THE NATURAL WAY TO EVOLVE HARDWARE

Adrian Thompson

Inman Harvey

Philip Husbands

School of Cognitive and Computing Sciences, University of Sussex, Brighton BN1 9QH, UK.
adrianth, inmanh, philh @cogs.susx.ac.uk

ABSTRACT

Artificial evolution can automatically derive the config-
uration of a reconfigurable hardware system such that it
performs a given task. Individuals of the evolving popu-
lation are evaluated when instantiated as real circuits, so
if constraints inherent to human design (but not to evolu-
tion) are dropped, then the natural physical dynamics of the
hardware can be exploited in new ways. The notion of an
artificially evolving ‘species’ (SAGA) allows the open-ended
incremental evolution of complex circuits. Theoretical ar-
guments are given, as well as the real-world example of an
evolved hardware robot controller.

1. INTRODUCTION

The use of artificial evolution to design electronic circuits
automatically is attractive when conventional design fails.
This is in situations where the desired circuit behaviour is
difficult to specify, or where the nature of the circuit — e.g.
asynchronous, continuous-time, analogue, high-complexity,
low power, low area, fault-tolerant — does not yield to tra-
ditional approaches. This paper' discusses the new issues
which must be faced in tackling such applications. Firstly,
the evolution of complex structures is facilitated by the in-
cremental open-ended evolution of a relatively converged
‘species.” This is in contrast to the global search in a fixed
parameter space performed by Genetic Algorithms (GAs)
[3] used for engineering optimisation. Secondly we note that
evolution, because it involves no modelling, abstraction or
analysis, does not impose the same constraints on the cir-
cuit as conventional design. After relaxing redundant con-
straints (some of which are implicit in our preconceptions of
what circuits should be like), evolution can explore the full
space of possible designs: the resulting circuits can have a
richer spatial and temporal organisation and can exploit the
physical resources available far more than circuits produced
by traditional methods.

By ‘hardware evolution’ we refer to the use of an evo-
lutionary algorithm to determine the configuration of a
many-times reconfigurable hardware device, such as a Field-
Programmable Gate Array (FPGA). Configurations (phe-
notypes) are somehow encoded as a strings of symbols —
typically bits — and a population of these genotypes is
maintained. Fitnesses are assigned to individuals in this
population by expressing each genotype as a real physical
circuit configuration® and evaluating the circnit’s perfor-
mance at the required task. This evaluation procedure can
be automated to avoid any need for human intervention.

1A much shortened adaptation of [2].
2This is sometimes called intrinsic hardware evolution.

The individual genotypes are then inter-bred under a selec-
tion pressure, such that fitter individuals are more likely
to survive and/or have offspring. Breeding is usually a
stochastic process involving a crossover or recombination
operator, which combines segments of the genotypes of two
different parent genotype strings to produce children; and a
mutation operator, which introduces random variations into
the genotypes. Over the course of time, all being well, real
physical circuits (typically as configurations of an FPGA)
are obtained that are well adapted to the task at hand and
the hardware resources available.

The remainder of this paper is structured in three parts.
In the next section we describe the type of evolutionary
process that is suitable for the evolution of complex hard-
ware. Then the nature of evolution as a design process
and of the evolved circuits themselves is investigated. Fi-
nally, the concepts are illustrated with a simple piece of
hardware evolved as a real physical circuit to control a real
autonomous mobile robot. This circuit (which was the first
evolved hardware robot controller [4]) displays surprising
abilities from a miniscule amount of hardware as a result
of placing temporal constraints under evolutionary control
and allowing exploitation of the physical characteristics of
the real hardware.

2. EVOLUTION FOR COMPLEX SYSTEMS

The majority of GA work, both applications and theoreti-
cal analysis, refers to optimisation problems which can be
seen as search problems in some high-dimensional search
space of known (often enormous) size. The components to
be optimised could be parameters which need to be set at
appropriate real values; or they could be discrete values
which need to be chosen. The well-defined finite dimen-
sionality of the search space of these optimisation problems
allows a choice of genotype coding such that a genotype of
fixed length can encode any possible solution. For hardware
design, this approach is appropriate when the optimal at-
tributes of a predetermined number of components are to be
found; also where the ordering of a given set of components
needs to be determined.

GA theory has in general assumed such a fixed-
dimensional search space. Typically the GA starts with
a population of random points effectively spanning and
coarsely sampling the whole search space. Successive
rounds of selection, reproduction and mutation are intended
to focus the population of sample points towards fitter re-
gions of the space, homing in on an optimum or near-
optimal region. Theorems such as the Schema Theorem,
intended to show the circumstances under which GAs can
be expected to produce the desired results, rely on these
assumptions. Omne consequence of this approach has been

the primary reliance on recombination as the genetic oper-
ator, which combines information from different samples in
order to move towards regions of expected higher fitness;
mutation is typically treated as a background operator.

Standard GA theory only applies when there is a pre-
determined number of components to be used. However,
there are at least two possible scenarios in which this is not
the case. The first is incremental evolution: a sequence of
increasingly complex tasks is posed, requiring the evolution
in succession of ever more complex circuits. This is neces-
sary when aiming to solve a problem that is too difficult for
evolution to gain a foot-hold on if faced with it all at once.
The second scenario is evolution for parsimony, where the
number of components used is to be kept to a minimum.

If there is no predefined number of components in a struc-
ture to be designed, then an appropriate coding scheme used
in a GA will, in general, code for different structures with
genotypes of different lengths — which gives a search space
of open-ended dimensionality. Evolutionary search can op-
erate in domains of varying dimensionality — indeed evo-
lution in the natural world has done just that. Relatively
complex species, with lengthy genotypes, have evolved from
simpler ancestors with smaller genotypes. GAs when ap-
plied to search spaces of varying dimensionality need a dif-
ferent framework from those used for standard optimisation
problems. Species Adaptation Genetic Algorithms (SAGA)
were developed as this framework.

2.1. Species Evolution

The conceptual framework of SAGA was introduced by Har-
vey in 1991 in order to try to understand the dynamics of
a GA when genotype lengths are allowed to increase [5]. Tt
was shown that progress through such a genotype space will
only be feasible through relatively gradual increases in infor-
mation in the genotype (typically, in genotype length). This
is associated with the evolution of a genetically-converged
species rather than global search. Such evolutionary search
in the space of hardware designs would be from initially
simple designs for simple tasks, towards more complex de-
signs for more complex tasks; although in natural evolution
there is no externally provided sense of direction, in artifi-
cial evolution this can be provided.

Throughout such artificial evolution, a species will be rel-
atively fit, in the sense that most members of the popula-
tion will be fitter than most of their neighbours in the fit-
ness landscape. Evolutionary search can be thought of as
searching around the current focus of a species (the current
local optimum or hill in the fitness landscape) for neigh-
bouring regions which are fitter (or in the case of neutral
drift, not less fit) whilst being careful not to lose gains that
were made in achieving the current status quo. Any higher
hills in the landscape will tend to be found along ridges
leading away from the current hill, and evolution should
concentrate exploration along these ridges.

2.2. SAGA and Mutation Rates

GAs can be considered as a balance between exploration (of
new untested regions) and exploitation (building on what
has already been found to be good), here analysed in terms
of mutation effects. Too few mutations means too little
exploration away from the current hill. Too much muta-
tion means that previously achieved gains are lost. In the
context of molecular quasi-species [6, 7], it is shown that
there 1s an ‘error catastrophe’: there is a maximum rate of
mutation which allows a quasi-species of molecules to stay
localised around its current optimum. Hence if mutation

rates can be adjusted, it would be a good idea to use a rate
close to, but less than, this critical rate.

For an infinite asexual population, in a particular sim-
plified fitness landscape representing molecular evolution,
FEigen and Schuster show [6] that these forces just balance
for a mutation rate m = In(o)/l; here ! is the genotype
length and o is the superiority parameter of the master se-
quence (the fittest member of the population) — the factor
by which selection of this sequence exceeds the average se-
lection of the rest of the local fitness landscape, and hence
the rest of the population. The SAGA framework takes into
account more complex fitness landscapes, including the el-
ement of ‘junk DNA’, which leads to a recommended rate
of mutation of between 1 and 5 mutations per genotype.
When applying such mutation rates, it is essential that the
probability of mutation is applied independently at each
position on the genotype.

2.3. Selection and Recombination

Selective forces need to be maintained at the same level
throughout an evolutionary run, so as to balance muta-
tional forces and maintain a similar degree of genetic con-
vergence throughout. Basing selection directly on absolute
fitness values does not achieve this, and some system based
on ranking of the population must be used. This implies
that the fittest member of the population has the same ex-
pected number of offspring whether it is far better than
the rest, or only slightly better. One way to achieve an ef-
fect comparable to linear ranking in a steady state GA is
through tournament selection. Rather than replacing the
whole population by a similar number of offspring at each
generation, only one new offspring at a time replaces a fa-
tality in an otherwise unchanged population. Two parents
for the offspring can each be chosen by picking the fittest of
a randomly picked pair (the tournament), and the fatality
chosen at random from the whole population; alternatively,
the parents can be picked at random from the whole popu-
lation, and the fatality selected as the loser of a tournament.

With a genetically converged population, sections of
genotype that are swapped in recombination are likely to be
fairly similar. With species evolution, recombination does
not have the prime significance it has in standard GAs —
asexual evolution is indeed feasible — but nevertheless it is
a useful genetic operator.

3. THE NATURE OF EVOLVED CIRCUITS

In our formulation of evolvable hardware, individuals of the
evolving population receive fitness scores according to their
performance when instantiated as real physical pieces of
electronics. Evolution proceeds by taking note of the overall
behavioural effect of variations made to the real circuits;
this is very different from conventional design techniques,
which proceed by manipulating abstract models.

The use of abstract models simplifies design by allowing
some aspects of reality to be ignored, but the properties of
the real hardware that have been ‘abstracted away’ must be
suppressed: they must not be allowed to influence the final
behaviour of the designed circuit. For example, a designer
engaged in digital design does not need to think about the
analogue behaviour of the transistors, but considers them
as ON/OFF switches. To allow circuits designed at this
level of abstraction to work in reality, the transistors must
always be kept in either the ON state or the OFF state ex-
cept during short transient periods while they are switch-
ing between them. Steps must be taken to ensure that
these transients do not influence the overall behaviour of

the system as predicted by the designer’s digital model. In
synchronous design, this is done by compartmentalising the
system into modules which only communicate on the tick-
ing of a clock: the transient dynamics are localised within
each module and die away before the module is allowed
to influence the rest of the system. Thus, both the spa-
tial organisation and the dynamical behaviour of the circuit
are constrained in order to support the designer’s abstract
model. This does not only apply to digital design, but to all
design methodologies: none can proceed far with detailed
physical descriptions of the dynamical behaviour of the ele-
mentary components (e.g. transistors) before abstraction is
necessary.

Hardware evolution, by observing the consequences of
variations made to the real hardware, avoids the need for
design abstractions and the accompanying constraints. Our
notion of the nature of electronic systems is heavily biased
by our design methodologies and the constraints applied to
facilitate their abstractions, so evolvable hardware demands
a radical rethink of what electronic circuits can be. Both
the spatial structure (modularity) and the temporal struc-
ture (synchronisation and the réle of phase in general) need
to be considered.

3.1. Spatial Structure

As well as to support abstract models, modularity arises in
designs according to the way in which the problem was de-
composed. Humans typically use some sort of “divide and
conquer” strategy; whether the decomposition is a func-
tional one or a behavioural one [8], the final structure ar-
rived at usually has modules echoing that decomposition.
The evolutionary process could also benefit from a kind of
modularity, such that different phenotypic characteristics
can be improved semi-independently by genetic mutations
[9]. However, these ‘modules’ are not necessarily reflected
in the phenotype circuit’s spatial or topological structure:
for example, they could correspond to basins of attraction
in state-space. These are currently open questions, and are
intimately tied to the study of morphogenesis: the expres-
sion of genotype by a growth process to give rise to the
phenotype.® The important observation here is that any
kind of modularity that s appropriate to evolution is very
different to that arising in design by humans. Conventional
notions of modularity should not be imposed upon an evolv-
ing circuit.

3.2. Temporal Structure

Real physical electronic circuits are continuous-time dy-
namical systems. They can display a broad range of dy-
namical behaviour, of which discrete-time systems, digital
systems and even computational systems are but subsets.
These subsets are much more amenable to design techniques
than dynamical electronic systems in general, because the
restrictions to the dynamics that each subset brings support
design abstractions, as described above. Evolution does not
require abstract models, so there is no need to constrain ar-
tificially the dynamics of the reconfigurable hardware being
used.

In particular, there no longer needs to be an enforced
method of controlling the phase (temporal co-ordination)
in reconfigurable hardware originally intended to implement
digital designs. The phase of the system does not have to
be advanced in lock-step by a global clock, nor even the
local phase-controlling mechanisms of asynchronous digital
design methodologies imposed. The success of pulse-stream

3See [2] for more details.

neural networks [10, 11], where analogue operations are per-
formed using binary pulse-density signals, gives a clue that
allowing the system’s phase to unfold in real-time in a way
useful to the problem at hand can add a powerful new di-
mension to electronic systems: time. Mead’s highly success-
ful analogue neural VLSI devices (e.g. the ‘silicon retina’)
[12], exploiting the continuous-time dynamics of networks
of analogue components (with the transistors mostly op-
erating in the sub-threshold region), show how profitable
an excursion into the space of general dynamical electronic
systems can be.

In some applications, dynamics on more than a single
timescale are needed in an evolved circuit. For example, a
real-time control system needs to behave on a timescale
suited to the actuators (typically in the range millisec-
onds to seconds), while the underlying dynamics of the
controller’s electronic components might be measured in
nanoseconds. Being able to have different parts of a cir-
cuit behaving at different timescales can also be significant
in other ways; indeed, learning can be thought of as a dy-
namic on a slower timescale than individual task-achieving
behaviours. In a simulation experiment reported in [2], a
4kHz oscillator (slow) was evolved as a network of 68 logic
gates with propagation delays between 1.0 and 5.0 nanosec-
onds (fast): evolution manipulated the timescales of the cir-
cuit’s overall behaviour without this having to be imposed
from outside. This is in contrast to the usual techniques of
using a clock, or large time-constant components — though
it can still be sensible to provide these as resources that
evolution can choose to utilise if useful. In the next section,
these ideas are put into practice.

4. AN EVOLVED HARDWARE ROBOT
CONTROL SYSTEM

This experiment takes a standard electronic architecture,
removes some of the dynamical constraints used to make
conventional design tractable, and subjects the resulting
dynamical electronic system to hardware evolution.

The circuit to be evolved was the on-board controller for
a two-wheeled autonomous mobile robot (height 63cm, di-
ameter 46cm). The circuit’s task was to induce simple wall-
avoidance behaviour into the robot when placed in a rect-
angular arena. For this scenario, the d.c. motors were not
allowed to run in reverse and the robot’s only sensors were
a pair of time-of-flight sonars rigidly mounted on the robot,
one pointing left and the other right. The sonars fire simul-
taneously five times a second; when a sonar fires, its output
changes from logic 0 to logic 1 and stays there until the first
echo is sensed at its transducer, at which time its output
returns to 0.

Consider the RAM based implementation of a finite-state
machine (FSM) [13]. The RAM holds a look-up table for
the next-state and output functions, and a clocked regis-
ter holds the current state. The dynamics are highly con-
strained to deterministic state transitions which are inde-
pendent of the precise characteristics of the hardware. This
allows the FSM designer to operate at a high level of ab-
straction. Suppose now that as well as placing the contents
of the RAM under evolutionary control, we allow it to be
genetically determined whether each signal is latched ac-
cording to the clock or whether it is allowed to vary asyn-
chronously, in continuous time. Further, let the clock fre-
quency be under genetic control. We then arrive at a very
different type of system: call it a Dynamic State Machine
(DSM). The DSM is endowed with a new rich range of pos-

sible dynamical behaviour, so that it can be directly coupled

MOTORS

LEFT RIGHT

SONARS

Figure 1. The evolvable Dynamic State Machine
(real hardware). Each is a ‘Genetic Latch’.

N

Figure 2. Behaviour of the evolved circuit.

to the pulsing sonars and the motors (which require pulse-
modulating). The arrangement is shown in Figure 1, where
a ‘Genetic Latch’ can either latch the signal according to
the clock of evolved frequency, or can let the signal through
asynchronously. Here, the 16 words x 2 bits RAM is il-
lustrated as implementing a pair of logic functions of four
variables.

A designer would not be able to work with the DSM
(which is no longer finite-state, but a continuous-time dy-
namical system). Metastability and glitches will be rife,
and the detailed characteristics of the hardware (such as
propagation delays and metastability constants) can be a
crucial part of the way the system behaves. Nevertheless,
evolution was able to exploit all of this to produce a robot
controller exhibiting the excellent behaviour shown in the
long exposure photograph of Figure 2. This is because all
fitness evaluations happened with the individuals instanti-
ated as real configurations of a hardware implementation of
the DSM, driving the real motors. The reader is referred to
[2] for full experimental details: a fairly conventional GA
was used, but in accordance with SAGA theory.

One of the evolved DSMs was analysed, and was found
to be going from sonar echo signals to motor pulses using
only 32 bits of RAM and 3 flip-flops (excluding clock gen-
eration): highly efficient use of hardware resources, made
possible by the absence of design constraints. The circuit

had subtle dynamics, consisting of a stochastic interplay
between continuous-time and clocked components, as well
as a tight coupling to the sensorimotor environment. The
behaviour included a strategy to avoid being misled by spec-
ular sonar reflections, which were common.

5. CONCLUSION

Species Adaptation Genetic Algorithms (SAGA) and a re-
spect for the natural physical dynamics of the hardware can
allow complex, efficient circuits to be evolved. These cir-
cuits look very different to those produced by conventional
design.

ACKNOWLEDGEMENTS

Special thanks to Dave Cliff. The research is funded by a
D.Phil. scholarship from the School of Cognitive & Com-
puting Sciences and by EPSRC.

REFERENCES

[1] For an overview of the literature, see A.J. Hirst: Notes
on the evolution of adaptive hardware. To appear
im: Proc. of 2nd Int. Conf. on Adaptive Comput-
ing in Engineering Design and Control (ACEDC96),
Univ. of Plymouth UK, 26-28"" March 1996. http://
kni.open.ac.uk/ monty/evoladaphwpaper.html

[2] Adrian Thompson, Inman Harvey, and Philip Hus-
bands. Unconstrained evolution and hard conse-
quences. In E. Sanchez and M. Tomassini, editors,
Towards Fvolvable Hardware. Forthcoming: Springer-
Verlag Lecture Notes in Computer Science, 1996.

[3] David E. Goldberg. Genetic Algorithms in Search, Op-
timisation & Machine Learning. Addison Wesley, 1989.

[4] Adrian Thompson. Evolving electronic robot con-
trollers that exploit hardware resources. In F. Mordn
et al., editors, Advances in Artificial Life: Proc. of the
3rd Eur. Conf. on Artificial Life (ECAL95), pp640-
656. LNAT 929, Springer-Verlag, 1995.

[5] Inman Harvey. Species adaptation genetic algorithms:
The basis for a continuing SAGA. In Varela and
Bourgine, eds, Toward a Practice of Autonomous Sys-
tems: Proc. of the 1st Eur. Conf. on Artificial Life,
pp346-354. MIT Press/Bradford Books, 1992.

[6] M. Eigen and P. Schuster. The Hypercycle: A Principle
of Natural Self-Organization. Springer-Verlag, 1979.

[7] M. Eigen, J. McCaskill, and P. Schuster. Molecular
quasi-species. J. Phy. Chem. , 92:6881-6891, 1988.

[8] Rodney A. Brooks. Intelligence without representa-
tion. Artificial Intelligence, (47):139-159, 1991.

[9] Ginter P. Wagner. Adaptation and the modular design
of organisms. In F Mordn et al., editors, Advances in
Artificial Life: Proc. of the 8rd Eur. Conf. on Artificial
Life (ECAL95), pp317-328. Springer-Verlag, 1995.

[10] A.F. Murray et al. Pulsed silicon neural networks - fol-
lowing the biological leader. In Ramacher and Rickert,
editors, VLSI Design of Neural Networks, pp103-123.
Kluwer Academic Publishers, 1991.

[11] Alan F. Murray. Analogue neural VLSI: Issues, trends
and pulses. Artificial Neural Networks, (2):35-43, 1992.

[12] Carver A. Mead. Analog VLSI and Neural Systems.
Addison Wesley, 1989.

[13] David J. Comer. Digital Logic & State Machine Design.
Holt, Rinehart and Winston, 1984.

