
Do Not Disturb: Recommendations for Incremental Evolution

Nicholas Tomko and Inman Harvey
Centre for Computational Neuroscience and Robotics

Evolutionary and Adaptive Systems Group
University of Sussex, Brighton, UK

Emails: nt79@sussex.ac.uk and inmanh@sussex.ac.uk

Abstract

Incremental evolution can be used when a task is too com-
plex to be solved in a single evolutionary step. For incremen-
tal evolution to function properly the end goal task must be
broken down into easier sub-tasks that act as a set of interme-
diate steps en route to the final goal. When using incremental
evolution to evolve neural controllers, such as artificial neural
networks (ANNs), it may make sense to add additional neu-
rons to the controller as the incremental tasks become more
complicated. This paper will show that how you add these
neurons makes a significant difference in the performance of
evolution. More specifically we will show that adding neu-
rons with large random weights significantly impairs the per-
formance of evolution to the point that it is outperformed by
non-incremental evolution. Therefore in most cases neurons
added during evolution should be connected to the existing
network with zero weights. This hypothesis was first pro-
posed and used by Vaughan (2007) to evolve hexapod walk-
ers but we have tried to show its validity on a more general
test bed indicating that it could be used more widely.

Introduction
There are two ways evolution can be used to solve complex
tasks. The first is non-incrementally where there is only a
single evolutionary goal or task. A second method is incre-
mental evolution where the final task is broken-up into more
manageable sub-tasks. These sub-tasks are usually chosen
in such a way so they act as evolutionary stepping stones,
with the hope that the succession of easier tasks reduces the
overall amount of time it takes evolution to solve the final
task. When incrementally evolving neural controllers to do
complex tasks it may be beneficial to add additional neural
modules (brain power) to the controller at each evolutionary
step. These neural modules can be connected in different
ways and it will be shown in this paper that the method by
which these modules are added significantly affects the per-
formance of evolution.

When new neural modules are added during incremen-
tal evolution, the original connection weights will start the
new phase of evolution with their former values. But we can
consider three different ways for initialising the new con-
nection weights (both between new nodes and old, and be-
tween the new nodes): with zero weights, with small random

weights, or with large random weights. Vaughan (2007)
uses the method of zero weight neural module addition to
incrementally evolve walking hexapod rovers to navigate
over rough terrain and avoid obstacles. Intially the rovers
were evolved just to walk over flat ground. After success-
ful flat ground walkers were evolved, the rovers were in-
crementally evolved to walk over rough terrain, navigate,
and finally avoid obstacles. At each incremental stage new
neurons were added to the rovers’ neural controller with
zero weights. The reason for adding the new nodes with
zero weights, rather than with random weights, is that zero
weight addition allowed evolution to gradually explore these
new connections (Vaughan, 2007). Adding the new neu-
rons with large random weights would have destructive in-
fluences on the overall network, negatively impacting the al-
ready evolved behaviours (Vaughan, 2007). Therefore our
main hypothesis is that adding new neural modules with
large random weights during incremental evolution will se-
riously hamper the performance of evolution. A related sec-
ondary hypothesis of this paper is that the best method of
evolution is incremental evolution with the addition of new
neural modules with zero weights. Intuitively both these
hypotheses make sense but we know of no previous prin-
cipled investigation of these methods of incremental evolu-
tion. We will therefore examine evolution using a test-bed in
which the complexity of the task is easily scalable and one
which generates reproducible results allowing this hypothe-
sis to be generalized beyond the agent-environment domain
in Vaughan (2007).

The rest of this paper is structured as follows: The back-
ground section is a literature survey of related incremental
evolutionary research. The methods section describes the
test-bed, the genetic algorithm, and how incremental evo-
lution was structured. The results from our simulations are
then presented and analyzed in the discussion section. The
results confirm for this test-bed the hypothesis that adding
neural modules with large random weights negatively im-
pacts the performance of evolution. The results also show
that for this specific test-bed incremental evolution with zero
weights only outperforms non-incremental evolution under



certain conditions.

Background
Incremental Evolution in the Natural World
Evolution in the natural world has been incremental. It is
only by building on previously evolved structures that the
diversity and complexity of life has been able to increase
over time. One of the most striking examples of incremental
evolution in the natural world is that of the eye. Historically,
many criticisms of evolutionary theory have tried to use the
eye as an example of why evolutionary theory is incorrect.
Many of these criticisms are based on an incomplete reading
of the following quote from Darwin (1872).

To suppose that the eye, with all its inimitable con-
trivances for adjusting the focus to different distances,
for admitting different amounts of light, and for the
correction of spherical and chromatic aberration, could
have been formed by natural selection, seems, I freely
confess, absurd in the highest possible degree...

...Yet reason tells me, that if numerous gradations from
a perfect and complex eye to one very imperfect and
simple, each grade being useful to its possessor, can
be shown to exist; if further, the eye does vary ever so
slightly, and the variations be inherited, which is cer-
tainly the case; and if any variation or modification in
the organ be ever useful to an animal under changing
conditions of life then the difficulty of believing that
a perfect and complex eye could be formed by natural
selection, though insuperable by our imagination, can
hardly be considered real. (Darwin, 1872, pg. 143-144)

By reading only the first part of this passage, one could be
led to believe that Darwin strongly doubted that something
as complex as the eye could have been evolved. But based
on the second part of this passage this obviously was not
the case. Darwin did not believe that the eye could have
been evolved in a single step but he did believe that there
was a way for the eye to be evolved incrementally. Darwin
understood the power of incremental evolution and how it
could create something that was too complex to be evolved
in a single step. Some critics have tried to claim that in-
crementally evolving an eye is impossible because half an
eye is pretty much useless. This criticism has been proven
wrong by the fact fossil records have revealed many primi-
tive visual structures that could have been intermediate evo-
lutionary steps en route to the modern eyes we see today. In
the book In the Blink of an Eye, Parker (2004) describes a
variety of basic eye structures such as light sensitive spots
that are likely part of the incremental evolutionary history of
the eye. Nilsson and Pelger (1994) present a mathematical
estimate of the number of generations it would take a light-
sensitive patch to gradually evolve into a focused lens eye
through small design improvements. They show that even

using very pessimistic assumptions the transition from light
sensitive spot to lens-based eye may only have taken on the
order of a few hundred thousand years, which is very short
in terms of evolutionary timescales.

Artificial Incremental Evolution
Artificial incremental evolution is inspired by the power of
natural evolution to produce diverse and complex biological
forms. Artificial incremental evolution takes a complex task
and breaks it up into evolutionary manageable steps so that
finding the solution to the complex task becomes easier. Ar-
tificial incremental evolution has been implemented in many
different ways. Mouret and Doncieux (2008) divide some
of the more common incremental evolutionary techniques
into the following four categories: staged evolution, envi-
ronmental complexification, behavioural decomposition,
and fitness shaping.

In staged evolution there are multiple fitness functions
corresponding to multiple sub-tasks. Initially the popula-
tion of individuals is evolved to complete the first sub-task.
When a successful solution to the first sub-task has been
evolved the fitness function is changed to the second sub-
task’s fitness function. Environmental complexification
is similar to staged evolution but instead of having discrete
changes in task complexity, the complexity of the task can be
changed continuously by tuning certain parameters (Harvey
et al. (1994) is an example). Behavioural decomposition
or modular evolution sub-divides the neural controller into
separate task-based sub-controllers. Each one of these sub-
controllers are evolved separately to do a specific task and
then a different evolutionary algorithm is used to combine
these controllers into the master neurocontroller (see Larsen
and Hansen (2005) for an example). Fitness shaping is sim-
ilar to behavioural decomposition but uses a weighted sum
of multiple evaluation criteria in order to create a fitness gra-
dient that evolution tries to follow. Mouret and Doncieux
(2008) believe the main shortcoming of staged evolution is
that the programmer has to determine the sub-task fitness
functions and also when to switch sub-tasks. In staged evo-
lution there is also the issue of whether there is a fitness
tradeoff between different sub-tasks. In other words, does
being proficient at the second sub-task reduce the agent’s
proficiency at doing the first sub-task? To overcome these
issues Mouret and Doncieux (2008) propose a method called
multi-objective optimization where the agents are evaluated
simultaneously against all the sub-task and main goal-task
fitness functions.

The importance of how the sub-tasks are chosen is
demonstrated in Tuci et al. (2002) who show how a high
level, non-reactive learning behaviour can be incrementally
evolved from low level, reactive behaviours. They evolved a
simulated robot controlled using a continuous time recurrent
neural network (CTRNN) with fixed weights to learn the re-
lationship between a light and a target. This experiment was



based on a 2-D associative learning task in Yamauchi and
Beer (1994). Unlike Yamauchi and Beer (1994), Tuci et al.
(2002) were able to find an integrated solution to this task
without using behavioural decomposition where the neuro-
controller had to be modularized. It was found that only after
the agents first learned to pay attention to the light were they
able to learn the relationship between the target and light.
In other words, the agents first needed to learn a very basic
reactive behaviour before they were able to learn a higher-
level, non-reactive behaviour. The important lesson from
Tuci et al. (2002) related to this paper is that it demonstrates
the importance of selecting the incremental sub-tasks with
regards to evolutionary success.

Adding Neural Layers During Incremental
Evolution
The four types of incremental evolution in the previous sec-
tion describe how the fitness goal can be incrementalized but
not how new neural modules are added during evolution. To-
gelius (2004) classifies incremental evolution not only based
on how the fitness function is broken up but also on how new
neural layers are added to the controller. Togelius (2004) de-
fines incremental evolution as the evolution of a one layer
network using multiple fitness functions, modularised evo-
lution as the evolution of multiple layers or multiple net-
works with a single fitness function and layered evolution
as the evolution of a multi-layered network using multiple
fitness functions. In layered evolution Togelius (2004) adds
the neural layers to mimic Brooks (1991) subsumption ar-
chitecture. At the beginning of each evolutionary stage a
new layer is added to the network and all previously added,
lower layers have their weights frozen; ie. once a layer has
been evolved its weights are fixed and are not changed dur-
ing subsequent stages. Togelius (2004) tested these different
types of incremental evolution on a simulated phototaxis and
obstacle avoidance task and determined that layered evolu-
tion was faster and more reliable than the other methods of
evolution.

Unanswered Questions
In the incremental evolution literature reviewed for this pa-
per, details on how new neural modules were added during
incremental evolution were lacking. Based on the work done
in Vaughan (2007) on evolving walking robots, it seems that
how neurons are added can significantly change the per-
formance of incremental evolution and is therefore an im-
portant consideration when setting up artificial evolution.
Other than Vaughan (2007), one study that did address the
question of adding additional neurons during evolution was
Stanley and Miikkulainen (2002) NEAT (Neuroevolution of
Augmenting Topologies) algorithm. This evolutionary algo-
rithm modifies both the network weights and its topology, so
shares some similarities with the incremental evolution de-
scribed in Togelius (2004). In NEAT there are two different

mutation operators: add-connection and add-node. In add-
connection a single new connection is added between two
existing nodes and this new connection is initialized with a
random weight. In add-node a new node is added in between
two existing nodes. The input weight to this node is given a
value of one while the output weight from the new node is
given the same weights as the connection that was just bro-
ken. The reason for this is to ensure that the addition of the
new node is a neutral mutation and will not initially affect
the behaviour of the network. For indroductory material to
the concept of neutral networks see: Huynen et al. (1996);
Forst et al. (1995); Harvey and Thompson (1996); Barnett
(2001). What is interesting about the NEAT mutation oper-
ators is that nodes are added neutrally but connections are
not.

The importance of neutrality in the evolution of neural
networks is also highlighted in work on center-crossing ini-
tialization of ANNs (Mathayomchan and Beer, 2002). Here
they show that when applying evolutionary search to ANNs
the frequency and speed of evolution can be improved by
seeding the initial evolutionary population with center cross-
ing networks rather than with random initial populations.
This is most likely due to the fact that there is a wider range
of network dynamics accessible from a population of center-
crossing networks (Mathayomchan and Beer, 2002).

Methods
The goal of this project was to try to compare the perfor-
mance of different methods of incremental evolution and
non-incremental evolution in a more general context than
the example in Vaughan (2007). In order to do this the test-
bed used needed to be easily modifiable, simple to under-
stand and not tied to a specific domain. Since the effects
under investigation will depend strongly on the dimension-
ality of the fitness landscape and of any neutral networks,
the framework used must allow for changes in dimension-
ality as new tasks are added. Because of these constraints a
simple feed-forward autoencoding network was chosen. The
autoencoder is easy to understand and analyze, and the com-
plexity of autoencoding tasks can be easily increased by just
changing the number of neurons in the network (see the next
section for details). This means a given autoencoding task
can either be solved using non-incremental evolution or us-
ing incremental evolution by adding simpler autoencoding
tasks together thus allowing us to test the different methods
of adding new neural modules.

In this section the autoencoding task, the genetic algo-
rithm and the method of incremental evolution will be de-
scribed. All simulations were programmed and run using
Matlab.

The Autoencoder Network
An autoencoder is a feedforward ANN that reduces high di-
mensional input data into a lower dimensional code and then



N=3 M=1
PURELIN

h=2
TANSIG

h=2
TANSIG

N=3
STEP

ENCODE DECODE

Figure 1: A 3-2-1-2-3 Autoencoder

recovers the original input from this code (see Hinton and
Salakhutdinov (2006) for a good description ). An autoen-
coder can be thought of having two halves; the encoding half
which encodes the input data into a low dimensional code
and the decoding half which decodes the low dimensional
code back to the original inputs.

The autoencoders used in this study are of the form
N − h−M − h−N . Where N = the number of inputs =
the number of outputs, h = the size of the hidden layers, and
M = size of bottleneck layer (see figure 1 ). By changing
N , h, and M the dimensionality of the autoencoder can be
modified which corresponds to changing the difficulty of the
autoencoding task. For a given value of N, the difficulty of
the task is increased when either M, the size of the bottle-
neck, or h, the size of the hidden layer, is decreased.

All of the networks used were structured in the same way.
The networks were fully connected and feedforward and all
inputs to the networks were either 1 or -1. The hidden layer
transfer function was hyperbolic tangential (Matlab tansig
function) and the bottleneck layer transfer function was lin-
ear (Matlab purelin function). The output layer transfer
function was a discrete step function. This means that any
positive outputs were mapped to +1 and any negative out-
puts were mapped to -1. For simplicity, no biases were used
in any of the networks.

Evolution
The Genetic Algorithm The genetic algorithm (GA) used
in this simulation was the steady-state microbial GA with
the recombination rate set to zero (Harvey, 2009). This is
equivalent to a simple steady-state GA that uses tournament
selection where the loser of each tournament is mutated and
the winner remains unchanged. The number of generation
equivalents in the microbial GA is related to the number of
tournaments by: generations = tournaments/popsize.
All results are presented as the number of tournaments it
takes evolution to do a task rather than the number of gener-
ations.

The artificial genotype encoded the real valued autoen-
coder weights; these weights were limited to the range
[+10,-10]. All of the experiments were done with a popu-
lation size of 50. The population was initialized by gener-
ating a random, normally distributed string of numbers with
mean = 0 and standard deviation set equal to the standard
deviation of the mutation operator (see below).

Simulations were run using both single and multi-allele
(multi-gene) mutation. In multi-allele mutation all alleles
in the tournament loser’s genotype were mutated a small
amount. This small amount was a normally distributed ran-
dom number with mean = 0 and standard deviation = 0.1.
In single-allele mutation, only a single allele in the loser’s
genome was mutated each tournament. For single allele mu-
tation the mutation rate was a normally distributed random
number with mean = 0 and standard deviation = 0.5.

The Fitness Function The fitness of a given autoencoder
was calculated as the total number of outputs that matched
the inputs, for all possible 2N input strings. Therefore for
an autoencoder with N inputs the maximum fitness score it
could get was 2N ∗N .

Incremental Evolution The method of incremental evolu-
tion used in this experiment does not fit perfectly into one of
the types described in the background section, but is similar
to layered evolution in Togelius (2004). The main difference
is that after the new neurons are added the entire network is
evolved with the new fitness function. In Togelius (2004)
when a new neuronal layer was added only the new neurons
were evolved, the weights of the existing neurons in the net-
work remained fixed.

A given autoencoder can be incrementally evolved in n
sub-tasks by splitting up the N−h−M−h−N autoencoder
into n smaller autoencoders. The difficulty of a given sub-
task depends on the size of Nn, hn, or Mn.

[N −h−M −h−N ] = [N1−h1−M1−h1−N1]+
[N2−h2−M2−h2−N2]+. . .+[Nn−hn−Mn−hn−Nn]

When incrementally evolving an autoencoder it must be
noted that adding an additional module is the same as chang-
ing the task. This is because every time the number of in-
puts N is increased, there is a step change in the difficulty
of the autoencoding task. So unlike the agent-environment
incremental evolutionary simulations described in the back-
ground section where the addition of neural modules and
choice of incremental task can be independent, in the au-
toencoder the addition of a neural module and the changing
of a task are equivalent.

Each stage of incremental evolution is run until an au-
toencoder is found that can perfectly solve the current task.
At this point evolution is paused and the perfect individual’s
genotype is replicated and replaces the entire current pop-
ulation as the seed population for the next stage of evolu-
tion. The additional neurons and corresponding weights of



Table 1: Incremental stages for tested autoencoder tasks
Overall Task Stage 1 Stage 2 Stage 3

2-2-2-2-2 1-1-1-1-1 1-1-1-1-1
3-3-3-3-3 1-1-1-1-1 1-1-1-1-1 1-1-1-1-1

3-36-2-36-3 2-2-1-2-2 1-34-1-34-1
3-24-2-15-3 2-2-1-2-2 1-22-1-22-1
3-12-2-12-3 2-2-1-2-2 1-10-1-10-1

3-6-2-6-3 2-2-1-2-2 1-4-1-4-1
4-68-3-68-4 2-2-1-2-2 1-22-1-22-1 1-44-1-44-1

the new autoencoder are then added to this cloned popula-
tion in one of three ways so we could examine which one of
these methods is most effective.

1. With zero weights

2. With small random weights (normally distributed random
numbers with mean zero and standard deviation of 0.1)

3. With large random weights (random numbers in the entire
weight range [+10,-10])

After the new neurons and weights are added evolution is
restarted on the entire autoencoder network using the new
fitness function.

Choice of Tasks
In order to generally test the hypothesis, the different meth-
ods of evolution needed to be tested on tasks of varying dif-
ficulty. Table 1 lists the different autoencoders tested and
the incremental evolutionary sub-tasks for each different au-
toencoder. For example the simplest autoencoder tested was
the 2-2-2-2-2 autoencoder which was incrementally evolved
in two 1-1-1-1-1 stages. This means that during the first
stage of evolution the solution to a 1-1-1-1-1 autoencoder
was found. For the second stage of evolution another 1-1-
1-1-1 autoencoder was added to the previously evolved 1-1-
1-1-1 autoencoder using one of the three methods described
in the previous section. Evolution was then restarted on this
new 2-2-2-2-2 autoencoder.

Results
Figure 2 shows the results of non-incremental evolution, in-
cremental evolution with zero weights and incremental evo-
lution with large random weights on a 3-24-2-24-3 and a 3-
6-2-6-3 autoencoder using multi-allele and single-allele mu-
tation. We chose to present the results for only these tasks
for two reasons. Firstly these tasks highlight the difference
in performance between autoencoders with significantly dif-
ferent sized hidden layers. Secondly, the data from the other
tasks do not change any of the conclusions discussed in
the next section and therefore we felt it unnecessary to plot
these results. We have also chosen not to show the results
of incremental evolution with small random weights. This

is because in the case of multi-allele mutation this method
of evolution was not significantly different from either non-
incremental or zero weight incremental methods and in the
case of single-allele mutation the results of small random
incremental evolution were similar to those of the large ran-
dom incremental method.

Figure 2 shows the average number of tournaments over
forty runs it took to find a solution to the given tasks for
each type of evolution. If a perfect solution had not been
found after 400k tournaments then the run was stopped and
a new run was started. The choice of stopping simulations at
400k tournaments was somewhat arbitrary but was done to
ensure that multiple runs of each simulation could be com-
pleted in a reasonable amount of time. The number of runs
that were successful at finding a solution to the task before
400k tournaments is displayed on each bar. For example the
non-incremental, single-allele simulation of the 3-24-2-24-3
autoencoder was able to find a solution in 37/40 runs. Be-
cause all runs are stopped at 400k tournaments, the averages
for simulations with a high number of unsuccessful runs are
lower then if evolution was allowed to continue indefinitely.
This means that the real averages of the large random in-
cremental evolution (the worst performing method of evolu-
tion) are understated. This does not change the conclusions
of this paper so we chose not to scale the averages to take
into account the number of successful runs.

The error bars in figure 2 show the standard deviation of
each simulation. Again due to artificially stopping the runs
at 400k tournaments, simulations with a large number of
unsuccessful trials have unrealistically low standard devia-
tions.

Discussion
The main hypothesis of this paper was that when evolv-
ing neural controllers incrementally, adding neural modules
with large random weights would negatively impact the per-
formance of evolution. The results from the previous section
clearly support our main hypothesis. The secondary hypoth-
esis of this paper was that incremental evolution with zero
weights would be the best method of evolution. Based on
our results this was not always the case, there were cases
when non-incremental evolution performed as well incre-
mental evolution with zero weights. In this section we will
first discuss the reason why adding neural modules with
large random weights is not a good method of evolving neu-
ral controllers. We will then discuss the relative performance
of non-incremental versus zero weight incremental evolu-
tion and propose reasons why zero weight incremental evo-
lution is not always better than non-incremental evolution
for this experimental test-bed.

As shown in figure 2 the large random incremental
method is the worst method of evolution by a significant
margin. Not only is this method significantly worse than
the incremental evolution with zero weights it is also sig-



NonInc IncZero IncLgRand
0

0.5

1

1.5

2

2.5
x 10

5 3−24−2−24−3 Multi−Allele

av
g 

to
ur

na
m

en
ts

NonInc IncZero IncLgRand
0

1

2

3

4

x 10
5 3−6−2−6−3 Multi−Allele

av
g 

to
ur

na
m

en
ts

40/40 40/40

40/40

32/40
30/40

20/40

NonInc IncZero IncLgRand
0

1

2

3

4

x 10
5

3−24−2−24−3 Single−Allele

av
g 

to
ur

na
m

en
ts

NonInc IncZero IncLgRand
0

1

2

3

4

x 10
5

3−6−2−6−3 Single−Allele

av
g 

to
ur

na
m

en
ts

37/40

38/40

5/40

25/40 24/40

5/40

Figure 2: 3-6-2-6-3 and 3-24-2-24-3 autoencoder results for both the single (bottom) and multi-allele (top) mutation method.
These results show the average number of tournaments it took to find a solution to the task over 40 runs. All runs were stopped
at 400k tournaments if a solution had not been found. The number of successful runs out of 40 is shown on each bar. Error bars
show standard deviation of each simulation.

nificantly worse than non-incremental evolution in all of the
cases we tested. The type of mutation (single or multi-allele)
used in evolution did not impact this result, large random in-
cremental evolution was always the worst method of evolu-
tion. As discussed in Vaughan (2007) the reason for this is
that adding new neurons with large random weights leads to
destructive interference in the network destroying any previ-
ously evolved behaviours. When the new neurons are added
with zero weights this destructive interference does not oc-
cur because the additional neurons are added neutrally. This
allows evolution to slowly explore these new connections
without negatively impacting what was learned in the pre-
vious stages of evolution. The results from this paper com-
bined with the work done in Vaughan (2007) strongly sug-
gest that anytime a neural network is evolved incrementally,
any new nodes should be added with zero weights.

Based on our secondary hypothesis it was expected that
zero weight incremental evolution would be the best method
of evolution and always outperform non-incremental evolu-
tion; but based on our results this was not the case, some-
times non-incremental evolution outperformed incremental
evolution with zero weights. We believe there are three fac-
tors that may contribute to this finding: the type of mu-
tation used (single or multi-allele), the size of the hidden
layer in the network, and the way the evolutionary sub-tasks
are structured. What our results show is that when using

multi-allele mutation there is no significant difference be-
tween non-incremental and incremental evolution with zero
weights and when using single-allele mutation there is only a
significant difference in performance when the hidden layer
has many more neurons than the input and bottleneck layers.

We propose that one reason for the lack of a significant
difference between zero weight incremental and non- incre-
mental evolution when using multi-allele mutation is that
multi-allele mutation causes interference in the entire net-
work the very first time it is applied to an individual. The
main benefit of adding new neurons with zero weights is
that it allows evolution to gradually explore these new neu-
ral connections. When using multi-allele mutation this ex-
ploration becomes much less gradual because all of the zero
weights are changed to non-zero weights the first time mu-
tation is done. On the other hand when using single-allele
mutation the new weights are changed from zero to non-zero
one at a time ensuring that the effect of these new neurons
on the overall network can be explored individually.

In the single-allele mutation case incremental evolution
with zero weights outperformed non-incremental evolution
when the autoencoder had a large number of hidden layer
neurons (3-24-2-24-3, 3-36-2-36-3, 4-68-3-68-4). In fact
all methods of evolution improved as the size of the hid-
den layer was increased; but it was incremental evolu-
tion with zero weights that showed the sharpest increase



in performance, to the point that it always outperformed
non-incremental evolution when the hidden layer was big
enough. This may have to do with how the size of the hid-
den layer corresponds to the size of the neutral network of
the search space.

When there is a relatively small hidden layer this con-
strains the number of different ways the input information
can be encoded in the bottleneck layer and then decoded
in the output layer. This will cause difficulties for the zero
weight incremental method and may help explain why it is
not better than non-incremental evolution for these cases.
However when the hidden layer is large, there is a multi-
tude of encoding/decoding strategies - of nearly equivalent
functionality - implying a large degree of neutrality in the
search space. It is here the zero weight incremental with
single allele mutation method can exploit this neutrality as
task complexity increases and for this reason it outperforms
non-incremental evolution.

Another factor that may help explain why non-
incremental evolution was as good as incremental evolution
with zero weights in certain cases has to do with how the
incremental evolutionary stages are structured in the autoen-
coder tasks. As explained in the methods section the addi-
tion of a new input node corresponds to a new autoencoding
task. While running the simulations it was discovered that an
N = 3 task was significantly more difficult than an N = 2
task. It takes on the order of 1k tournaments to evolve a per-
fect solution to the N = 2 task and on the order of 100k
tournaments to evolve a perfect solution to an N = 3 task.
In other words, the first stage of incremental evolution is
very easy compared to the subsequent evolutionary stages.
This is opposite to almost all of the other incremental evo-
lution experiments reviewed, where the difficulty of the first
task is significantly higher then subsequent tasks.

For example in Vaughan (2007) he first evolved his hexa-
pod walkers to walk on flat ground and then he evolved
them to walk on rough ground, then to walk and navigate,
and finally to avoid obstacles. In terms of task difficulty
the evolution of the initial walking behaviour is by far the
most difficult task. All subsequent tasks were just variations
on the core walking behaviour. In the autoencoder simula-
tion because the first task is so simple it has a large num-
ber of solutions. Some of these solutions may be an incre-
mental short-cut to the solution for the subsequent task, but
many solutions may not be an incremental short-cut and in
this case incremental evolution would be no better then non-
incremental evolution. To try to overcome this issue the first
stage of all of the N = 3 tasks was 2-2-1-2-2 because this
was the most difficult N = 2 task that was solvable in a
reasonable amount of time. This again highlights how im-
portant task selection is with regards to the performance of
incremental evolution.

One may be tempted to ask that if zero weight incremental
evolution with single-allele mutation has all of the benefits

mentioned above then why doesn’t it perform better than the
multi-allele method for equivalent tasks? Because neither of
these evolutionary methods have been optimized, we believe
that comparing the single-allele and multi-allele mutation re-
sults and trying to draw any conclusions from this compar-
ison would be pointless. The mutation rate of the single-
allele method was set higher than that of the multi-allele
method to take into account the fact that there is less move-
ment through the search space per mutation when using the
single-allele method. But this higher mutation rate was not
chosen with any rigorous testing to determine whether it was
optimal. Understanding whether incremental evolution with
single-allele or multi-allele mutation is better is an interest-
ing question, but the results from our simulations cannot be
used to make a claim one way or another. What our results
show is that adding new nodes with large random weights
during incremental evolution is detrimental to the perfor-
mance of evolution and that the benefit of adding nodes with
zero weights is seen when there is a large hidden layer and
mutation is done one single weight at a time.

Conclusion
The main conclusion of this paper is that when incrementally
evolving neural controllers, any new neural modules added
during evolution should not be added to the existing network
with large random weights. Adding neurons with large ran-
dom weights reduces the peformance of evolution because it
cause destructive interference in the network which causes
previously evolved behaviours to be forgotten. Our results
show that this destructive interference is so severe that in-
cremental evolution with large random weights was by far
worst method of evolution in all of our simulations (even
compared to non-incremental evolution). A secondary find-
ing was that using our test-bed, incremental evolution with
the addition of new neurons with zero weights only outper-
formed non-incremental evolution when using the single-
allele mutation method and when the hidden layer was big
compared to the input and bottleneck layers. We believe
this was because single-allele mutation allowed evolution
to explore these new neural connections gradually one at a
time. Therefore based on our results we believe that when
incremental evoloving neural controllers any addition brain
power added should be added neutrally with zero weights.

References
Barnett, L. (2001). Netcrawling-optimal evolutionary search

with neutral networks. In Proceedings of the 2001
Congress on Evol Comp, volume 1. IEEE Press.

Brooks, R. (1991). Intelligence without representation. Ar-
tificial intelligence, 47(1-3):139–159.

Darwin, C. (1872). The Origin of the Species. Senate, Lon-
don, 6th edition.



Forst, C. V., Reidys, C., and Weber, J. (1995). Evolution-
ary Dynamics and Optimization - Neutral Networks
as Model-Landscapes for RNA Secondary-Structure
Folding-Landscapes. In Moran, F., Moreno, A.,
Merelo, J., and Cachon, P., editors, Advances in Arti-
ficial Life: Proceedings of the Third European Confer-
ence on Artificial Life (ECAL95), volume 929, pages
128–147. Springer Verlag.

Harvey, I. (2009). The Microbial Genetic Algorithm. In
Kampis, G. E. A., editor, Proceedings of the Tenth Eu-
ropean Conference on Artificial Life. Springer LNCS.

Harvey, I., Husbands, P., and Cliff, D. (1994). Seeing the
light: Artificial evolution, real vision. In From Animals
to Animats 3. Proceedings of the Third International
Conference on Simulation of Adaptive Behavior, vol-
ume 1994, pages 392–401.

Harvey, I. and Thompson, A. (1996). Through the labyrinth
evolution finds a way: A silicon ridge. In Higuchi, T.,
Iwata, M., and Weixin, L., editors, Evolvable Systems:
From Biology to Hardware, Proc. of The First Inter-
national Conference on Evolvable Systems, pages 406–
422. Springer-Verlag.

Hinton, G. and Salakhutdinov, R. (2006). Reducing the di-
mensionality of data with neural networks. Science,
313(5786):504.

Huynen, M. A., Stadler, P. F., and Fontana, W. (1996).
Smoothness within ruggedness: the role of neutrality
in adaptation. Proceedings of the National Academy of
Sciences of the United States of America, 93(1):397–
401.

Larsen, T. and Hansen, S. (2005). Evolving composite robot
behaviour - a modular architecture. In Proceedings of
the Fifth International Workshop on Robot Motion and
Control, 2005. RoMoCo ’05., pages 271–276. Ieee.

Mathayomchan, B. and Beer, R. D. (2002). Center-crossing
recurrent neural networks for the evolution of rhythmic
behavior. Neural computation, 14(9):2043–2051.

Mouret, J. and Doncieux, S. (2008). Incremental evolution
of animats’ behaviors as a multi-objective optimization.
Lecture Notes in Computer Science, 5040:210–219.

Nilsson, D. and Pelger, S. (1994). A pessimistic estimate
of the time required for an eye to evolve. Proceedings:
Biological Sciences, 256(1345):53–58.

Parker, A. (2004). In the Blink of an Eye: How Vision
Sparked the Big Bang of Evolution. Basic Books, New
York, 2nd edition.

Stanley, K. and Miikkulainen, R. (2002). Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2):99–127.

Togelius, J. (2004). Evolution of a subsumption architec-
ture neurocontroller. Journal of Intelligent and Fuzzy
Systems, 15(1):15–20.

Tuci, E., Quinn, M., and Harvey, I. (2002). An evolutionary
ecological approach to the study of learning behavior
using a robot-based model. Adaptive Behavior, 10(3-
4):201–222.

Vaughan, E. D. (2007). The Evolution of an Omni-
Directional Bipedal Robot. PhD thesis, University of
Sussex.

Yamauchi, B. and Beer, R. (1994). Integrating reactive, se-
quential, and learning behavior using dynamical neural
networks. In From Animals to Animats 3: Proceedings
of the Third International Conference on Simulation of
Adaptive Behavior, pages 382–391.


