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ABSTRACT

We discuss recent results from our ongoing research
concerning the application of arti�cial evolution tech�
niques �i�e� an extended form of genetic algorithm	 to
the problem of developing 
neural� network controllers
for visually guided robots� The robot is a small au�
tonomous vehicle with extremely low�resolution vision�
employing visual sensors which could readily be con�
structed from discrete analog components� In addition
to visual sensing� the robot is equipped with a small
number of mechanical tactile sensors� Activity from
the sensors is fed to a recurrent dynamical arti�cial

neural� network� which acts as the robot controller�
providing signals to motors governing the robot�s mo�
tion�
Rather than designing the control networks� we use

a genetic algorithm which operates on encoded con�
troller architectures� The controller architecture spec�
i�es the network connectivity� the number of 
neural�
processing units in the network� and factors governing
the speci�cation of the visual sensors� That is� the con�
trol network and the sensing morphology are evolved
concurrently� A large number of network designs are
randomly generated� and then simulated to evaluate
their ability to produce useful behaviours in the robot�
After all the designs have been evaluated� the encod�
ings for the more successful architectures are 
inter�
bred� using techniques inspired by biological studies
of evolution via mutation and recombination
 thereby
producing a new collection of network designs� If this
process is repeated for a su�cient number of iterations�
useful network architectures can emerge�
Prior to presentation of new results� this paper sum�

marizes our rationale and past work� which has demon�
strated that visually�guided control networks can arise
without any explicit speci�cation that visual process�
ing should be employed� the evolutionary process op�
portunistically makes use of visual information if it is
available�
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�SPIE���� Session on Intelligent Robots and Computer Vision
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The new results discussed in this paper concern a
move towards evolving general controllers� in our ear�
lier work� each control architecture was evaluated in the
same environment �modulo signi�cant noise injected at
a number of levels	� Over a number of evolutionary it�
erations� the control architectures were seen to have
adapted to be dependent on the particular visual char�
acteristics of the environment� This paper describes
results from recent experiments where the visual envi�
ronment is varied signi�cantly during the evolutionary
process� with the aim of evolving controllers which can
operate in a wide range of environments� The paper
also includes discussion of our current work on transfer�
ring from simulation studies to real robots� constructed
to eliminate any dependency on simulated sensing�

� Introduction

Recently� there has been increasing activity within the
arti�cial intelligence �ai	 research community directed
toward the development of complete� embodied� au�
tonomous� agents� i�e� mobile robots� This represents
a shift away from traditional assumptions in ai ��� ���
towards a new approach which attaches central impor�
tance to�

� Embodiment� It is claimed that interactions be�
tween an agent and its environment are of extreme
importance in understanding natural intelligence
and in developing arti�cial forms�

� The generation of adaptive behaviours in embod�
ied agents� This is seen as the prime role of animal
sensory�motor systems and of great importance in
useful arti�cial systems�

� The bottom�up development of entire arti�cial
�creatures�� The previous two items point to the
study of complete behaviour generating systems
for autonomous agents acting in realistically com�
plex and uncertain environments� Because entire
systems are involved� a gradual movement from
the simple to the more sophisticated is deemed
pragmatic� Many studies with these general char�
acteristics have asked awkward questions about
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the fundamental need for reasoning and represen�
tation within intelligent systems�

Further to this aim� we are attempting to develop
highly automated techniques for the generation of spec�
i�cations of �cognitive� control architectures for simple
visually guided robots� where �control architecture� is
taken to include speci�cations for the sensors �and�
in principle� the actuators	 of the robot� We view
automation as necessary because the types of con�
trol architecture required are likely to be highly com�
plex� with many �often indirect	 interactions between
constituent parts� and consequently the complexity of
purely manual design of such architectures is likely to
scale badly as further layers or modules are added to
the architecture� The situation is analogous to �but not
identical to	 the attempted solution of complex com�
binatorial optimisation problems by hand� many years
ago it was accepted that automatic aids were required
in that �eld� which lead to developments in the com�
putationally intensive area of Operations Research�
For reasons given in ���� ��� we believe that truly

autonomous mobile robots will require visual process�
ing capabilities� and that automatic techniques for the
design of autonomous�agent cognitive control architec�
tures should be based on the use of arti�cial evolution
�i�e� a form of genetic algorithm	� to develop parallel
distributed processing systems �i�e� 
neural networks�	
which are capable of coordinating sensory�motor activ�
ity in autonomous agents so as to exhibit desired adap�
tive behaviours� Brie�y� the rationale for our approach
is as follows�

� For a mobile robot to achieve a high degree of
autonomy� appropriate distal �as opposed to prox�
imal	 sensory information will be required� e�g� to
enable successful navigation in unfamiliar complex
cluttered dynamic environments� Vision is the pri�
mary sensory modality for the capture of distal
sensory information used in animals� and studies
of biological vision may well yield insight into the
creation of arti�cial seeing systems� The passive
nature of most forms of visual sensors also bring
energy economies which are advantageous� as truly
autonomous robots will have to carry their own
power sources in a self�contained fashion�

� If visual sensing is to be used as the basis of
sensory�motor control� high�bandwidth processing
channels will eventually be required� and speed
considerations require such processing to be mas�
sively parallel� Thus� parallel distributed process�
ing �pdp	 techniques are a necessity if complex
adaptive behaviours are to be exhibited by robots
operating in real time� The use of pdp techniques
may also o�er graceful degradation in the presence
of noise and component failure� In accordance

with common terminology� we refer to our pdp

controllers as �neural� networks� but we appreciate
that the link with biological nervous systems is
more metaphorical than actual� However� in con�
trast with much of the current literature� we do
not necessarily consider neural networks �biologi�
cal or arti�cial	 as purely computational devices�
Interaction with dynamic environments forces con�
sideration of the dynamics of the networks them�
selves� and we �nd it pro�table to consider the
robot�s sensory�motor controller and the environ�
ment within which the robot is situated as a pair
of coupled dynamical systems� This issue is dis�
cussed in more detail later on in this paper�

� Theoretical studies� and a growing body of em�
pirical evidence� indicate that arti�cial evolution
techniques can be highly e�ective in solving com�
plex optimisation problems� While we do not fully
ascribe to the view of evolution as optimisation
�an animal is not a �solution� to a �problem� posed
four billion years ago	� we believe that� if suitably
extended� genetic algorithms �ga�s	 are the most
promising development path� The particular form
of genetic algorithm used in our work is described
further below�

In order to evaluate our proposals� we have per�
formed a number of exploratory experiments involving
simulation studies of a simple visually guided mobile
robot� evolved to exhibit elementary behaviours in a
simple environment� The simulated robot is an accu�
rate model of a real robot� The primary aim of these
experiments was to apply our proposals to a realistic
system which was su�ciently complex that it presented
genuine challenges� but su�ciently simple that evalu�
ation and analysis of the �nal evolved systems could
be performed without unreasonable di�culty� There�
fore it is important to appreciate that we only view
the results in this paper as a promising beginning� the
evolved controllers discussed here generate relatively
mundane behaviours� but we are working incremen�
tally towards more advanced behaviours� from the bot�
tom up� As the results in this paper should demon�
strate� despite the minimal nature of the experiments�
the lessons learned are non�trivial�
The rest of this paper is organised as follows� Sec�

tion � gives an overview of the robot simulator
 Sec�
tion � describes the form of neural network model used

Section � discusses the particular genetic algorithm em�
ployed
 Section � summarises the experimental meth�
ods we used in evolving the particular controllers de�
scribed here
 Section � then gives a summary of some
earlier results� followed by a discussion of a controller
which operates in a variety of environments� Finally
Section � discusses work currently in progress� where

�



special�purpose visuo�robotic equipment has been de�
signed and built to avoid the need to simulate either
sensors or actuators�

� The Autonomous Robot Simulator

Our simulation studies are based on a careful simula�
tion of a real robot� built in the School of Engineering
at the University of Sussex� The body of the robot is
cylindrical� with the cylinder axis oriented vertically�
It has two independent drive wheels mounted left and
right� and a trailing rear freewheel castor which gives
tripod stability� In principle� the robot can travel in
straight lines or in arcs of varying radii
 the minimum
radius is su�ciently small that the robot gives the ap�
pearance of spinning 
on the spot��

The robot does not have a �xed control architec�
ture� there is elementary interfacing circuitry for its
sensors and motors� but the interfaces can either be
linked to custom�built control circuits� or via ana�
logue�digital and digital�analogue converters to a note�
book PC mounted on the top surface of the body� which
can be programmed to simulate neural�network con�
trollers� Its basic sensors consist of a number of one�bit
tactile sensors mounted around the curved surface of
its body� The tactile sensors are either 
bumper�bars�
over an arc of the robot�s circumference� or radially�
oriented 
whiskers�� The simulation uses �ne�time�
slice techniques to approximate the continuous nature
of the real system� Standard Newtonian mechanics are
used to simulate the motion of the robot� but noise
is injected to prevent the motion from being wholly
deterministic� Collisions of the robot or its tactile sen�
sors with its surroundings are modelled as accurately as
possible� using observations of the real system� the real
robot�s mass to maximum speed ratio is such that col�
lisions are inelastic� involving fairly simple rotational
movements which depend on the speed and angle of
incidence as well as the shape of the obstacle�

In our simulations� we modelled the robot con�gured
with six tactile sensors� two bumpers �one front� one
rear	� and four radially symmetric whiskers oriented at
angles of ���� and ����� to the longitudinal midline
of the robot� The real robot has been equipped with a
ccd camera for certain applications� but in our work we
decided to simulate very simple discrete photoreceptor
units� which could reasonably be built using discrete
components �photodiodes or ldr�s	� with the addition
of lenses to give particular acceptance�angles to each
photoreceptor� The visual sampling of the photore�
ceptors was simulated using ray�tracing ���� with �� �
regular supersampling on each pixel as an antialias�
ing measure� so each simulated photoreceptor�s output
was always one of �� discrete values in the range ��� ���
The simulation assumed a constant and relatively triv�

ial lighting model� thereby avoiding the need to sim�
ulate nonlinear alterations in response dependent on
wavelength� intensity� or temperature�

The aim was to start with the most minimal visual
guidance capabilities� and proceed towards more com�
plex systems� To this end� we worked with just two
simulated photoreceptors �i�e� two pixels	� mounted on
the robot body at equal heights above the �oor and
symmetrically about the robot�s longitudinal midline�
Given only two pixels� it was necessary to constrain the
simulated robot�s environment and desired tasks in or�
der for the experiments to remain tractable� For this
reason� we experimented with a simulated environment
where the robot was alone in a closed circular arena�
The �planar	 �oor and ceiling of the arena were white�
while the �cylindrical	 walls were black� The ray�tracer
used uniform di�use lighting and all surfaces were 
per�
fect� Lambertian� i�e� no surfaces exhibited speculari�
ties or irregularities in re�ectance characteristics� For
further details of the vision and environment simula�
tion� see ����

The results reported here all involved attempting to
evolve a robot controller which would� from any start�
ing point in the arena� guide the robot to the centre of
the circular arena and keep it there�

� The Neural Networks

We have experimented with a variety of types of �for�
mal neurons�� which we refer to as units� In the work
described here� the units draw some inspiration from
biology� but were designed with the intention of be�
ing relatively easy to fabricate in hardware� Activ�
ity values in ��� �� � R propagate along links between
units� where each link has a particular attenuation fac�
tor �i�e� weight	 and a particular propagation delay as�
sociated with it� Each neuron has separate inhibition
and excitation channels� The excitatory output of a
unit is determined by a compressive nonlinear function
of the sum of excitatory inputs to the unit� to which
uniformly�distributed noise �with zero mean	 is added�
However� if a unit receives any inhibitory input then its
excitatory output is disabled� The inhibitory output of
a unit is set by a step function of the sum of that unit�s
excitatory inputs� and is not a�ected by any inhibitory
input the unit receives�

The network is connected to the robot�s sensors and
actuators by identifying certain units as 
input units�
�which receive activity from sensors	 and certain other
units as 
output units� �whose activities determine the
motor settings	� Units not involved in input or output
roles are referred to as 
hidden units�� All networks
considered during evolution are well�formed� insofar as
input units for the six tactile sensors and two photore�
ceptors are always present� and output units connect�
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ing to the motors are also always present �each motor
requires two output units� the units� output values are
in the range ����� but the motors require control signals
in the range ������	�

While our networks are homogeneous� in the sense
that only one type of unit is employed� there is no
enforcement of regularities in connectivity� arbitrary
connectivities may be employed� and the �nal evolved
networks are invariably asymmetric� with high degrees
of recurrency� In principle� evolution could be used
to determine the individual thresholds associated with
each unit and also for the delays and weights on each
connection� However� in the experiments described be�
low� the weights� delays� and thresholds for all units in
all networks were all �xed at constant values �i�e� were
not under evolutionary control� nor under the control
of any learning algorithm	� Nevertheless� the use of
nonzero delays means that simple circuits can exhibit
intrinsic dynamical behaviours
 e�g� two units� appro�
priately connected� can act as a sawtooth oscillator�
For further details of the neuron model� and support�
ing mathematical analysis of signi�cant network struc�
tures� see �����

� The genetic algorithm

It is beyond the scope of this paper to give a full ac�
count of the genetic algorithm employed in our work�
but a brief summary is given here� For a good general
introduction to genetic algorithms� see ����

We use Harvey�s saga arti�cial evolution techniques�
The general principles underlying saga are common
to most other genetic algorithms� Structures of in�
terest �e�g� the controller architectures	 are encoded
as strings of characters drawn from some alphabet�
Such a character�string is referred to as a genotype�
The process starts with the creation of a set num�
ber of randomly�generated genotypes� Each individ�
ual genotype represents one possible controller archi�
tecture� and the collection of genotypes is referred to
as the population� The process then enters an itera�
tive loop� where each individual in the population is
evaluated to determine how ��t� its performance is� ac�
cording to some objective �tness function� Once each
individual has been assigned a �tness rating �usually a
scalar real number	� pairs of individuals are randomly
selected �with replacement	 to �breed� a new popula�
tion� In a direct analogue of Darwinian natural se�
lection� the probability of an individual being selected
for breeding depends on its �tness relative to the rest
of the population� so �tter individuals have a greater
chance of passing on their genetic material to subse�
quent generations� Each iteration cycle of evaluation
and breeding is referred to as a generation� If param�
eters governing the �tness function and the breeding

operations are set appropriately� it is well documented
that over a number of generations� �tness in the pop�
ulation can improve�
The signi�cant di�erence between saga and more

conventional genetic algorithms is that� whereas most
genetic algorithms perform stochastic search in a �xed�
dimensional parameter space� saga allows for the di�
mensionality of the current search�space to vary in
the course of evolution� This is achieved by allowing
the length of the geneotypes to vary� the variation in
length is governed by a random process� but if longer
genotypes �which correspond with higher�dimensional
search�spaces	 are found to o�er increased �tness� then
they are retained by the natural selection process� Of
course� in some situations it is feasible that shorter
genotypes may confer increased �tness� so the dimen�
sionality of the current search space may be reduced
if that is appropriate� This feature of saga allows for
truly incremental approaches to the evolution of con�
trol architectures to be explored� as long as the initial
random population is of su�cient complexity to gen�
erate �tnesses which can be operated on by the selec�
tion mechanisms� saga may increase or decrease the
dimensionality of the current search space in order to
maximise �tness accordingly�
In the context of evolving neural networks� this has

the implication that the number of links and units
in the network need not be prespeci�ed� So long as
the initial networks are well�formed in the sense used
above� saga is able to add or delete links and units in
attempting to maximise �tness� For further details of
saga techniques see e�g� ��� ���

� Experimental Methods

In attempting to evolve robot controller morphologies
which would lead the robot to the centre of the circular
arena from any starting point� we used the following
�tness evaluation function�

E �
X

�t

exp��sjr�t	j�	

Where r�t	 is the ��D vector from the robot�s position
to the centre of the �oor of the circular arena at time
t� and �t denotes the duration of the evaluation test
�the sum is essentially a discrete approximation to a
temporal integral	� Put most simply� the more time
the robots spend at or near the centre of the arena�
the higher they are rated� The value s is a scale factor
which ensures that the robots collect almost no score
if they are near the walls of the arena� The maximum
value of jr�t	j was ���� �the radius of the arena �����	
minus the radius of the robot ����		� and s � ����� The
robot�s height is ����
The genotype for each individual controller was com�

posed of two distinct �chromosomes�� one was relatively
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short ��� bits	 and �xed�length� while the other was
long �initially about ���� bits	 and variable�length�
The shorter chromosome coded for the positions and
acceptance angles of the two photoreceptors� while the
longer one coded for the control networks� Initially�
all the controller networks were well�formed and had
either one or two hidden units� In all individuals in
the �rst generation� both chromosomes were randomly
initialised�

Each individual controller was evaluated using E for
��� timesteps� which implies E � ����� ������� However�
all the tests were conducted where the robot started at
a random orientation and location� with the distribu�
tion of locations biased for positions distant from the
centre �i�e� close to the walls	� so the maximum possi�
ble score a controller could yield on any one trial was
somewhere between �� and ��� depending on the noisy
interactions between the robot and its environment�
Because of this variability in the score� we evaluated
each controller � times� each with re�randomised posi�
tions and orientations� and then took its worst score
as an indication of its �tness� this is a much more reli�
able method of generating truly robust solutions than
taking the average or best score as �tness values�

We applied this evaluation method to eight separate
populations� each of size ��� each over ��� generations�
As was typical in most of our experiments� approxi�
mately ��� of the populations failed to evolve beyond
trivial advances on the initial random controllers� while
the remaining populations evolved close to optimal be�
havioural strategies� Under the E evaluation function�
the optimal behaviour is� from a random initial start�
ing position� to move towards the centre of the arena
as fast as possible� and when at the centre� stay there�
As will be seen� such behaviours were exhibited by the
evolved controllers examined in the next section�

� Results

Of the eight populations evolved under E with a �xed
wall�height of ����� the two populations which evolved
to give the highest values of E for their best individual
will be considered� The best individual in the top�
scoring population is referred to as C� �controller��	�
and the best individual in the second�highest�scoring
population is referred to as C� �controller��	�

As will be seen in the �gures� the �nal evolved net�
work controllers are fairly opaque tangles of connec�
tions� but qualitative analysis techniques can be used
to eliminate some units and links from consideration�
The qualitative techniques we have found most use�
ful have been inspired by methods in the biological
�eld of neuroethology� Neuroethology is the study of
the neural mechanisms underlying the generation of
behaviour in animals� see e�g� ���� Given that both

real neural mechanisms in animals and arti�cial 
neu�
ral� mechanisms in our simulator are both the result
of Darwinian evolutionary processes� with the strong
constraint of intermediate viability� it is not altogether
surprising that similar analytic approaches are fruitful
in both �elds� Essentially� the qualitative analytic tech�
niques involve identifying� from the network diagram�
redundant units or links which may be vestigial� i�e�

evolutionary sca�olding� which contributed to �tness
in earlier generations but have now fallen from use�
Such redundant units and links can be deleted from
the network �so long as tests are then made to ensure
that the performance of the network is not altered by
the deletion� i�e� to check that the deleted structure re�
ally was redundant	� Following the application of these
qualitative reduction techniques� particular processing
pathways can be identi�ed� Then� recordings of the ac�
tivity levels of the units involved in a channel can be
made while the system is running� and the roles of in�
dividual units and links in generating the behaviour is
further clari�ed� to the point where a detailed under�
standing of the causal mechanisms is established� Key
steps in this process for the analysis of C� are presented
in the following batch of �gures� For full details of the
C� analysis see ����

Figure � shows typical activity of the C� controller�
which is close to optimal
 Figure � shows the full net�
work for the C� controller� note that although the in�
dividuals in the initial population had only one or two
hidden units� the number of hidden units in this net�
work has increased as a result of increases in genotype
length� Figure � shows the results of elimination based
on qualitative analysis� Figure � shows traces of ac�
tivity values and observable variables for a typical run
with the C� controller
 such information can be used to
reduce the network to the fundamental visual pathways
shown in Figure ��

The C� controller is clearly achieving the desired be�
haviour� and it is important to note here that the be�
haviour generated by C� was evolved using only the E
function� All that E speci�es is a desired behaviour � it
does not specify that visual input should be used to
guide the behaviour� So� the results from C� are an
existence proof that visually guided behaviours can be
evolved without explicit reference to visual processing �
the fact that visual perception was made available to
the evolutionary process was su�cient
 C� operates en�
tirely on the basis of visual input �i�e� tactile sensing
is not employed at all� the robot uses the visual signal
to detect when it is on a collision course with the walls
and takes evasive action before the tactile sensors con�
tact the walls	� Furthermore� the fact that tactile sens�
ing becomes redundant in later generations means that
the tactile�input units also become redundant� and as
is clearly shown in Figure �� the evolutionary process
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can opportunistically allocate these redundant tactile
processing units to act as 
hidden� units �higher�order
�interneurons�	 for the visual processing requirements
of the system� In this sense� the distinction between
input� hidden� and output units which we impose on
the networks in the �rst generation is blurred by evo�
lution in subsequent generations�

On the basis of our qualitative analysis� we initially
�and mistakenly�	 concluded that both C� and C�
were identifying the centre of the arena by monitoring
the absolute light intensity of one or both of the pho�
toreceptors� at the centre� photoreceptors will signal
a particular intensity dependent on their acceptance�
angles� and the particular height�radius ratio of the
arena �which was �����	 throughout the evolution of C�
and C�� This struck us as an overtly domain�dependent
solution� and so we evolved another � populations of
controllers� where on each trial the height�radius ra�
tio of the arena was chosen randomly from the range
���� to ������ i�e� the heights were varied over al�
most one order of magnitude� Once again� the best
individual from each of the two highest�scoring popu�
lations was selected for detailed analysis� By testing
the variable�height controllers over the range of wall
heights used during their evolution� we established that
they gave responses relatively invariant to wall height�
but slightly lower than the average responses of C� and
C� in their �xed�height worlds� As a control� we then
tested C� and C� over the same range of wall heights
�i�e� ������	� and discovered that� while C��s response
rapidly deteriorated as the wall height was reduced be�
low ��� C� gave a fairly constant response which was
better than the responses of the controllers evolved un�
der varying�height conditions� This is an unexpected
result� the C� controller� while marginally less e�ec�
tive than C� in an arena of height ��� was consistently
e�ective across a range of wall heights which had not
been used during its evolution�

The key issue here is the strong evolutionary pressure
we exert for robustness �i�e� the presence of noise at
a number of levels� and the �tness evaluation based
on worst performance	� Put most simply� in order to
evolve a robust solution� the C� controller has evolved
as a general solution�

Typical behaviour for C� is shown in Figure �� Fig�
ure � shows the full C� network� while Figure � shows
the �nal reduced network� In order to further under�
stand the behaviour of C�� it is necessary to go be�
yond purely qualitative analysis� and employ quantita�
tive techniques� On order to do this� we treat the C�
controller as a dynamical system and apply the conven�
tional approach of identifying a low�dimensional state�
space which is convenient for analysis purposes� The
state space we have found most useful is referred to
as r� space� Each photoreceptor has a separate r�

space� r is the Euclidian distance from the photore�
ceptor to the centre of the arena
 � is the angle made
between the radial line from the centre of the arena to
the photoreceptor and the forward optical axis of the
photoreceptor� Wherever the robot is positioned in the
arena� each photoreceptor will be occupying a particu�
lar point in r� space and will also be signalling a par�
ticular intensity value� The intensity value signalled is
dependent on the photoreceptor�s angle of acceptance�
and on the height�radius ratio of the arena� As the
radius is invariant in the experiments discussed here�
only the height is signi�cant� Figure � shows the r�
space for C��s left photoreceptor when the height is ��
and Figure �� shows the same space� when the height
is ��� As can be seen� variations in wall�height have
signi�cant e�ects on the state�space� The state�spaces
for the right photoreceptors are identical� modulo a
translational shift along the � axis �corresponding to
the robot rotating on the spot so as to bring the right
photoreceptor to the position previously occupied by
the left photoreceptor	�

If the r� photoreceptor spaces for the left and right
photoreceptors are superimposed� the space can be par�
titioned into distinct areas where the left and vight
visual inputs take on particular combinations of val�
ues� as illustrated in Figure ��� Using purely theoret�
ical techniques� based on steady�state analysis of pri�
mary feedback loops in the C� network� it is possible
to calculate a vector �eld over the partitioned com�
bined state�spaces which indicates the likeliest move
the robot will make for any particular input� The pre�
dicted �eld is shown in Figure ��� empirically derived
state�space trajectories are illustrated in Figure ��
 as
can be seen� there is close accordance between the pre�
dicted and empirical state spaces� which indicates that
our analysis is accurate� The striking feature of the
C� state�space �elds is that� at any wall height� there
is always at least one point attractor corresponding to
near�optimal behaviour� So we can demonstrate both
theoretically and empirically that the C� controller op�
erates successfully in circular arenas of any height� For
further details of the analysis� see �����

� Working with a Real Robot

The computational costs of performing accurate sim�
ulations were such that� using C�code optimised for
speed� each run of one population of size �� over ���
generations� with ����� timesteps per individual took
a little over �� hours on a single�user Sun sparc �

workstation� This is signi�cantly slower than real�time�
but further computational savings could only be made
by decreasing the realism of the simulation� which is
a step we are not prepared to take� For this rea�
son� we are now working with a purpose�built cartesian
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�gantry	 robot which has four degrees of freedom� three
translational �x� y� z	 and one rotational �pan�angle for
a ccd camera mounting	� Visual sensing is performed
by a custom�built frame�grabber� which feeds images
at ��Hz to a ��MHz ���DX� 
front end� PC� which
is responsible for handling low�level visual� tactile� and
motor processing� The 
front�end� machine feeds vi�
sual and tactile sensory information to a ��MHz ���DX
PC� where the genetic algorithm runs and the control
networks are simulated
 this machine sends control sig�
nals back to the front�end machine� thereby completing
the feedback loop� For a schematic diagram of the orig�
inal design of this robot� see ���� This robotic equip�
ment allows for the study of the evolution of advanced
visually mediated behaviours� such as visually guided
navigation� This equipment is in the �nal test phases
at the moment� and will very shortly be used to apply
our methods� so far tested only in simulation� to real
sensory�motor hardware�

� Conclusion

We have summarised our rationale for applying arti��
cial evolution techniques to the problem of designing
control architectures which generate visually guided
behaviours in autonomous mobile robots� Despite the
mundane nature of the evolved behaviours� our ap�
proach of treating the sensors �and actuators	 as part
of the control architecture� and evolving them concur�
rently with the the �neural� processing networks� com�
bined with the use of an evolutionary scheme which
does not involve predetermined bounds on the dimen�
sionality of the search space� appears to have yielded
designs of genuine interest� We have demonstrated
that saga�based arti�cial evolution can opportunis�
tically identify the appropriate sensor modalities for
the task at hand� and recon�gure the processing net�
works if necessary in order to take advantage of vesti�
gial or redundant aspects of the network� Furthermore
we have demonstrated that understanding the evolved
networks is a task requiring both qualitative and quan�
titative analysis� and that evolution can produce solu�
tions whose true sophistication may only be revealed
when they are tested in environments or domains which
di�er signi�cantly from those used during evolutionary
development� While the results from these simulation
studies are very promising� the �nal test of our ideas
and methods �working with real hardware	 is essential�
and is currently underway�
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Figure �� Typical behaviour of the C� controller� The robot�s
position at each timestep is shown by an arrow� the midpoint of
the arrow �shaft� is the centre of the robot� and the length of the
shaft is the same as the robot�s diameter� The robot starts near
the edge of the arena� moves to the centre� and then spins on
the spot� The �tip� of the arrow shows the �front� of the robot�
which is not necessarily the direction of travel� although in this
case the robot is moving forwards� it can travel in reverse�
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Figure �� Full C� control network� The left�hand column are
units originally designated as input units� FB�Front Bumper�
BB�Back Bumper� FRW�Front Right Whisker� BRW�Back
Right Whisker� BLW�Back Left Whisker� FLW�Front Left
Whisker� Right�hand column shows output units� which are
paired and di�erenced to give two motor signals in the range
������ from four �neuron� outputs in the range ������ Centre col�
umn shows �hidden units��
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Figure �� Network with redundant and non�visual units
deleted� see text for further details�

Figure �� Record of observables and activity levels for
the activity illustrated in Figure �� Horizontal axis is time�
From top� robot�s velocity� robot�s orientation� visual in�
put to left photoreceptor� visual input to right photorecep�
tor� output of left wheel� output of right wheel� activity
levels in the control network units � to ���

13

14

Right Motor

+VE

-VEExcitatory Connection

Inhibitory Connection

Sensor/Actuator Connection

11

12

Left Motor

-VE

+VE

7

6

Left Eye

Right Eye

2

10

8

1

4

FRW

BLW

BB

Figure �� Final C� network� Note that unit �� originally
a tatcile input unit� is now a second�ordervisual processing
unit�

Figure �� Typical behaviour of the C� controller� with
noise� Display format as for Figure �� The robot starts
near the edge of the arena� moves to the centre� and then
around the centre in a low�radius turn� As can be seen�
the C� controller drives the robot in reverse �backwards��
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Figure �� Full C� control network� Display format
as for Figure ��
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Figure �� C� visual guidance pathways� Note that�
for the sake of clarity� the positions of the left and
right motor outputs have been interchanged�

Figure �� C� Left photoreceptor r� space when wall�
height��� intensity levels shown � � � � � �black
white��
�Angle� axis is �� �Distance� axis is r�

Figure ��� C� left photoreceptor r� space when wall�
height����
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Figure ��� Distinct visual regions in r� space for left�right
photoreceptor pairs when wall�height���
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Figure ��� Theoretically constructed phase portrait in
r� space for C� at wall�height��� Two attractors are
present �marked by X�� the one at � � 
��� is dominant�

Figure ��� C� trajectories translated into r� space for
wall�height��� as can be seen the theoretical and empirical
trajectories are in good agreement�
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