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We shall look at 2 alternative non-symbolic Al approaches to
robotics

Subsumption Architecture

JEvolutionary Robotics
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When building robots, the Classical Al approach has the rc
as a scientist-spectator, seeking information from outside.

"SMPA" -- so-called by Brooks (1999)
@S sense

oM model

®P plan

®A action
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Brooks’ alternative is in terms of many individual and lar
separate behaviours — where any one behaviour is
generated by a pathway in the “brain’ or control system ¢
the way from Sensors to Motors.

No Central Model, or Central Planning system.
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'Subsume’ means to take over or replace the output fron
lower layer'.

The 2 kinds of interactions between layers are

1. Subsuming

2. Inhibiting

Generally only ‘higher’ layers interfere with lower, and tc

relatively small extent — this assists with an incremental
design approach.
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That looked a bit like a
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An AFSM consists of registers, alarm clocks (time!), a combinat
network and a regular finite state machine. Input messages are

delivered to registers, and messages can be generated on outpt
wires.

As new wires are added to a network (lower figure before), they
connect to existing registers, inhibit outputs, or suppress inputs.



Hcioelt

Dirive: bowared cans

Tinrr away Froon obstacles

Follow along salls

coplrolind by a Yeolony” of Independent agenis all wanling

winberlion with eachother agecept via the world

Figuare 12.2: Herberl was

16 infrared sensors, compass, laser ligh
striper for finding soda-cans. 24 8-bit
microprocessors distributed around the |




reielt S datlulls

Frmisd

Eaimrel

Figure LT 131 Like ligase 1525 chis ahowa the pach ol 150 frger ctips while septching M= o soda
cem. Thig Larer Lhere in an nbstacle on the lakbe suiface, and s «epp diferent "plea”™ emereea frome
Iae inbrrmcling of Lhe sobes and 98 snvinanment.

Cn —

EELFE level of comntrel

Figwsire 12.00: The stoslegy f=r Herberi s arm to find someibhing sl o in Troo of it is fo
siline el o swafoce in 8 sawmbpnih galiesn. M oresches formasid and doren, Bcuncing ap =3
the Llzurh armsam = Ubkes hifger Cips dets=cl 8 sarless



QUDSUITIPUOTLT SUlTiitialy

INew philosophy of hand design of robot control systems

u
u

ncremental engineering — debug simpler versions first

Robots must work in real time in the real world

JSpaghetti-like systems unclear for analysis

INot clear if behaviours can be re-used

JScaling — can it go more than 12 behaviours?
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Evolutionary Robotics (ER) can be done
v'for Engineering purposes - to build useful robots
v'for Scientific purposes - to test scientific theories

It can be done
v'for Real or
v'in Simulation

Here we shall start with the most difficult, robots
with Dynamic Recurrent Neural Nets, tested for Real.

Then we shall look at simplifications and simulations.
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Humans are highly complex, descended over 4 bn yrs from the
'origin of life".

Let's start with the simple first - 'today the earwig’
(not that earwigs are that simple ...)

Brooks' subsumption architecture approach to robotics is 'desigr
hand', but still inspired by an incremental, evolutionary approach

v'Get something simple working (debugged) first
v'Then try and add extra 'behaviours'
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When evolving robot 'nervous systems' with some form of GA, tf
the genotype (‘artificial DNA') will have to encode:

v'The architecture of the robot control system
v"Also maybe some aspects of its body/motors/sensors

But what kind of robot control system, what class of possible
systems should evolution be 'searching through' ?
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cf R Beer 'A Dynamical Systems Perspective on Autonomous
Agents' Tech Report CES-92-11. Case Western Reserve Univ.
Also papers by Tim van Gelder.

In contrast to Classical Al, computational approach, the DS

ap
rig
be

proach is one of 'getting the dynamics of the robot nervous sy
nt', so that (coupled to the robot body and environment) the

naviour is adaptive.

Brook's subsumption architecture, with AFSMs
(Augmented Finite State Machines) is one way of doing this.
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DRNNs (or CTRNs = Continuous Time Recurrent Networks) are
another (really quite similar way).

You will learn about other flavours of Artificial Neural Networks
(ANNSs) in Adaptive Systems course.
-- g ANNs that 'learn’ and can be 'trained'.

These DRNNs are basically different -- indeed basically just a
convenient way of specifying a class of dynamical systems

-- 50 that different genotypes will specify different DSs, giving rol
different behaviours.
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This is just ONE possible DRNN, which ONE specific genotype

PN o, |
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The basic components of a DRNN are these
(1 to 4 definite, 5 optional)

Nodes

Directed limks

Signals with time-delay:

MNon-linear threshold fur
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The genotype of a robot specifies

(through the encoding genotype->phenotype that WE decide
on as appropriate)

how to ‘wire these components up' into a network connected to
sensors and motors.

(Just as there are many flavours of feedforward ANNSs, there are
many possible versions of DRNNs — in a moment you will see ju
one.)

Then you hook all this up to a robot and evaluate it on a task.
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When you evaluate each robot genotype, you
v'Decode it into the network architecture and parameters
v'Possibly decode part into
body/sensor/motor parameters
v Create the specified robot
v'Put it into the test environment
v'Run it for n seconds, scoring it on the task.

Any evolutionary approach needs a selection process, whereby
different members of the population have different chances of
producing offspring according to their fitness
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(Beware - set conditions carefully!)

Eg: for a robot to move, avoiding obstacles -- have a number of
obstacles in the environment, and evaluate it on how far it move:
forwards.

Have a number of trials from random starting positions
v’ take the average score, or

v’ take the worst of 4 trials, or

v’ (alternatives with different implications)
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The genotype specifies a DS for the nervous system

Given the robot body, the environment, this constrains the behax
The robot is evaluated on the behaviour.

The phenotype is (perhaps):

v'the architecture of the nervous system(/body)

v'or ... the behaviour
v'or even ... the fitness
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For robust behaviours, despite uncertain circumstances, noisy t
are neeeded.

Internal noise (deliberately put into the network) affects the dyna
(eg self-initiating feedback loops) and (it can be argued) makes
'evolution easier’

-- 'smooths the fitness landscape'.
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They have to have temporal dynamics.
Three (and there are more...) possibilities are:

(1) Brook's subsumption architecture
(2) DRNNs as covered in previous slides
(3) Another option to mention here: Beer's networks

see Beer ref. cited earlier, or "Computational and Dynamical
Languages for Autonomous Agents”, in Mind as Motion, T van
Gelder & R. Port (eds) MIT Press
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Beer uses CTRNNs (continuous-time recurrent NNs), where for
each node (i = 1 to n) in the network the following equation hold

day, \
Z; :_yi_l_zwjig(yj_ej)_l_[i
dt -

y. = activation of node |

T; = time constant, w; = weight on connection from node | to nodk
p(x) = sigmoidal = (1/1+e)

= bias,

. = possible sensory input.
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One issue to be faced is:
@ Evaluate on a real robot, or
eUse a Simulation ?

On a real robot it is expensive, time-consuming -- and
for evolution you need many many evaluations.
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On a simulation it should be much faster
(though note -- may not be true for vision)
cheaper, can be left unattended.

BUT Al (and indeed Alife) has a history of toy, unvalidated
simulations, that 'assume away' all the genuine problems that ir
be faced.

Eg: grid worlds "move one step North"

Magic sensors "perceive food"
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How do you know whether you have included all that is necessa
a simulation?

-- only ultimate test, validation, is whether what works in simula
ALSO works on a real robot.

How can one best insure this, for Evolutionary Robotics ?



CIVEIOPEC 01 INUISC ¢

Hypothesis: -- "if the simulation attempts to model the real world
fairly accurately, but where in doubt extra noise (through variatio
driven by random numbers) is put in, then evolution-in-a-noisy-
simulation will be more arduous than evolution-in-the-real-world"

le put an envelope-of-noise, with sufficient margins, around cruc
parameters whose real values you are unsure of.

"Evolve for more robustness than strictly necessary"

Problem: some systems evolved to rely on the existence of nois
that wasnt actually present in real world!
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See, by Nick Jakobi:

(1) Evolutionary Robotics and the Radical Envelope of Noise
Hypothesis and

(2) The Minimal Simulation Approach To Evolutionary Robotics

available on http://www.cogs.susx.ac.uk/users/nickja/

Minimal simulation approach developed explicitly for ER -- the
problem is often more in simulating the environment than the rot
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Work out the minimal set of environmental features needed for il
job -- the base set.

Model these, with some principled envelope-of-noise, so that wh
uses these features in simulation will work in real world

-- 'base-set-robust’

Model everything ELSE in the simulation with wild, unreliable no
- 50 that robots cannot evolve in simulation to use anything othe

trhan the base set
-- 'base-set-exclusive'



