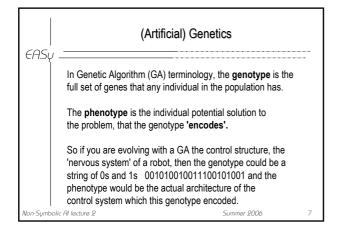
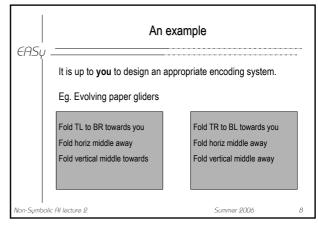
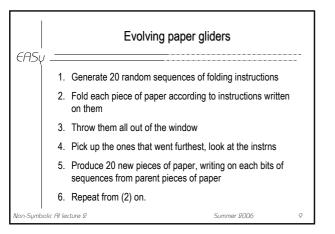
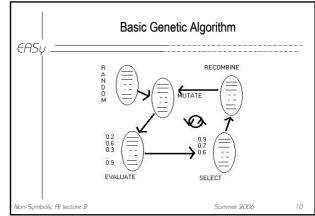
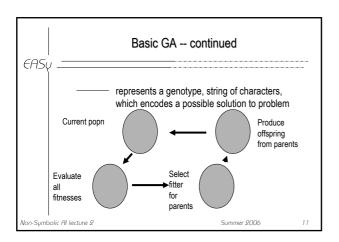

EASu	Non-Symbo	lic AI Lecture 2	
γensγ	Evolution and Genetic Algo Much of Non-Symbolic AI is b Perhaps the most important i Evolution, in designing all nat including you yourself! Genetic Algorithms (GAs)	orrowing from Nature's tricks. s the role of Darwinian	
Non-Symbol	c Al lecture 2	Summer 2006	1

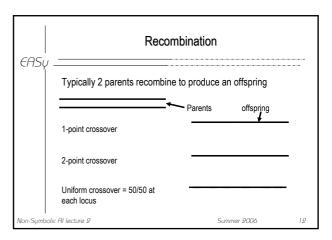

EASy	Biological Evolution	
	Read (strongly recommended, readable and fresh) the original C. Darwin 'On the Origin of Species' Also John Maynard Smith 'The Theory of Evolution' Richard Dawkins 'The Selfish Gene' etc. M Ridley "Evolution" – (textbook)	
Non-Symboli	lic Al lecture 2 Summer 2006	2

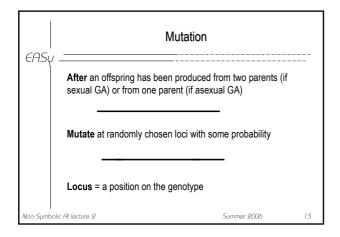


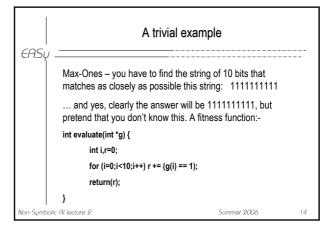


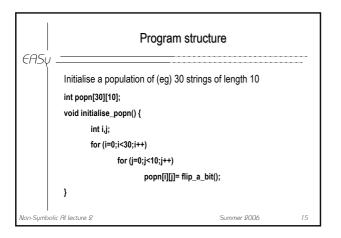


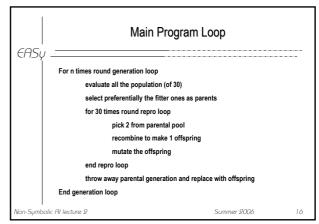


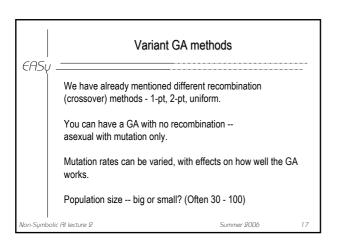


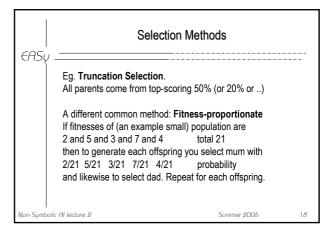


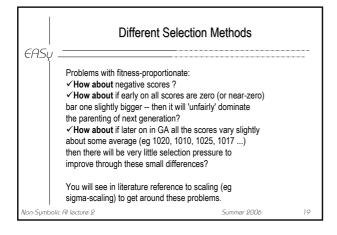


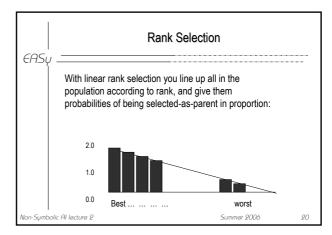


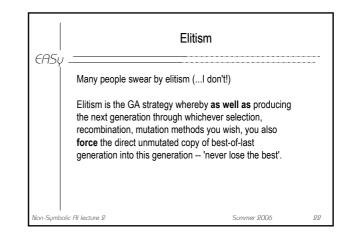


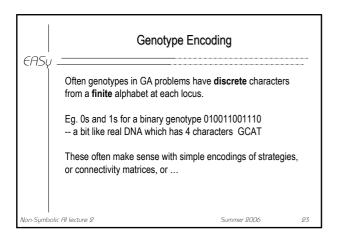


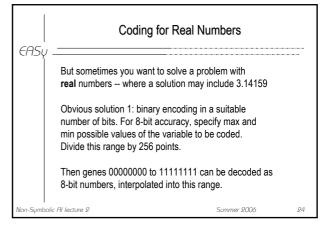




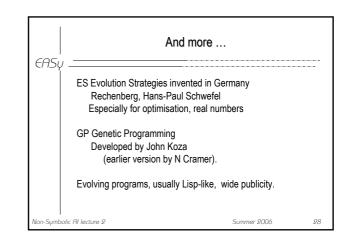


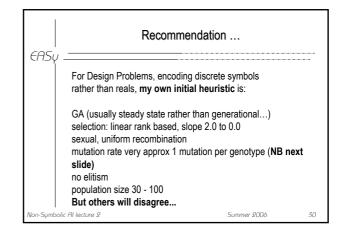




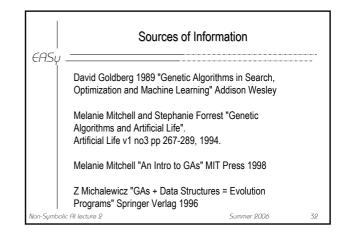


	More Rank Se	lection	
CHSŲ	Note with linear rank selection you ignor absolute differences in scores, focus pur The 'line' in linear ranking need not slope 2.0 to 0.0, it could eg slope from 1.5 to 0 You could have non-linear ranking. But recommend unless you have good reas slope from 2.0 to 0.0 as shown. This means that the best can expect to I many offspring as the average. Even be have a sporting chance of being parents	rely on ranking. e from .5. he most common way ons otherwise) is linear have twice as low-average	`
Non-Symbol	c Al lecture 2	Summer 2006	21




6850	Coding for Man	Real numbers	
	For eg 10 such real-valued vari genes together into a genotype You may only need 4-bit or 6-bi is appropriate to your problem.	80 bits long.	
	A problem with binary encoding	is that of 'Hamming cliffs	j'
	An 8-bit binary gene 01111111 10000000 yet despite being genes lie 8 mutations apart (a F	close in real values, these	;)
Non-Symboli	Al lecture 2	Summer 2006	25

EASy -	Gray Coding			
	This is a 1-1 mapping which means that an numbers are encoded by genes only 1 mut note reverse is not true!) no Hamming C	ation a	, ,	10
	Rule of thumb to translate binary to Gray: Start from left, copy the first bit, thereafter when digit changes write 1 otherwise write 0. Example with 3 bit numbers :	Bin 000 001 010 011 100 101 110	Actual 0 1 2 3 4 5 6	Gray 000 001 011 010 110 111 101


EASU	Other Evolutionary	Algorithms	
	Note that GAs are just one type of evaluation algorithm, and possibly not the best f purposes, including for encoding real	or particular	
	GAs were invented by John Holland a Others you will come across include:		
	EP Evolutionary Programming originally Fogel Owens and Walsh now David Fogel = Fogel Jr.	۱,	
Non-Symbo	lic Al lecture 2	Summer 2006	27

EASI	Which is best ?	
	Is there a universal algorithm ideal for all problems NO !!	
	(cf 'No Free Lunch Theorem, Wolpert and MacReady)	
	Are some algorithms suitable for some problems PROBABLY YES .	
	Is this a bit of a Black Art, aided by gossip as to what has worked well for other people YES!	
Non-Symb	olic Al lecture 2 Summer 2006 29	

	Ми	tation rates	
	genotype per generation. are using binary genoty selection pressures and r	d mutation rates of around 1 per I should stress this is when you pes, and assumes standard no redundancy – should be andard selection and/or much	
	mutation can alter all the	ed genotypes, then probably loci 'a little bit'. Think in terms of a pace, mutation shifts it a bit.	
Non-Sumbolic	<i></i>	Summer 2006	31

	More		
ΕΗSγ	plus many many more sources eg news group comp.ai.genetic		
	Be aware that there are many different opinio ill-informed nonsense.	ons – and a lot c	of
Make sure that you distinguish GAs from EP ES GP.			
Non-Symbol	ic Al lecture 2 Sumn	ner 2006	33