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1 Introduction

This paper introduces the field of Evolutionary
Robotics through a case study. A specialised piece
of robotic equipment for evolving visually guided be-
haviours is described. The results of a successful ex-
periment in the concurrent evolution of a dynamical
network controller and visual sensor morphology are
presented. A visuo-motor behaviour is evolved that
allows the robot to distinguish between two different
targets. The mechanisms underlying the behaviour
are analysed and some surprisingly subtle features are
uncovered. A further experiment to evolve robot con-
trollers directly in hardware, thus allowing advantage
to be taken of intrinsic silicon physics, is also briefly
described. The paper closes with some discussion of
future direction in the field.

2 Evolutionary Robotics

The basic notion of Evolutionary Robotics is as fol-
lows. The evolutionary process, based on a genetic al-
gorithm [4, (Holland 1975)], involves evaluating, over
many generations, whole populations of control sys-
tems specified by artificial genotypes. These are inter-
bred using a Darwinian scheme in which the fittest in-
dividuals are most likely to produce offspring. Fitness
is measured in terms of how good a robot’s behaviour
is according to some evaluation criterion. The work
reported here forms part of a long-term study to ex-
plore the viability of such an approach in developing
interesting adaptive behaviours in visually guided au-
tonomous robots, and, through analysis, in better un-
derstanding general mechanisms underlying the gen-
eration of such behaviours. It is one of the strands of
the research program of the Evolutionary and Adap-
tive Systems Group, School of Cognitive and Comput-
ing Sciences, University of Sussex. For further details

see e.g. ([2, Cliff et al 1993]).

One of the motivations of this work is the con-
cern that artificial nervous systems of the complex-
ity needed to generate advanced behaviours in au-
tonomous agents may well be beyond the capabilities
of traditional engineering design practices. It is sug-
gested ([1, Brooks 1991], [2, Cliff et al]) that such arti-
ficial nervous systems will involve many interactions,
both direct and indirect via the environment, between
many different sub-systems. It is precisely this kind of
system that designers traditionally try and avoid, pre-
ferring clean modular structures with limited interac-
tions between the parts. However, artificial evolution,
as an automatic design methodology, may be the way
forward. Time will tell.

2.1 Real World Evolution

A crucial decision in evolving robot control systems
is whether or not to use simulation at the evaluation
stage, transferring the end results to the real world.
Since an evolutionary approach potentially requires
the evaluation of populations of robots over many gen-
erations, a natural first thought is that simulations
will speed up the process, making it more feasible. It
has recently been shown that control systems evolved
in carefully constructed simulations, with an appro-
priate treatment of noise, transfer extremely well to
reality, generating almost identical behaviours in the
real robot ([6, Jakobi et al 1995]. However, this exam-
ple involved relatively simple robot-environment in-
teraction dynamics. Once even low-bandwidth vision
is used, simulations become altogether more problem-
atic. They become difficult and time consuming to
construct and computationally very intensive to run.
Hence evolving visually guided robots in the real world
becomes a more attractive option. The experiment de-
scribed here uses a piece of robotic equipment specially
designed to allow the real-world evolution of visually
guided behaviours — the Sussex gantry-robot.



3 The Gantry-Robot

The gantry-robot is shown in Figure 1. The robot is
cylindrical, some 150mm in diameter. It is suspended
from the gantry-frame with stepper motors that allow
translational movement in the X and Y directions, rel-
ative to a co-ordinate frame fixed to the gantry . The
maximum X (and Y) speed is about 200mm/s. Such
movements, together with appropriate rotation of the
sensory apparatus, correspond to those which would
be produced by left and right wheels. The visual sen-
sory apparatus consists of a CCD camera pointing down
at a mirror inclined at 45° to the vertical. The mirror
can be rotated about a vertical axis so that its orien-
tation always corresponds to the direction the ‘robot’
is facing. The visual inputs undergo some transforma-
tions en route to the control system, described later.
The hardware is designed so that these transforma-
tions are done completely externally to the processing
of the control system.

The control system for the robot is run off-board on
a fast personal computer, the ‘Brain PC’. This com-
puter receives any changes in visual input by inter-
rupts from a second dedicated ‘Vision PC’. A third
(single-board) computer, the SBC, sends interrupts to
the Brain PC signalling tactile inputs resulting from
the robot bumping into walls or physical obstacles.
The only outputs of the control system are motor sig-
nals. These values are sent, via interrupts, to the SBC,
which generates the appropriate stepper motor move-
ments on the gantry.

The Brain PC runs the top-level genetic algorithm
and during an individual evaluation, it is dedicated
to running a genetically specified control system for
a fixed period. At intervals during an evaluation, a
signal is sent from the Brain PC to the SBC request-
ing the current position and orientation of the robot.
These are used in keeping score according to the cur-
rent fitness function. The Brain PC receives signals,
to be fed into the control system, representing sen-
sory inputs from the Vision PC and the SBC. The
visual signals are derived from averaging over genet-
ically specified circular receptive patches in the cam-
era’s field of view.

This setup, with off-board computing and avoid-
ance of tangled umbilicals, means that the apparatus
can be run continuously for long periods of time —
making artificial evolution feasible. A top-level pro-
gram automatically evaluates, in turn, each member
of a population of control systems. A new population
is produced by selective interbreeding and the cycle
repeats. For full technical details of the system see

([3, Harvey et al 1994]).

Figure 1: The Gantry viewed from above. The horizontal
girder moves along the side rails, and the robot is suspended
from a platform which moves along this girder.

4 Experimental Setup

Full details of the experimental setup for the gantry-
robot can be found in ([3, Harvey et al 1994]). This
paper also explains in full the genetic encodings used
and the control system primitives manipulated by the
GA. Experiments conducted with the gantry-robot to
date have all involved relatively simple vision based
navigation tasks. The experiment described below was
one of a series where a converged population of robots
was evolved through a series of increasingly complex
behaviours.

These were based around the evolution of control
architectures built from recurrent dynamic realtime
networks, where the primitives were the nodes in a
network, and links between them. There were no re-
strictions on network topologies, arbitrarily recurrent
nets being allowed. When some of these nodes are con-
nected to sensors, and some to actuators, the network
acts as a control system, generating behaviours in the
robot.

Rather than imposing a fixed visual sampling mor-
phology, we believe a more powerful approach is to
allow the visual morphology to evolve along with the
rest of the control system. Hence we genetically spec-
ify regions of the robot’s visual field to be sub-sampled,
these provide the only visual inputs to the control net-
work. It would be desirable to have many aspects
of the robot’s morphology under genetic control, al-
though this is not yet technically feasible.

Starting from a converged population of robots that
could move forward, but little else, the first task was
to move to a large white target from random starting



points and orientations. Once this was being achieved,
the task was changed to approaching a small white
target and evolution continued.

5 Rectangles and Triangles

The experiment then continued with a distinguish-
between-two-targets task. Two white paper targets
were fixed to one of the gantry walls; one was a rect-
angle, the other was an isosceles triangle with the same
base width and height as the rectangle. The robot was
started at four positions and orientations near the op-
posite wall such that 1t was not biased towards either
of the two targets. The evaluation function &s, to be
maximised, was:

1=20

E5= 3 [A(Dy, —di)) —o(Dapd)] (1)

i=1

where D is the distance of target-1 (in this case the
triangle) from the gantry origin; d; is the distance
of the robot from target-1; and s and ds are the
corresponding distances for target-2 (in this case the
rectangle). These are sampled at regular intervals, as
before. The value of # is (D1 — dy) unless d; is less
than some threshold, in which case it is 3 x (Dy —dy).
The value of ¢ (a penalty function) is zero unless ds
is less than the same threshold, in which case it is
I — (D2 — da), where I is the distance between the
targets; I is more than double the threshold distance.
High fitnesses are achieved for approaching the trian-
gle but ignoring the rectangle. It was hoped that this
experiment might demonstrate the efficacy of concur-
rently evolving the visual sampling morphology along
with the control networks.

After about 15 generations of a run using as an
initial population the last generation of the incremen-
tal small target experiment, fit individuals emerged
capable of approaching the triangle, but not the rect-
angle, from each of the four widely spaced starting
positions and orientations. The behaviour generated
by the fittest of these control systems is shown in Fig-
ure 2. When started from many different positions
and orientations near the far wall, and with the tar-
gets in different positions relative to each other, this
controller repeatedly exhibited very similar behaviours
to those shown.

The active part of the evolved network that gener-
ated this behaviour is shown in Figure 3. The evolved
visual morphology for this control system is shown in-
set. Only receptive fields 1 and 2 were used by the
controller.

&
1 '_\ 51 1 r
VoY 4 W
i Tf\. {“)
N \
P2 NN <
4 t . i
ey \'\. L
~ w
\ ¥
Wl
u
[ [ W

Figure 2: Behaviour of a fit individual in the two target
environment. The rectangle and triangle indicate the po-
sitions of the targets. The semi circles mark the ‘penalty’
(near rectangle) and ‘bonus score’ (near triangle) zones as-
sociated with the fitness function. In these 4 runs the robot
was started directly facing each of the two target, and twice
from a position midway between the two targets; once fac-
ing tnto the wall and once facing out.

Detailed analyses of this evolved system can be
found in ([3, Harvey et al 1994]). To crudely sum-
marise, unless there is a difference in the visual inputs
for receptive fields 1 and 2, the robot makes rotational
movements. When there is a difference it moves in a
straight line. The visual sensor layout and network dy-
namics have evolved such that it fixates on the sloping
edge of the triangle and moves towards it.

6 Transient Behaviour

Time plots of behaviour against this difference in
visual inputs consistently revealed an interesting non-
reactive feature to the robot’s behaviour. Figure 4
shows such a plot. The behaviour axis (Z) is dis-
cretized into simple observable motor behaviours such
as straight line motion, rotating on the spot, move-
ment in the arc of a circle and so on. The final part
of the plot, a line parallel to the time axis and termi-
nating at the point marked ‘finish’ at the right hand
side of the cube, represents the straight line motion
when the robot has fixated on the triangle edge and is
moving towards it. The parallel line above this and im-
mediately to the left represents a short lived transient
behaviour which such plots revealed always occurred
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Figure 3: Active part of the control system that generated
fit behaviour for the rectangle and triangle experiment. Vi-
sual morphology shown inset.

when the visual signal difference become large. Briefly,
the onset of a large difference triggers a short sharp
rotational movement which has very different conse-
quences depending on whether the robot has fixated
on a vertical or sloping edge. With a vertical edge, the
rotation tends to move both receptors off the target,
the visual signals become very different and rotational
behaviours ensue. However, with a sloping edge, the
rotation is not enough to move both receptive fields
off the target; the visual signal difference is still there
and a straight line motion follows. This is illustrated
in Figure 5. This behaviour can be interpreted as a
kind of ‘checking’ of edge orientation.

7 Evolving Hardware

In an experiment described fully in ([8, Thompson
1995], [9, Thompson et al 1996]), a standard electronic
architecture, with some of the dynamical constraints
used to make conventional design tractable removed,
was subjected to intrinsic hardware evolution. The re-
sult was the first evolved hardware control system for a
real robot. The evolved circuit was the on-board con-
troller for a wheeled mobile robot using a pair of time-
of-flight sonars as its only sensors. The task was to
avoid walls in an empty rectangular arena (i.e. move to
the centre and stay there). The starting point for the
evolved controller was a hardware implementation of a
finite state machine (FSM). However, the constraint of
synchronisation of all signals was relaxed and placed
under evolutionary control. The result was a machine
of fundamentally different nature to a FSM. As well
as the contents of the state transition table, the global
clock frequency was placed under genetic control, as
was the choice of whether each signal is synchronised
by the clock or whether it is free-running is also ge-

(6000,0.4,4)

I/ﬂnish

(6000,0,0)

/0,-0:57,0)

Figure 4: Time plot of behaviour against difference in vi-
sual inputs for receptive fields 1 and 2. The time azis (X)
runs left to right, the visual signal difference axis (Y) runs
bottom to top on the lower face of the cube, the behaviour
azis (Z) runs from lower to top face of the cube. See text
for further detasls.

netically determined. This resulted in the evolution of
extremely minimal controllers (32 bits in RAM plus
two flip-flops) exhibiting rich dynamics.

8 Conclusions

This paper has described an experiment in real-
world evolutionary robotics and has shown that the
evolved control networks and visual morphology for
a robot engaged in a simple target distinguishing
behaviour display subtle dynamics resulting in non-
reactive behaviour. An experiment in hardware evo-
lution has also been outlined.

These are just two of many experiments in evolu-
tionary robotics that have been performed in the past
few years, see ([5, Husbands et al], [7, Nolfi et al]) for
a range of examples. So what are the main challenges?
Certainly the genotype to phenotype (artificial DNA
to robot) mapping is a huge and difficult area that
has an enormous bearing on whether or not search
spaces amenable to evolution are created. The de-
sign of evaluation functions and schemes, both explicit
and implicit, will become more problematic as more
sophisticated behaviours are sought after. The fun-
damental nature of the evolved networks 1s of course
highly pertinent, as is the need to concurrently evolve
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Figure b: The top part of the figure illustrates the oui-
come of the transient ‘checking’ behaviour when the re-
ceptive fields straddle a vertical edge, and the bottom part
shows the same when they straddle a sloping edge.

as much robot morphology as possible. As well as all
these issues there is the potential problem of the sheer
amount of time needed to evaluate more sophisticated
behaviours. So where does this leave us? In my view,
near the start of a difficult but exciting and potentially
revolutionary endeavour.
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