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Non-Symbolic AI lecture 5NonNon--Symbolic AI lecture 5Symbolic AI lecture 5

We shall look at 2 alternative non-symbolic AI approaches to 
robotics

Subsumption Architecture

Evolutionary Robotics
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Classical AIClassical AIClassical AI

When building robots, the Classical AI approach has the robot 
as a scientist-spectator, seeking information from outside.

"SMPA"   -- so-called by Brooks (1999)
S  sense
M  model
P  plan
A  action



S  2005S b li  AI l  5 3

EASy

Brooks’ alternativeBrooksBrooks’’ alternativealternative

Brooks’ alternative is in terms of many individual and largely 
separate behaviours – where any one behaviour is 
generated by a pathway in the ‘brain’ or control system all 
the way from Sensors to Motors.

No Central Model, or Central Planning system.
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Subsumption architecture (1)SubsumptionSubsumption architecture (1)architecture (1)
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(1a)(1a)(1a)

Traditional decomposition of a mobile robot control system 
into functional modules
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(1b)(1b)(1b)

Decomposition of a mobile robot control system based on 
task-achieving behaviors
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Subsumption architecture (2)SubsumptionSubsumption architecture (2)architecture (2)
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(2a)(2a)(2a)

Level 3

Level 2

Level 1

Level 0SENSORS
ACTUATORS

Control is layered with higher levels subsuming control of lower
layers when they wish to take control.
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SubsumingSubsumingSubsuming

‘Subsume’ means to take over or replace the output from a 
‘lower layer’. 

The 2 kinds of interactions between layers are

1. Subsuming

2. Inhibiting

Generally only ‘higher’ layers interfere with lower, and to a 
relatively small extent – this assists with an incremental 
design approach.
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Subsumption architecture (3)SubsumptionSubsumption architecture (3)architecture (3)
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Subsumption architecture (4)SubsumptionSubsumption architecture (4)architecture (4)

That looked a bit like a 
Network – except rather 
than (artificial) Neurons the 
components are versions of 

AFSMs

Augmented

Finite

State

Machines
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AFSMsAFSMsAFSMs

An AFSM consists of registers, alarm clocks (time!), a combinatorial 
network and a regular finite state machine. Input messages are 
delivered to registers, and messages can be generated on output 
wires.

As new wires are added to a network (lower figure before), they can 
connect to existing registers, inhibit outputs, or suppress inputs.
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HerbertHerbertHerbert

16 infrared sensors, compass, laser light 
striper for finding soda-cans. 24 8-bit 
microprocessors distributed around the body
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Herbert’s actionsHerbertHerbert’’s actionss actions
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Subsumption summarySubsumptionSubsumption summarysummary

New philosophy of hand design of robot control systems

Incremental engineering – debug simpler versions first

Robots must work in real time in the real world

Spaghetti-like systems unclear for analysis

Not clear if behaviours can be re-used

Scaling – can it go more than 12 behaviours?
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Evolutionary RoboticsEvolutionary RoboticsEvolutionary Robotics

Evolutionary Robotics (ER) can be done 
for Engineering purposes - to build useful robots
for Scientific purposes - to test scientific theories

It can be done
for Real or
in Simulation

Here we shall start with the most difficult, robots
with Dynamic Recurrent Neural Nets, tested for Real.

Then we shall look at simplifications and simulations.
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The Evolutionary ApproachThe Evolutionary ApproachThe Evolutionary Approach

Humans are highly complex, descended over 4 bn yrs from the 
'origin of life'.

Let's start with the simple first - 'today the earwig'
(not that earwigs are that simple ...)

Brooks' subsumption architecture approach to robotics is 'design-by-
hand', but still inspired by an incremental, evolutionary approach:

Get something simple working (debugged) first
Then try and add extra 'behaviours'
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What Class of ‘Nervous System’What Class of What Class of ‘‘Nervous SystemNervous System’’

When evolving robot 'nervous systems' with some form of GA, then
the genotype ('artificial DNA') will have to encode:

The architecture of the robot control system
Also maybe some aspects of its body/motors/sensors

But what kind of robot control system, what class of possible 
systems should evolution be 'searching through' ?
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… could be a classical approach ?…… could be a classical approach ?could be a classical approach ?
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… or a Dynamical Systems Approach…… or a Dynamical Systems Approachor a Dynamical Systems Approach
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DS approach to CognitionDS approach to CognitionDS approach to Cognition

cf R Beer 'A Dynamical Systems Perspective on Autonomous 
Agents' Tech Report CES-92-11. Case Western Reserve Univ.
Also papers by Tim van Gelder.

In contrast to Classical AI, computational approach, the DS 
approach is one of 'getting the dynamics of the robot nervous system 
right', so that (coupled to the robot body and environment) the 
behaviour is adaptive.

Brook's subsumption architecture, with AFSMs
(Augmented Finite State Machines) is one way of doing this.
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Dynamic Recurrent Neural NetworksDynamic Recurrent Neural NetworksDynamic Recurrent Neural Networks

DRNNs (or CTRNs = Continuous Time Recurrent Networks) are 
another (really quite similar way).

You will learn about other flavours of Artificial Neural Networks 
(ANNs) in Adaptive Systems course.
-- eg ANNs that 'learn' and can be 'trained'.

These DRNNs are basically different -- indeed basically just a 
convenient way of specifying a class of dynamical systems
-- so that different genotypes will specify different DSs, giving robots 
different behaviours.
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One possible DRNN, wired upOne possible DRNN, wired upOne possible DRNN, wired up

This is just ONE possible DRNN, which ONE specific genotype 
specified. 
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Think of it as …Think of it as Think of it as ……

Think of this as a nervous 
system with its own 
Dynamics.

Even if it was not connected 
up to the environment
(I.e. it was a 'brain-in-a-vat’), 
it would have its own 
dynamics, through internal 
noise and recurrent 
connections)
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DRNN BasicsDRNN BasicsDRNN Basics

The basic components of a DRNN are these
(1 to 4 definite, 5 optional)
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ER basicsER basicsER basics

The genotype of a robot specifies 
(through the encoding genotype->phenotype that WE decide 
on as appropriate)
how to 'wire these components up' into a network connected to 
sensors and motors.

(Just as there are many flavours of feedforward ANNs, there are 
many possible versions of DRNNs – in a moment you will see just 
one.)

Then you hook all this up to a robot and evaluate it on a task.
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Evaluating a robotEvaluating a robotEvaluating a robot

When you evaluate each robot genotype, you
Decode it into the network architecture and parameters
Possibly decode part into 

body/sensor/motor parameters
Create the specified robot
Put it into the test environment
Run it for n seconds, scoring it on the task.

Any evolutionary approach needs a selection process, whereby the
different members of the population have different chances of 
producing offspring according to their fitness
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Robot evaluationRobot evaluationRobot evaluation

(Beware - set conditions carefully!)

Eg: for a robot to move, avoiding obstacles -- have a number of 
obstacles in the environment, and evaluate it on how far it moves 
forwards.

Have a number of trials from random starting positions
take the average score, or
take the worst of 4 trials, or
(alternatives with different implications)

Deciding on appropriate fitness functions can be difficult.
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DSs -> BehaviourDSsDSs --> Behaviour> Behaviour

The genotype specifies a DS for the nervous system

Given the robot body, the environment, this constrains the behaviour

The robot is evaluated on the behaviour.

The phenotype is (perhaps):

the architecture of the nervous system(/body)
or ... the behaviour
or even ... the fitness
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Robustness and NoiseRobustness and NoiseRobustness and Noise

For robust behaviours, despite uncertain  circumstances, noisy trials 
are neeeded.

Internal noise (deliberately put into the network) affects the dynamics 
(eg self-initiating feedback loops) and (it can be argued) makes 
'evolution easier'
-- 'smooths the fitness landscape'.
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Summarising DSs for Robot BrainsSummarising Summarising DSsDSs for Robot Brainsfor Robot Brains

They have to have temporal dynamics.
Three (and there are more...) possibilities are:

(1) Brook's subsumption architecture

(2) DRNNs as covered in previous slides

(3) Another option to mention here: Beer's networks

see Beer ref. cited earlier, or "Computational and Dynamical 
Languages for Autonomous Agents", in Mind as Motion, T van 
Gelder & R. Port (eds) MIT Press
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Beer’s EquationsBeerBeer’’s Equationss Equations
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Beer uses CTRNNs (continuous-time recurrent NNs), where for 
each node (i = 1 to n)  in the network the following equation holds:

yi = activation of node i
τi = time constant, wji = weight on connection from node j to node i
ρ(x) = sigmoidal = (1/1+e-x)
ηi= bias, 
Ii = possible sensory input.



S  2005S b li  AI l  5 33

EASy

Applying this for realApplying this for realApplying this for real

One issue to be faced is:
Evaluate on a real robot, or
Use a Simulation ?

On a real robot it is expensive, time-consuming -- and
for evolution you need many many evaluations.
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Problems of simulationsProblems of simulationsProblems of simulations

On a simulation it should be much faster
(though note -- may not be true for vision)
cheaper, can be left unattended.

BUT AI (and indeed Alife) has a history of toy, unvalidated
simulations, that 'assume away' all the  genuine problems that must 
be faced.

Eg: grid worlds "move one step North"

Magic sensors "perceive food"
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Principled Simulations ?Principled Simulations ?Principled Simulations ?

How do you know whether you have included all that is necessary in 
a simulation?

-- only ultimate test, validation, is whether what works in simulation 
ALSO works on a real robot.

How can one best insure this, for Evolutionary Robotics ?
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‘Envelope of Noise’ ?‘‘Envelope of NoiseEnvelope of Noise’’ ??

Hypothesis: -- "if the simulation attempts to model the real world 
fairly accurately, but where in doubt extra noise (through variations 
driven by random numbers) is put in, then  evolution-in-a-noisy-
simulation will be more arduous than evolution-in-the-real-world"

Ie put an envelope-of-noise, with sufficient margins, around crucial 
parameters whose real values you are  unsure of.

"Evolve for more robustness than strictly necessary"

Problem: some systems evolved to rely on the existence of noise 
that wasnt actually present in real world!
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Jakobi’s Minimal SimulationsJakobiJakobi’’ss Minimal SimulationsMinimal Simulations

See, by Nick Jakobi:

(1) Evolutionary Robotics and the Radical Envelope  of Noise 
Hypothesis and
(2) The Minimal Simulation Approach To Evolutionary  Robotics

available on http://www.cogs.susx.ac.uk/users/nickja/

Minimal simulation approach developed explicitly for  ER -- the 
problem is often more in simulating the environment than the robot.
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Minimal Simulation principlesMinimal Simulation principlesMinimal Simulation principles

Work out the minimal set of environmental features needed for the 
job -- the base set.

Model these, with some principled envelope-of-noise, so that what 
uses these features in simulation will work in real world 
-- 'base-set-robust'

Model everything ELSE in the simulation with wild, unreliable noise -
- so that robots cannot evolve in simulation to use anything other 
trhan the base set
-- 'base-set-exclusive'


