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Abstract. In this paper we present an extension of the ShapeBugs dis-
tributed formation algorithm which enables 2D mobile agents to agree on
a consensus coordinate system starting from no coordinate agreement.
The participating agents require only local communication and local dis-
tance and motion information. Because this distance and motion infor-
mation can in many cases be obtained implicitly through software motor
approximation and attenuation or time-of-flight in communication, this
approach has the potential to globally coordinate general mobile com-
municating agents without additional sensor requirements. The extended
algorithm also remains robust against agent incapacitation and disorien-
tation.

1 Introduction

In the areas of robotics and distributed systems, from many directions, a strong
research effort has developed towards controlling autonomous agents with low
power requirements and simple sensor capabilities [1][2]. This research has been
partially motivated by continuing advances in hardware: microcontrollers and
digital communication technology have become cheap, widely available, and in
many cases very efficient. The technology enables new applications, and large
numbers of simple, self-directed robots show high potential for use in sensor grids
[3], resource harvesting [4], and group transport [5][6], amongst many other pro-
posals. As we begin to design robots of smaller size or larger number, however,
there are strong technical challenges to our ability to individually control, co-
ordinate, or adequately power them. Centralized supervision of complex agents
with virtually unlimited communication range, while successful in many areas,
often scales poorly when there are hundreds or thousands of agents to control
[7]. Ideally we would like to program global behavior in a distributed way, using
assumptions of limited communication and agents acting autonomously. Over-
coming the limitations of local communication and independent agent action to
achieve global coordination, using minimum hardware, is the defining challenge
in making simple agents practical.

The well-studied 2D formation task provides a particularly good starting
point for this research, as it is simple to describe with applications in theory and
practice. Given a set of points and a set of mobile agents, the formation task
is simply to arrange the agents on the points (or perhaps an isometric set of



points)[2]. Real-world tasks for multiple agents often involve forming particular
shapes, as in the previous examples of sensor grids and group transport. On the
theoretical side, agents which are able to arrange into arbitrary, large shapes
have established global information from local interactions [6].

A particularly complete heuristic approach to the formation problem called
the “ShapeBugs” algorithm is described by Cheng et al [3], which synchronizes
local agent coordinate systems through repeat trilateration. Given a small seed
group of initially oriented agents, an arbitrary (though connected) global shape
much larger than an individual agent’s communication radius can be formed.
The algorithm is robust to sensor and movement error and large numbers of
agents. It only requires agents to have local communication, an approximate
measure of relative distance, an approximate measure of relative motion, and a
global compass. Though technically the goal of the work was to distribute agents
through a shape, not place them in particular points on the plane, the algorithm
proceeds by synchronizing every agent’s coordinate system, and so implicitly
enables agents to form many arbitrary connected formations of any size.

Our work modifies and extends the ShapeBugs algorithm, reducing the agent
abilities required to form arbitrary global formations by eliminating the need for
a global compass. By continously calculating the error in local estimation of
motion, orientation can be derived from sequential distance measurements. We
present here:

– A distributed method capable of organizing many mobile communicating
agents into many classes of arbitrary shapes without agent position or ori-
entation agreement.

– An analysis of formation stability using the method with and without ori-
entation agreement.

Without the need for agents to access some shared coordinate system or
orientation (except a small number of initially coordinated seed agents, which
are not strictly necessary though helpful for control), our algorithm requires
simpler agent hardware at the cost of more complex software and higher data
broadcast rates. Maintaining agent density to allow effective orientation measure-
ments requires a new distributed growth process (but no new sensors). Because
communication often has measurable attenuation or time of flight [8], giving an
approximate measure of distance (though inaccuracy can make this unusable),
and motor output can be modeled in software, giving an approximate measure
of relative motion, this algorithm potentially enables any mobile communicating
agent to globally coordinate using only those two defining abilities.

In addition, calculation errors [9] affected the previous data presented in
[3], so new ShapeBugs results are presented for comparison with the modified
“ShapeBots” version.

1.1 Previous Work

The difficulty of solving the formation task is related to agent abilities. Agents
generally have arbitrary formation ability when they know their positions in



a unified, global coordinate system (each agent can simply move toward the
nearest unfilled formation point, for example). These types of agents will not
be discussed in this paper. Formations are not as straightforward if agents use
distributed logic and local communication, and the literature contains many
proposed solutions [4][7][10][11]. Fujibayashi et al [12] describe a method able to
create locally regular formations, though without arbitrary controllability, much
like simulated crystals. Another approach by Yamaguchi et al [13] allows a vari-
ety of formations from mobile agents in a line using similar virtual constraints.
Suzuki and Yamashita [2] mathematically describe a process to create regular
polygonal formations, while Ikemoto et al [14] extend this ability using Turing
waves to polygonal shapes with an axis of symmetry. Hybrid approaches [8][15]
are also possible and widespread in WiFi localization literature which assume
only a few agents have extra reference capabilities for global positioning. In gen-
eral, however, no fully distributed arbitrary formation algorithms for agents with
no coordinate agreement (i.e. no global position or orientation information) have
been demonstrated thus far for communicating mobile agents, though such algo-
rithms have been proven impossible in non-communicating cases [2][1]. This is an
important version of the formation problem, because simple, low power agents
may not generally have global positioning or orientation information available,
such as in energetic [16], heterogeneous [8], or non-geographic environments.
Also, any agents which have some form of coordinate agreement would be able
to rely on formation algorithms not requiring agreement as a backup in case of
failure or as a complement to their existing methods. Our modified algorithm
attempts to achieve connected arbitrary formations in a heuristic manner, by
synchronizing agents’ local coordinate systems using relative distance informa-
tion.

2 The “ShapeBots” Algorithm

We simulate simple mobile agents in a 2D, N × N continuous periodic world,
chosen to simplify the simulation by ignoring distant agent aggregation. There
are many distributed aggregation techniques described for disconnected agents,
[17][18] as examples, but we do not explore those here. Within a range RB = 6
units, agents have the ability to broadcast and recieve information, sense neigh-
bor distance, and sense their own motion. Agents also have a simulated repulsion
range RRep = 4 and physical collision radius Rc = 1, though collision handling
becomes unimportant if Rrep � Rc. Agents have a reference direction (a “nose”)
which allows them to be oriented in the simulation, and while they have the abil-
ity to rotate in place and move in any direction no matter which way they are
pointed, agent motion vectors are interpreted as relative to this “forward” di-
rection. After every motion, the reference direction is pointed in the direction of
motion.



Fig. 1. Sample ShapeBot agent in the 2D plane. The agent’s estimated x-axis at θ from
reference direction generally does not correspond to the global observer x-axis.

2.1 Agent Lifecycle and Scheduling

Our algorithm simulates agents as semi-asynchronous, with finite time required
for both calculation and movement. Semi-asynchronous is defined here as a vari-
ation of asynchronicity as defined by [1], but with a finite upper bound instead
of a lower bound on how long an agent may stay in each state of its activation
cycle, which we believe more closely models robot hardware. Agents follow a
lifecyle of:

Wait→ Sense1 → Compute1 →Move→ Sense2 → Compute2 →Wait (1)

The final Sense2 and Compute2 steps are necessary because agents compare
information before and after Moving to determine orientation from positioning
error. The Wait, Compute1,2, and Move steps each take time bounded by the
finite values Wt, Ct, Mt respectively, while the Sense time is amortized into
the total Compute time. After each agent transition, the time until the next
transition is drawn uniformly from [0, Tmax), where Tmax is appropriately Wt,
Ct, or Mt. Agents may move dm = 1 or 0 units during each Move → Sense2

transition (if they move 0 units, the Move step takes no time). In a more realistic
system agents could move varying distances over time, but this was not modeled
exactly in our simulation. The positioning and orientation algorithms depend
largely on the ability of agents to estimate the magnitude of their motions, while
the magnitude itself could vary. One agent iteration is defined complete when
an agent transitions through all six steps. In our results, Mt = 500, Wt = Mt,
and Ct = 0.01Mt.

The simulation begins with each agent in the Wait state, with each agent’s
time to Wait randomly drawn from [0,Wt). The agents are placed in a priority
queue, ordered by soonest update time. The simulation proceeds by removing
the agent with the soonest transition from the queue, performing the transition,
updating the agent time for the next transition, and finally adding it back into
the queue. One simulation iteration is defined complete when a simulation of N
agents makes N agent transitions back to the Wait state (not all agents may
be iterated fully, some may be iterated multiple times). Every agent continu-
ously broadcasts the following information (for both their previous and current
iteration):



– estimated (x, y) position and local orientation θ
– computational state (described below)
– local neighbor density ρ
– count of position and orientation updates since oriented

This information is therefore always available for other local agents to Sense.
While moving, the position is extrapolated from the original position and time,
but new estimates are only generated in Compute steps. Broadcasted informa-
tion also contains the relative distance between the agents at time of broadcast.

In addition to the readiness states described above, agents have three com-
putational states, as described in [3], of Lost, OutOfShape, and InShape. An
agent in the Lost state has no coordinate system, while the OutOfShape and
InShape agents have local coordinate systems (an (x, y) coordinate and an ori-
entation estimate θ). An agent in the Lost state will wander randomly through
the world until it senses three neighbors with coordinates, which then allows the
Lost agent to trilaterate a position guess using the neighbor distance measure-
ments and (x, y) positions. Importantly, while trilateration can approximate a
consistent coordinate system between neighboring agents, the relative orienta-
tion of the agents’ reference direction with respect to this coordinate system θ
must be calculated using distance measurements after neighbor motions. As an
initial orientation guess, a newly un-Lost agent’s orientation is reset to corre-
spond to a motion directly toward the centroid of the orienting points, though
the actual motion may have been less direct.

A newly oriented agent will become Lost again immediately if it cannot
remain in contact with other oriented agents long enough for several agent ori-
entations to occur, defined in our simulation as a 10 iteration update window
for orientation and trilateration. Otherwise poorly oriented agents tend to im-
mediately escape the main formation and form nearby competing formations of
opposite orientation. As in [3], once agents have acquired a concensus coordinate
system they attempt to fill a formation shape by each agent simulating a virtual
gas particle with a repulsion range Rrep. Neighboring agents inside the shape
with distance < Rrep will repel one another, leading to an average distribution
of agents throughout the shape. These virtual gas mechanics allow the shapes
to be robust against agent addition and death while spreading agents evenly
throughout the formation.

2.2 Orienting using Agent Motion

To adjust an agent’s percieved reference direction with respect to the trilater-
ated consensus coordinate system θ, an agent simply observes the error in its
coordinate system after motion. Because agents’ reference direction is pointed in
the last direction of motion, the corrected direction of motion with respect to the
trilaterated coordinate system is an estimation of the agent’s reference direction
in that consensus coordinate system. Along with the simulated error in move-
ment and distance measurement, asynchronous motion limits the agent speed
and density required for the agent coordinate systems to converge. Agents may



move simultaneously, adding inaccuracy to their trilaterated coordinate systems
due to estimated orientation errors, and the less accurate coordinates can then
result in less accurate orientation. Like position updates, the noisy orientation
changes calculated each agent motion are averaged over a window of 10 agent
iterations to smooth errors.

2.3 Formation Scaling

A major consequence of the co-dependency of orientation and position is that
agent coordinate systems will diverge very quickly from one another if agents be-
come separated from a dense group with coordinate agreement. For this reason,
agents with coordinate systems try to maintain a target agent density of ρ = 18
neighbors by scaling their local copy of the target formation, much like a balloon
expands as more gas is added. If many agents are added to the shape, the shape
will expand proportionally to maintain ρ, while if many agents are removed or
become inoperative, the target shape will shrink to ensure agents stay grouped.
If a particular size formation is required, the shape scale could easily be capped
at the target size (this is not done in our tests), but if there are too few agents to
maintain the target density the agents will be unable to maintain the formation
size.

The distributed scaling is achieved by every agent averaging neighbor values
of the desired shape scale. An agent broadcasts its desired shape scale (calculated
assuming local neighbor density applied throughout the shape) while using itself
the average of neighbor scales. There can be a large amount of variability in the
number of neighbors each iteration, so the broadcasted shape scale is smoothed
using density information from the past 10 agent iterations.

3 Formation Control Results

Fig. 2. Sample formations. Dark agents are non-Lost, and the formation shapes are
specified by the bitmaps in the image corner. Only connected formations are possible
using our algorithm, and shapes containing thin portions tend to be harder (or some-

times impossible) to form well. As seen in the formations, if Lost agents are allowed
to trilaterate with other Lost neighbors as well as non-Lost, they will spontaneously
create many stable formations without seed agents.



Fig. 3. Even without compasses, formations remain resistant against agent death. At
iteration 1000, agents in the lower half of the asterix formation die. At iteration 1150,
new agents have moved into the destroyed area, and by iteration 1500 the formation is
rebuilt (at smaller size to maintain density).

To measure the ability of agents to achieve coordinate agreement under vary-
ing amounts of distance and motion error, the coordinate variance of 200 agents
was calculated (Figure 4) while forming a simple square formation in an 80× 80
world. Coordinate variance is defined as the average variance in distance be-
tween the non-Lost agent origins, using the average orientation of all non-Lost
agents. Higher variance corresponds to weaker formation control. 12 seed agents
were initially placed in a 25 × 25 square in the center of the world and given
consistent coordinates and orientation to start the formation. The distance error
e is applied to measurements d by adding a uniformly chosen value from the
range (−de, de). Motion error is applied in the same way to each component of
a motion vector (mx,my).

4 Discussion

What a global compass seems to ”buy” you, in the context of distributed, ar-
bitrary shape formation algorithms, is the ability for agents to tolerate greater
distance and motion sensor error. As seen in Figure 4, 60% distance error with
our compass-free agents results in the same coordinate variance as 100% dis-
tance error using agents with compasses and scaling. Though less converged,
our agent formations without orientation still remain stable until about 80%
distance error (when the converged formations may only be temporarily stable).
Our modified algorithm seems less susceptible to motion error than the original
ShapeBugs work, even in the no-compass case, however this is probably due to a
reduced agent speed of 1 unit/iteration instead of the original 2 units/iteration
and higher density. Formation instability in our modified algorithm tends to in-
crease slowly until a threshold error level is passed, then quickly jumps, as can
be seen in Figure 4. The much higher instability then makes it impossible to
maintain a consensus coordinate system, in the case of no compasses.

Our corrected ShapeBugs convergence results match well with the originally
reported values, however for low distance error the coordinate variance is re-
duced. As the problem related to inaccurate initial trilateration calculation, the
effect becomes minimal where measurement errors are larger .
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Fig. 4. Average coordinate variance under distance and motion error (averaged over 90
simulations). The variance using the original ShapeBugs algorithm from [3] is shown
in (a). Though variance is low, as distance error increases, often seeded simulations
will fail to converge on a target shape, this happens 6%-80% of the time for 20%-
100% distance error and 11%-45% of the time for 20%-100% motion error. In (b) our
modified algorithm results using formation scaling are presented. At maximum, the
simulations fail to converge only 13% of the time, this is largely due to formations
growing too quickly (but is unchanged to better compare with (c)). Simulation data
using formation scaling without compasses is presented as (c), all simulations achieve
convergence except at distance error 80% (formations may not be stable long-term).
At higher error, no simulations converge.
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Fig. 5. Formation instability, measured as the average standard deviation over time of
the stabilized coordinate variance from t = [2000, 4000), is lowest when distance and
motion error is low.



4.1 Conclusion

The local communication, asynchronous update, and short burst motion sched-
ule make the ShapeBots algorithm amenable to many different types of agents,
though higher density and lower speed (equivalent to more frequent updates) to
mitigate larger measurement errors are required to reach comparable coordinate
convergence. For limited-power devices, this may mean the speed of formation
is lowered as compared to the ShapeBugs algorithm. Alternately, devices could
use higher transmission power to increase the agent range, and so increase the
formation density. Stable formations tend to converge more consistently using
gradual scaling, this may be desirable despite the other limitations.

In a situation where agents can extract reasonably accurate distance and
motion data from communication and motion input and can tolerate small vari-
ance in the global formation, large numbers of mobile agents containing only
communication hardware can organize in arbitrary patterns using the Shape-
Bots algorithm. The new algorithm shares much of the resiliance of the origi-
nal ShapeBugs approach, as the repeated coordinate averaging and virtual gas
motion was retained from the original algorithm. The presented method of syn-
chronizing scale across the formation to maintain this density works even with
large numbers of agents, but provides an additional source of formation shape
error (though not coordinate error). If the target shapes have very thin sections,
where agents are prone to escape and density measurements become especially
variable (because there cannot be many surrounding positions), even rescaling
may fail and the formation can be distorted or leak agents.

In future work we hope to address these issues and extend the algorithm to
approximate more intricate shapes. A major limiting factor is the rapid diver-
gence of coordinates and orientation once agents become disconnected. Scaling
agent motion proportional to their confidence in position in the formation may
be one useful approach, as slower motions could allow converged agents to sta-
bilize the coordinate system more exactly. Over time the agent formation would
also tend to slow down and stop, ideal behavior for energy-limited agents. With
larger numbers of agents, though, intricate shapes become less of a problem
because the shape scale grows and narrow portions become wider. Another ap-
proach would simply be to growing the shape a filled square, then transitioning
to the actual shape when agents agree the scale is large enough.

The ShapeBots simulation code, implemented in the MASON multi-agent
simulation framework [19], is available online at:
http://www.informatics.sussex.ac.uk/users/gms21/shapebot
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