

EASU	Mutating	a Lisp program	
	Mutation in GP is rarely us	sed:	
	"Nonetheless, it is importa operator is a relatively unir the conventional GA", says (op. cit. p. 105), citing Holl	nt to recognize that the mutation mportant secondary operation s Koza and 1975 and Goldberg 1989.	on in
	When it is used, it operate and replacing it with a rand	s by randomly choosing a subl domly generated new subtree.	tree,
ا Non Symbol	ic Al Lecture 12	Summerr 2006	7

	Normalising fitness	
EASY	Often there is some adjustment or normalisation, eg s normalised fitness nf ranges within bounds 0 < nf < 1, increases for better individuals, and sum(nf)=1. Normalised fitness => fitness-proportionate selection	o that
Non Symbol	ic Al Lecture 12 Summerr 2006	9

605	Criticism of GP
	GP has been used with some success in a wide range of domains. There are some criticisms:
	Much of the work is in choice of primitives
	Successes have not been in General Purpose ('GP') programming very limited success with partial recursive programs (eg those with a DO_UNTIL command)
	But different Evolutionary Algorithm ADATE is far better than GP on this.
Non Symb	volic Al Lecture 12 Summerr 2006 13

	SAG	A	
€ASų.	SAGA, for Species Adaptation G many respects the very opposite page http://www.informatics.susx.ac.u It is intended for very long term of problems which inevitably take r quite possibly through increment	Genetic Algorithms, is in e of GP. Papers on my we k/users/inmanh/ evolution, for design nany many generations, tal stepping-stones.	eb
Non Symbolic	Al Lecture 12	Summerr 2006	15

EAS	Convergenc	e (2)	
	(2) convergence of the fitness of the value, or (very similarly) convergenc popn onto its final resting-place.	population onto its fi æ of the 'search' of th	nal e
	In sense (2) people talk of 'prematur particularly when they are worried al converging onto a local optimum in t one that is very different from the glo	e convergence', bout the population the fitness landscape, obal optimum.	,
	A common, completely false, myth is that convergence in sense (1) implies convergence in sense (2).		
Non Symb	olic Al Lecture 12	Summerr 2006	19

(ASu	Long term increme	ental evolution	
	SAGA was originally developed w incremental evolution, where one short genotypes encoding (eg) rel systems	with a view to long term would start with (relativ atively simple robot cor	rely) htrol
	then over time evolution would for more complex control systems In this long term evolution it is cle will be genetically converged for a	move to longer genotyp s. ar that the population Ill bar the very start	bes
Non Symbolic Al Lecture 12 Summerr 2006		21	

EASu	Consequences	of convergence (1)	
	It soon became apparent tha genotypes, one still has gen population from virtually the widely recognised.	at even with fixed-length etic convergence of the start even though this is not	
Consequences: recombination does not 'mix-and-match' building blocks quite as expected because typically the bits swapped from mum are very similar to the equivalent from dad.			
Naa Sumbali	c Al Loch vo. 19	Summar 0006	07

	Junk DNA		
EHSŲ	J		
	A high proportion – indeed most – of huma animal/plant DNA appears to be 'junk'.	n and other	
	I.e., not used, not 'translated' or 'interpreted doing there?	d'. So what is it	
	"Rubbish is what you chuck out, junk is wh attic in case you might need it later"	at you put in the	9
	Some genes might be unnecessarily duplic – and later the spare copies mutated into s useful.	ated by accider omething else	nt
Non Symbo	olic Al Lecture 12 Sur	nmerr 2006	25

CO5	SA	GA ctd …	
φ.	Often there is quite a safe rar this value ie although it ballpark, exact value not t	nge of mutation rates arour is important to be in the rigl oo critical	nd nt
	Recombination generally ass	ists evolution a bit	
	Expect fitness to carry on incl generations	reasing for many many	

(ASu	Selection pressures	-
	It is very tempting to use a high selection pressure for Genetic Algorithms/Evolutionary Algorithms "Just select the very fittest as a parent and throw away the rest"	
	This is almost always a bad idea – evolutionary search gets stuck in a dead end.	
	I recommend standard selection – as in Microbial GA, pick winner of tournament of size 2 – and then adjust the mutation rate appropriately. But you can experiment.	
Non Symbo	lic Al Lecture 12 Summerr 2006 31	5

