (if both
outputs low)

Any specific Black Box implements a function from In to Out.

Out = BBf(In)

Summer 2005Non-Symbolic AI lec 7 6

EASy
Training and TestingTraining and TestingTraining and Testing

If the Black Box is intended to be a dog-recogniser (eg
10x10=100 pixels input, 1 output which should be high for ‘dog’),
then ideally it should be testable with all possible input images,
and output high only for the doggy ones.

There are zillions of possible input images. An ANN is one type of
Black Box that can be trained on just a subset, a training set of
typical doggy and non-doggy images.

Ideally it should then generalise to a test set of images it hasn’t
seen before

Summer 2005Non-Symbolic AI lec 7 7

EASy
Inside the Black BoxInside the Black BoxInside the Black Box

Ultimately we will look at multi-layer ANNs, but let’s start simple ..

Summer 2005Non-Symbolic AI lec 7 8

EASy
Inside the Black BoxInside the Black BoxInside the Black Box

The simplest possible ANN
with many inputs and one
output.

1 ‘neuron’ inside the Black Box, weights on all the 100 inputs I, so
the weighted inputs all get summed together at the node. If A is
the activation of the node, then

∑
=

=
N

i
ii IwA

1

Summer 2005Non-Symbolic AI lec 7 9

EASy
Transfer functionTransfer functionTransfer function

The output Out is going to be some function of the activation A.
Simple possibilities include:

AOut =

)0()(
)1()(

=⇒≤
=⇒>

OutbA
OutbA

)(1
1)(bAe

bAsigmoidOut −−+
=−=

)(bAwOut o −=

Summer 2005Non-Symbolic AI lec 7 10

EASy
Linear or nonlinearLinear or nonlinearLinear or nonlinear

The first 2 are linear (the second has a bias term b, plus a
weight).

The next 2 are non-linear, including a sharp step-function or
threshold function, and a smoother sigmoid.

(Step-function useful if eg Out=1 => dog, Out=0 =>not-dog !!)

You can do far more complex pattern-recognition with non-linear
functions. The sigmoid is a smooth, and differentiable, version of
the step-function, and for practical reasons this turns out useful.
So the sigmoid function is one to take note of.

Summer 2005Non-Symbolic AI lec 7 11

EASy
BiasesBiasesBiases

The biases just shift the graph left or right.

Ae
Out −+

=
1
1

)(1
1

bAe
Out −−+

=

But remember, A was just the weighted sum of inputs

∑
=

=
N

i
ii IwA

1

Summer 2005Non-Symbolic AI lec 7 12

EASy
Treat bias as another inputTreat bias as another inputTreat bias as another input

∑
=

=
N

i
ii IwA

1

So if we pretend that there was another
input, input value clamped to 1, with a
weight of (-b), then we can treat it the same
as the other inputs

i

N

i
i

i

N

i
i

Iw

bIwboldAnewA

∑

∑
+

=

=

=

−=−=

1

1

1

Where w(n+1) = - b

And I(n+1) =1

Summer 2005Non-Symbolic AI lec 7 13

EASy
Treating bias as another inputTreating bias as another inputTreating bias as another input

bias

bias

Summer 2005Non-Symbolic AI lec 7 14

EASy
Treating bias as another inputTreating bias as another inputTreating bias as another input

So when you treat the bias (on any node in the network) as a
weight on an input to that node whose input value is clamped to 1

The equations and the programming come out a lot simpler

And the bias term can be ‘learnt’ by exactly the same method
as all the other weights in the ANN are learnt, during training

So from now on we will assume that this trick is being used.

Summer 2005Non-Symbolic AI lec 7 15

EASy
The simple Black BoxThe simple Black BoxThe simple Black Box

The simplest possible ANN
with many inputs and one
output.

Now we have started off looking at this simplest version, a single
layer perceptron with 1 output.

Could be made a bit more complex if 2 or more outputs (is it a
dog? Is it a cat?)

Summer 2005Non-Symbolic AI lec 7 16

EASy
Learning AlgorithmLearning AlgorithmLearning Algorithm

We still haven’t even started to discuss any training method,
whereby the appropriate weights (including biases) can be learnt
through exposure to the training set

(eg lots of pictures of dogs, cats, other things, with the correct
response known for each member of the training set).

Basically there are 2 classes of learning here (ignoring a third of
‘self-organisation’)

Reinforcement Learning

Supervised Learning

Summer 2005Non-Symbolic AI lec 7 17

EASy
Jiggling the weightsJiggling the weightsJiggling the weights

Basically all these algorithms work on different versions of

Start off with random weights (and biases) in the ANN

Try one or more members of the training set, see how badly
the outputs are compared to what they should be (compared to
the target outputs)

Jiggle weights a bit, aimed at getting improvement on outputs

Now try with a new lot of the training set, or repeat again,
jiggling weights each time

Keep repeating until you get quite accurate outputs

Summer 2005Non-Symbolic AI lec 7 18

EASy
Reinforcement Reinforcement Reinforcement

In Reinforcement learning, during training an input (‘picture’) is
presented to the Black Box, the Output (‘0.75 like a dog’) is
compared to the correct output (‘1.0 of a dog’ !!) and the size of
the error is used for training (‘wrong by 0.25’)

If there are 2 outputs (cats and dogs) then the total error is
summed to give a single number (typically sum of squared
errors). Eg “your total error on all outputs is 1.76”

Note that this just tells you how wrong you were, not in which
direction you were wrong.

Like ‘Hunt the Thimble’ with clues of ‘warmer’ ‘colder’.

Summer 2005Non-Symbolic AI lec 7 19

EASy
SupervisedSupervisedSupervised

In Supervised Learning the Black Box is given more information.

Not just ‘how wrong’ it was, but ‘in what direction it was wrong’

Like ‘Hunt the Thimble’ but where you are told ‘North a bit’ ‘West
a bit’.

So you get, and use, far more information in Supervised
Learning, and this is the normal form of ANN learning algorithm.

Summer 2005Non-Symbolic AI lec 7 20

EASy
Reinforcement Learning vs SupervisedReinforcement Learning Reinforcement Learning vsvs SupervisedSupervised

Genetic Algorithms are a form of Reinforcement learning.

So actually a GA is one perfectly good method of ‘evolving’ the
weights of an ANN, whether it is 1-layer or multilayer.

Encode all the weights (and biases) on the genotype, use a
population (randomly initialised), and use errors on the training
set as the fitness function.

This is just one version of ‘jiggling the weights a bit’ – here it is
mutation jiggling the weights.

You are, however, usually wasting information that can be used
for Supervised Learning.

Summer 2005Non-Symbolic AI lec 7 21

EASy
Perceptron Learning AlgorithmPerceptronPerceptron Learning AlgorithmLearning Algorithm

You should have covered this in Further AI. (copied from there)

Gradient descent trying to minimise error. For each training
example, input I, expected target output T, actual output O.

Error E = T – 0

Jiggle each weight wi by adding a term R x Ii x E, where R is a
small constant called the learning rate.

This jiggles the weights in the right direction to decrease error, by
an amount R which makes it a small jiggle.

Gradient descent.

Summer 2005Non-Symbolic AI lec 7 22

EASy
The 1-layer algorithmThe 1The 1--layer algorithmlayer algorithm

Initialise perceptron with a random set of weights

Repeat

for each training instance (I,T) do {

E = T – Out;

for (i=1i<=N;I++) {

w[i] = w[i] + R * Ii * E;

}

} until error acceptably small.

Summer 2005Non-Symbolic AI lec 7 23

EASy
What can the simple Perceptron do ?What can the simple What can the simple PerceptronPerceptron do ?do ?

The simplest possible ANN
with many inputs and one
output.

We are still looking at this very simple 1-layer perceptron, with 1
(or possibly more) outputs.

It can be proved (Perceptron Convergence Theorem) that if there
is some set of weights that will do the pattern-recognition, or
classification job we want, then the algorithm on previous slide
will do the job.

Summer 2005Non-Symbolic AI lec 7 24

EASy
HoweverHoweverHowever

However, it turned out that only relatively simple pattern-
recognition, or classification, jobs can be done by the 1-layer
perceptron – those that are ‘linearly separable’

This is what Minsky & Paert’s 1969 book was all about – and this
shot down ANNs for 2 decades ! Eg the XOR problem cannot

be tackled by such a
perceptron

Summer 2005Non-Symbolic AI lec 7 25

EASy
Linearly separableLinearly separableLinearly separable

This is a sketch of how a 2-
input, 1-output perceptron
needs to classify inputs.

It needs to distinguish black dots from open circles, in this
training set of 4 examples.

In the left case, it can do so with a single straight line – and a 1-
layer perceptron can handle this.

In the right case, it is not ‘linearly separable’, and cannot
manage.

Summer 2005Non-Symbolic AI lec 7 26

EASy
Extension to multi-layer perceptronsExtension to multiExtension to multi--layer layer perceptronsperceptrons

It turns out that we can in principle find Black Boxes that do such
non-linear separation tasks if

We have an extra ‘hidden’ layer

We have a non-linear transfer function such as the sigmoid at
the hidden layer

The tricky bit – we can find a learning algorithm that copes with
errors at the different layers, so as to jiggle all the weights
appropriately

Backpropagation was the algorithm that broke the logjam

Summer 2005Non-Symbolic AI lec 7 27

EASy
Why the sigmoid ?Why the sigmoid ?Why the sigmoid ?

Suppose there was a linear transfer function at the hidden layer

Then if you follow all the maths through, it turns out
that effectively the hidden layer does not buy you
anything extra – it is equivalent to just 1 layer

If it has to be non-linear, why not a step function?

Turns out that backprop needs a smooth
differentiable function, such as this:-

Ae
Out −+

=
1
1

Summer 2005Non-Symbolic AI lec 7 28

EASy
How big a hidden layer ?How big a hidden layer ?How big a hidden layer ?

If you just have 1 hidden
node, then effectively you
are back to a 1-layer ANN

You need at least 2, and roughly ‘the more complex the
classification task, the more hidden nodes you need’.

In principle, absolutely any continuous classification task can be
done provided you have enough hidden nodes.

But you should not have too many, because of worries about
overfitting.

Summer 2005Non-Symbolic AI lec 7 29

EASy
OverfittingOverfittingOverfitting

If you have lots of hidden nodes, then you will have lots of
weights (and biases) to learn.

Suppose you only have 10 members in your training set, but
more than 100 weights, then learning will probably do the
equivalent of memorising the idiosyncracies of the input/output
pairs – and will not generalise sensibly to new inputs it hasn’t
seen before.

You can check for overfitting by keeping a few examples back,
and after training seeing how well the Black Box generalises to
this new test set.

Summer 2005Non-Symbolic AI lec 7 30

EASy
So how many hidden nodes, then?So how many hidden nodes, then?So how many hidden nodes, then?

Ideally, just enough !!

There are (difficult) theoretical answers to this, but one approach
is to try different numbers, and see how well the trained ANN
generalises to an unseen test set in each case. Pick the best
value.

In practice, one picks some number bu guesswork, experience,
asking a friend – and if it works you stick with it, otherwise
change!

Summer 2005Non-Symbolic AI lec 7 31

EASy
Summary so farSummary so farSummary so far

OK, next lecture we will go through the details of back-
propagation, but a lot of the lessons have been already given.

Weights and biases can be treated the same way

We are going to use errors (output – Target) to jiggle the
weights around till error decreases

Reinforcement learning (GAs) is one possibility

Supervised learning uses more information

Present training set, use errors to jiggle weights

