	Non-Symbolic AI lecture 3	
EHSŲ		
	More on Evolutionary Algorithms	
	Last lecture discussed encoding real numbers as bits on a	
	genotype (either binary encoding or Gray coding)	
	Sometimes people choose to have real numbers directly	
	represented on the genotype which might be:	
	2 034 _30 678 0 005 102 567 _80 432	
	2.004 -50.070 0.005 102.50705.452	
	Perombination will work in the same way as with normal	
	Recombination will work in the same way as with normal	
	discretely encoded genotypes, but mutations will be handled	
	differently.	
Von-Symbol	lic Al lecture 3 Summer 2006	1

	Evolu	tion Strategies	
EASy	If the problem you are tack naturally expressed as rea should investigate Evolutio (see previous lecture) These work primarily with and this evolutionary para sophisticated strategies fo	kling has all the parameters I numbers, then maybe you In Strategies a version of 'creep mutation', digm has developed r modifying the amounts of	
Naa-Sumbal		Summer 2006	3

605	Why Should GAs work ?	
CHSĻ	John Holland (1975) 'Adaptation in Natural and Artificial Systems' – and most of the textbooks – explain this with the Schema Theorem , and ideas of building blocks .	
	Roughly speaking, building blocks are segments of the genotype which encode for functional components of the 'phenotype', or potential solution to the problem.	
	These building blocks can, in principle, be evaluated independently of all the rest, as varying between 'good' and 'bad'.	
Non-Symb	polic Al lecture 3 Summer 2006 5	

	Schemata
EHSŲ	
	Schemata (plural of schema) are a formalisation of this idea of a building block.
	Consider binary genotypes of length 16. Let # be a 'wild- card' or 'dont-care' character.
	Then #####00#010#####
	is a schema of order 5 (5 specified alleles) and of defining length 6 (length of segment which includes specified alleles).
Non-Symbol	lic Al lecture 3 Summer 2006 7

EASU	Doubts about the Schema Theorem	-
	The Schema Theorem is formally correct.	
	But nowadays many people (including myself) believe it has been misinterpreted.	
	The 'subject to certain conditions' bit means that this exponential increase is only guaranteed over 1 generation	
	thereafter the conditions change!	
Non-Symb	olic Al lecture 3 Summer 2006 1	1

(EASu	Is there a poin	t?	
	Microbial GA paper via my home page http://www.informatics.susx.ac.uk/users	/inmanh	
	It does actually work.		
	By no means guaranteed to be better the does show how really simple a GA ca	nan other GAs but n be , and still work !	
	Apart from the one line, it needs declars gene[POP][LEN], initialisation of a rand <i>evaluate(n)</i> that returns fitness of n th models.	ation of om popn, and ember.	
Non-Symbo	ic Al lecture 3	Summer 2006	23

(05)	A mini-GA project – for Seminars week 3
φ <i>ב</i> חס	You have 10 cards numbered 1 to 10.
	You have to divide them into 2 piles so that:
	1) The ${\bf sum}$ of the first pile is as close as possible to 36
	2) And the product of all in second pile is as close as poss to 360
	Hint: call the piles '0' and ''1' , and use binary genotypes of length 10 to encode any possible solution.
Non-Symbo	Think of a suitable fitness function. olic Al leave 3 Summer 2006 25

