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Abstract.  Recent development in tethered airfoil i.e. kite technology allows the 
possibility of exploitation of wind energy at higher altitudes than achievable 
with traditional wind turbines, with greater efficiency and reduced costs. This 
study describes the use of evolutionary robotics techniques to build 
neurocontrollers that maximize energy recoverable from wind by kite control 
systems in simulation. From initially randomized starting conditions, 
neurocontrollers rapidly develop under evolutionary pressure to fly the kite in 
figure eight trajectories that have previously been shown to be an optimal path 
for power generation. Advantages of this approach are discussed and data is 
presented which demonstrates the robustness of trajectory control to 
environmental perturbation.  

1. Introduction 

Recent advances in materials technology and kite design has facilitated the 
development of large scale electricity and propulsion systems that use kites to collect 
energy from the wind [6,7]. Here we present a simple aerodynamic simulation of a 
steerable four-line kite with which we use an evolutionary robotics (ER) approach in 
order to maximise aerodynamic forces acting along the same vector as the lines. 
Initially naïve neural networks are evolved using a microbial genetic algorithm [3] 
through selection and mutation of the controllers that produce the greatest 
aerodynamic forces over a given test period. Resulting controllers should steer the 
kite in consistent figure eight trajectories, which prior work has demonstrated are an 
optimal path for maximising energy recoverable from the wind [4]. The controllers 
should also be robust, being able to maintain stable trajectories even with significant 
changes in the wind velocity. As well as being a useful real world application of ER 
techniques, these technologies are interesting from an A-life perspective, potentially 
constituting self-sustaining systems through collection of the energy necessary for 
their operation from their environment.  

The brief then for this initial study is to apply ‘off the shelf’ ER techniques to the 
problem of kite control in simulation, in the first instance to see if stable figure eight 
trajectories are evolved, and to inform further investigation.  
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2. Background 

Kite energy and kite propulsion systems [5,7] currently enjoy a window of 
opportunity. This is largely because kite development for other applications now 
potentially allows the reliable production of large scale, low cost renewable energy.  
 

The common element between current proposed traction kites applications is that 
the aerodynamic forces developed by the kite are transferred via the lines to perform 
work at near-ground level. This could be either the direct acceleration of large masses 
such as cargo ships [7], or the turning of a dynamo as the taut lines slowly spool out 
from a reel [5,6]. In this study, we focus on simply maximising the aerodynamic 
forces generated at the kite or maximising the component of the aerodynamic force 
that is in line with the flying lines. This aim is most suited to power generation 
applications where the direction of force is less important, as long as line tension is 
maintained. Marine propulsion applications will require the force in a given direction 
to be maximised which is to be addressed in future work. 

As will be described below, the aerodynamic forces that generate line tension are 
proportional to the square of the apparent wind velocity at the kite. Apparent or 
effective wind can be defined as a vector sum of the wind speed as experienced by a 
stationary observer, and the negative of the movement vector of the airfoil. As the 
aerodynamic forces relate to the square of this apparent wind velocity, it is 
advantageous to augment the apparent wind by directing the kite to perform 
manoeuvres perpendicular to the wind [1]. Recent work has demonstrated that closed 
loop flight trajectories in the form of a figure eight are an optimal solution in terms of 
power generation, with the additional advantage over simple circular trajectories of 
not requiring a swivel mechanism to prevent crossovers accumulating in the lines [4]. 
If the lines are being reeled out from a spool coupled to a dynamo, the lines will need 
occasional retraction [4,5], at which point the line forces will need to be minimised 
without stalling the kite by reducing the kite speed and placing the kite perpendicular 
to the wind. Here, we focus purely on the power generation phase and aim to 
maximise forces acting through the lines.  

Real world kite systems are subject to a high degree of environmental variability; 
wind speed, precipitation and icing will all affect the kite’s performance. The real 
world will also present such non-linearities that current simulations are unable to 
render in detail without prohibitive computational costs, primarily turbulence. This 
issue is particularly relevant if flight is to be continued during squall or storm 
conditions and will become increasingly important if multiple kites are being flown in 
the same airspace as envisaged in recently designed kite systems [6].  
  

Kites therefore need to be actively flown through the airspace, ideally in 
stereotypic trajectories, in order to maximise energy recovered from the wind. Kite 
power and propulsion systems also require both generation and retraction phases, 
upper and lower hard limits of viable operation and face a high degree of both 
nonlinearity and environmental variability.  

Biological organisms deal with such challenges in a way that forms an effective 
compromise between absolute optimal solutions and solutions that are highly robust, 
resulting in high performance over a wide range of conditions. Additionally, evolution 
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can exploit aspects of the environment to improve the performance of the agent. For 
example, Bluefin Tuna and some flying insects actively or passively create vortices in 
their respective mediums to boost their performance above that anticipated by 
conventional fluid dynamics [12, 13]. It is this fit between the challenges of the kite 
control problem and the strengths of evolutionary problem solving that suggest that an 
ER approach is potentially fruitful. There are precedents for successful ER control of 
flight in both simulation [2] and in hardware [8]. 

2. Simulation Implementation 

The kite itself is simulated as a curved airfoil, which viewed from the front forms a 
semi-circular arc (Fig.2). The kite is tethered by 4 lines and controlled from the 
ground by adjusting the relative lengths of the rear 2 lines. The kite is allowed to flex, 
without the fabric stretching and following the common Leading Edge Inflatable 
(LEI) kite configuration, in which the leading edge is an inflatable baton, the leading 
edge of the kite that normally faces into the wind is more rigid than the trailing edge 
opposite. Line tension and angle data is fed to the neurocontroller, which feeds back 
line length actuation to the kite model as per Fig.1. 

 

 
Fig. 1. A simplified schematic of the system in which neurocontrollers are evolved. 

2.1 The Kite Physics Simulation 

In contrast to other studies in which the kite is treated as single entity [1,4,5], the 
method of choice for this work was to use a particle based simulation. The motivation 
for this decision was to provide a framework in which allows explicit consideration of 
variation in the kite configuration in terms of kite shape, bridle setup, and physical 
properties of the kite such as relative rigidity and mass of kite components. Specific 
anticipated defects can then be introduced to the system and the adequacy of the 
controllers’ reaction assessed. The kite is initialised as repeated rows of equidistant 
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particles in a semicircular arc as shown in Fig 2, which illustrates the default setup of 
two rows of 5 particles.  

 
Fig.2. The initial configuration of particles (circles) and constraints (straight lines). The light 
grey constraints reinforce the arc shape of the kite and prevent ‘jellyfish’ type flapping motion, 
effectively performing the same role as the inflatable ribs that maintain the shape of LEI kites. 
The three lowest particles are the tether points. Zigzag lines indicate the positions at which the 
canopy is sliced for aerodynamic calculations. 

For simulation purposes we approximate continuous real time by small timesteps at 
each of which a discrete update is made. The aerodynamic forces are calculated for 
each slice of the kite, as demarcated by the zigzag lines running from the leading to 
trailing edge in Figure 2. By slicing the kite up in this way, the force on a section of 
canopy depends on its particular angle of attack and the apparent wind velocity to 
which it is subjected. The forces are assumed to be distributable equally amongst the 
constituent particles, in this case pairs, of each slice although as described below this 
is a simplifying assumption that will be revised in future work. The acceleration on 
each particle is simply determined by Newton’s second law of motion (Eq.1): 

 

fa
m

=  
(1) 

In addition to the acceleration due to aerodynamic forces, each particle is 
accelerated -9.81m/s2 due to gravity. Integration is performed according to the 
velocity free Verlet method [10] as per Eq.2; this method is used due to its relative 
stability and speed of execution. x here simply represents a particle position, the time 
step ∆t is kept relatively small at 0.004 to avoid numerical instability. 

1 1 22t tx x x a t+ −= − + ∆  (2) 
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The very diversity in forces across the canopy that is being encouraged by the slice 
system will quickly cause the particles to scatter, it is therefore necessary to constrain 
the particles to maintain the coherence of the kites structure. The constraints linking 
the particles are treated as infinitely stiff springs, and their positions are iterated 
according to the Gauss-Seidel iteration method [11]. The system in essence will 
simply move particles along the vector that links them in order to satisfy the 
constraint, i.e. two particles 2 units apart but with a constraint distance of 4 will each 
be moved 1 unit away from their original positions along the vector between them. By 
iterating around the set of constraints a number of times the system can be forced to 
maintain its exact initial configuration. Here the iteration number is set to one, which 
allows the trailing edge of the canopy that is less constrained to flex more easily than 
the front, which will itself flex slightly at the upper range of aerodynamic forces. The 
system can be set to respect the relative masses of the particles and this is the default 
in this implementation. It is also possible to allocate particles to represent the lines 
and therefore include the effects of their drag and momentum upon the kite and 
additionally allow sagging of the lines when under low tension. This was avoided in 
this initial study due to the additional computational overhead. The single constraints 
that constitute each line are one-way, only being enforced when the lines exceed their 
initial length and not when the lines are effectively slack. 

2.1.1 Aerodynamic Model 
The forces upon each slice are determined according to a simplified aerodynamics 
model (see Fig. 2).  

 
Fig.2. A diagram of the principal aerodynamic forces upon a 2-d airfoil section. The term α 
denotes the angle of attack, the angle at which the airfoil is inclined relative to the apparent 
wind, c the airfoil chord, Va  the apparent wind velocity and L and D the Lift and Drag forces 
respectively. Adapted from [9]. 

This model is simplified in that no moment coefficient is used and all forces are 
applied equally amongst the slice’s constituent particles. The lift value for each slice 
is derived through Eqs.3 and 4, the lift force always acts in a direction perpendicular 
to the apparent wind vector. In the model, the direction of the lift force vector FL is 
given by the cross product of the apparent wind vector and the vector that describes 
the slice’s leading edge, a and e respectively in Eq.4. The drag force FD is always in 
line with the apparent wind vector; therefore a unit vector of the apparent wind directs 
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the drag force upon the particles as per Eq.5. A is the slice’s area, Va the apparent 
wind velocity, d the air density, CL and CD are the lift and drag coefficients at the 
current angle of attack.  

    21 ( )
2L L aF L C dV Aα=

ur
                                            

aL e
a

= ×
ur

 
(3, 4) 

21 ( )
2D D a

aF C dV A
a

α=  
(4) 

 
The lift and drag coefficients are read from a lookup table according to the slice 

angle of attack, values are plotted over all angles in Fig.3. Values were generated 
using the X-plane® Airfoil Maker version 860 software, using typical traction kite 
characteristics of moderate camber and thickness and relatively high drag and lift.  
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Fig.3. Graph describing drag and lift coefficient changes over change in angle of 
attack relative to apparent wind 
 
In this preliminary investigation, angle of attack cannot be actively changed in order 
to best correspond to our prototype hardware system, although this can be achieved 
by changing the relative lengths of the front and back lines. A simple arbitrary gust 
generation model is used that generates deviations around a base windspeed of 8m/s. 
Each timestep has a small probability that a gust or lull is initiated, if so its maximum 
deviation, onset and decay speeds are set. At each subsequent timestep the windspeed 
is altered by a small portion of the difference between the current windspeed and the 
predetermined maximum gust/lull value. No lateral deviation to the wind vector is 
implemented, although this and the use of real recorded wind records would be 
logical extensions. 



Evolution of Neural Networks for Active Control of Tethered Airfoils      7 

2.2 Neurocontrollers 

Two classes of neurocontroller were assessed, both are small recurrent neural 
networks of 5 input neurons and 7 fully connected interneurons, both inhibitory and 
excitatory connections are permissible. In these experiments only data measurable 
with line angle and tension sensors at ground level is made available to the network, 
as described in Table 1. For inputs we make the simplifying assumption that line 
tension will be proportional to the aerodynamic forces generated at the kite.  

 
Input No. Input data 

1 
2 
3 
4 
5 

Total Line Tension 
Tension difference between left and right line sets 

Average line azimuth 
Average line elevation 

Difference in elevation between left and right steering lines 

Table 1. Input data available to the neurocontrollers, all sensory data is subject to low level 
gaussian noise. 

The simplest neurocontroller class was a discrete time recurrent network whose 
nodes’ activation value at a given timestep t (∆t = 0.004) is given by Eq.6: 

( )1tt
j ij ji

a w aσ θ−
= −∑  

(6) 

The second neurocontroller class was a continuous time recurrent network 
(CTRNN), a single neuron derives its dynamics from Eq.7: 

( )j j j ij i ia a w oτ σ θ= − + −∑  (7) 

 In both cases θ is the bias term, w the weight and σ is the sigmoid function which 
scales values to a range between 0 and 1. In the CTRRN equation, τj is the neurons 
time constant, and o the old activation value from the previous timestep. CTRNN 
neurons are integrated using Euler integration at the same timestep as the physics 
simulation. One of the neurons is chosen to be the output neuron, and 0.5 subtracted 
from its sigmoided output. The motor position is modified by 1% of the difference 
between the network output and its current position each millisecond. This process 
has three consequences; the motor output is shielded from the majority of noise in the 
network, the motors are prevented from moving at speeds that are unrealistically fast 
and finally the extremes of motor output that correspond to a 1m difference in line 
lengths, usually destabilising for the kite, are only rarely achieved. 

2.3 Genetic Algorithm 

The genetic algorithm (GA) is a simple tournament based microbial GA [3], with 
DNA strings composed of real values determining weights both between all neurons 
and sensory inputs, thresholds and in the CTRNN case, time constants for each 
neuron in the network. The GA uses the gust generator to generate a wind trace, two 
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individuals are then selected at random from the population and their fitness, either 
the average of the aerodynamic forces produced by the whole kite, or the component 
of the aerodynamic force in line with the lines, is determined using the identical wind 
trace. The kite is always initialised at zenith position, i.e. directly above the tether 
points. To bias the solutions against brushes with the ground, the test is terminated 
prematurely as soon as any component of the kite meets ground level, regardless of 
whether the kite is capable of proceeding in flight or not. The individual with least 
fitness has its DNA string copied over by the winner with a small mutation applied to 
every value in the string.  

3. Results 

The key result derived from this initial investigation is that a simple 7 interneuron 
network is able to control a simulated kite to fly in figure 8 trajectories in only 200 
generations with a population size of 20. With a trial time of 42 seconds, this 
corresponds to less than 47 hours of real world flight time.  
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Fig.4. The leading edge wingtips flight trajectory over a 42 second trial period, 

leading edge is tethered at [0,0,0].  
 

The discrete-time neural networks found the best solutions in this limited evolution 
period (Fig.4). The reason for their outperformance of the CTRNN networks is 
currently unclear, but is potentially due to the additional time required for the 
selection of satisfactory time constants, or the fact that the CTRNNs were not 
initialised under centre crossing conditions [14].  The improvement in fitness across 
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generations, with both neuron classes, does not plateau after 200 generations 
suggesting that additional evolutionary time would result in further improvement in 
performance. Whether the fitness function was dependent on the total force generated 
at the airfoil or just the component of that force in line with the lines had no 
significant effect on the form of the trajectory, although controllers evolved under the 
latter condition performed significantly more figure repetitions within the trial period. 

 
It is noteworthy that in contrast to other work [4], the evolved trajectories tend to 

use the whole wind window and not a small arc of less 0.3 radians directly downwind 
of the controller. The much shorter line length in this model (25m here vs. 100m in 
[4]) may have contributed to this difference. Additionally, the trajectories evolved 
often were, as per Fig.4, not centred directly downwind of the tether point. This may 
have been due to the restriction of actuation speed imposed by the motor output 
mapping process but is more likely to be an artefact of evolution or the test regime. 
Early successful controllers from an initial population are more likely to stay in flight 
if they swoop down to one side, where the kite naturally slows, than swoop down to 
the centre where the kite continually accelerates and is very sensitive to input. This 
effect will be addressed in further work, potentially by initialising the kite in a 
different position at the start of each trial. 

 

Fig.5. Flight trajectories using the same controller as that in Fig. 4. A reflects 40 
seconds of unchanging wind velocity, B reflects a subsequent 40 seconds of high 
gusts and C a subsequent return to constant wind speed. 
 

The controller whose flight trajectories are shown in Fig.4 and 5 is robust to all but 
the most severe gusts and lulls from 5 to 11m/s, around a base wind speed of 8m/s. In 
smaller or slower wind variation, the evolved trajectory is maintained with small 
variations. Fig 5 illustrates the initial trajectory (A) deviating to a disturbed state 
during severe fast onset and offset gusts (B) and subsequently returning to its original 
trajectory (C) during three 40 second phases of a 120 second trial. As expected, 
variation in the wind speed during the evolutionary trials was important in rendering 
the controllers robust to gust and lulls. Only slight gusts and lulls would cause 
controllers evolved in constant winds to crash. 
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4. Conclusion 

This study has demonstrated that the application of ER techniques to kite control 
produces controllers that fly the kite in stable figure eight trajectories, shown 
previously to be an optimal path for recovery of energy from the wind. Evolved 
neurocontrollers robustly maintain these trajectories during significant deviations of 
wind speed. These results suggest that it is worth pursuing ER for kite control 
systems, where real world implementations would have implications both for 
commercial power generation and for the capability of autonomous artificial agents to 
source their own power. 
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