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Abstract

This paper describes results from a specialised
piece of visuo�robotic equipment which allows the
arti	cial evolution of control systems for visu�
ally guided autonomous agents acting in the real
world� Preliminary experiments with the equip�
ment are described in which dynamical recurrent
networks and visual sampling morphologies are
concurrently evolved to allow agents to robustly
perform simple visually guided tasks� Some of
these control systems are shown to exhibit a sur�
prising degree of adaptiveness when tested against
generalised versions of the task for which they
were evolved�

� Introduction

In previous papers 
see e�g� ���
 we have discussed our
reasons for adopting an evolutionary methodology for the
design of control systems for mobile robots using low�
bandwidth vision for simple navigational tasks� We also
discussed what class of control systems are appropriate
for evolutionary development� proposing dynamic recur�
rent real�time 
arti	cial
 neural networks as one strong
contender�

The evolutionary process� based on a genetic algo�
rithm ���� involves evaluating� over many generations�
whole populations of control systems speci	ed by arti�
	cial genotypes� These are interbred using a Darwinian
scheme in which the 	ttest individuals are most likely to
produce o�spring� Fitness is measured in terms of how
good an agent�s behaviour is according to some evalua�
tion criterion� The work reported here forms part of a
long�term study to explore the viability of such an ap�
proach in developing interesting adaptive behaviours in
visually guided autonomous robots� and� through analy�
sis� in better understanding general mechanisms under�
lying the generation of such behaviours�

In this paper we present results from experiments in
which visually guided behaviours are arti	cially evolved
in the real world� As far as we know� this is the 	rst time
this has been achieved�

� From Simulation to Reality

The experiments described in earlier papers ��� used sim�
ulations of a round two�wheeled mobile robot with touch
sensors and just two visual inputs � simulated photore�
ceptors� with 
genetically speci	ed
 angles of acceptance�
and of eccentricity relative to the frontal direction of the
robot� The environment was a simulated circular arena�
with black walls and white �oor and ceiling� ray�tracing
techniques allowed the calculation of visual inputs� Suc�
cess was reported in evolving control systems 
and visual
morphologies
 which allowed the robot to reach the cen�
tre of the arena�

These early experiments were intended to test the
plausibility of our approach� However� the simulated vi�
sual environment was very simple and it was noted that
computational costs would increase dramatically as the
visual environment became more complex� Indeed� even
ignoring computational costs� the plausible modelling of
visual inputs in such circumstances is highly problematic�
Hence plans were made to perform the whole evolution�
ary process with a real robot� moving in the real world�
and without recourse to simulated vision�

Arti	cial evolution in the real world requires equip�
ment which allows the automatic evaluation of very large
numbers of robot control systems� With navigation
tasks� it is useful to have the position and orientation of
a robot continually available to an overseeing program
responsible for scoring candidate control systems� Of
course� this information should not be available in any
way to the individual robot control systems� Automatic
re�positioning of the robot at 	xed or random positions
for the start of each trial is also desirable� Rather than
imposing a 	xed visual sampling morphology� we believe
a more powerful approach is to allow the visual morphol�
ogy to evolve along with the rest of the control system�
This establishes a further desired property of the exper�
imental setup�

One solution might involve the parallel evaluation of
populations of control systems using a large number of
mobile robots� radio links� recharging stations� and the
like� In this paper we describe a much cheaper� shorter
term� solution we have developed using a specialised
piece of visuo�robotic equipment � the gantry�robot�



Figure �� The Gantry viewed from above� The horizontal girder moves along the side rails� and the robot is suspended from a
platform which moves along this girder�

� The Gantry�Robot

��� Introduction

The gantry�robot can be thought of as occupying a po�
sition partway between a physical mobile robot with
two wheels and low�bandwidth vision� and the simula�
tion thereof� The robot is physically built� cylindrical�
some ���mm in diameter� and moves in a real environ�
ment � the term �robot� is here used to refer to that
part which moves around and has the sensors mounted
on it� Instead of two wheels� however� the robot is sus�
pended from the gantry�frame with stepper motors that
allow translational movement in the X and Y directions�
relative to a co�ordinate frame 	xed to the gantry 
see
Figure �
� The maximum X 
and Y
 speed is about
���mm�s� Such movements� together with appropriate
rotation of the sensory apparatus� can be thought of as
corresponding to those which would be produced by left
and right wheels� The visual sensory apparatus consists
of a ccd camera pointing down at a mirror inclined at
��o to the vertical 
see Figure �
� The mirror can be ro�
tated about a vertical axis so that its orientation always
corresponds to the direction the �robot� is facing� The vi�
sual inputs undergo some transformations en route to the
control system� described in detail below� The hardware
is designed so that these transformations are done com�
pletely externally to the processing of the control system�
If all the transformationsmade on the sensory inputs and
the motor outputs accurately re�ected the physics of a
real mobile robot� then� in principle� a control system
successfully evolved on the gantry could be transplanted
to a mobile robot with two genuine wheels� and with pho�
toreceptors instead of the vision system described below�
Such a transplantation has not been attempted� and is

not a prime concern of our present work with this ap�
paratus� Indeed� there are current limitations� discussed
later� which would probably hinder it� Despite this� the
experiments discussed here can be considered as hav�
ing conditions comparable in complexity and di�culty
to those met by a free�running mobile robot� our aim is
a fairly general investigation of the arti	cial evolution of
sensorimotor control systems� Of course� the optic array
available to the robot is now the real thing�

The control system for the robot is a recurrent dy�
namic neural net� genetically speci	ed� and in practice
simulated on a fast personal computer� the �Brain PC��
During each robot trial this PC is dedicated solely to run�
ning the neural net simulation� It receives any changes
in visual input by interrupts from a second dedicated
�Vision PC�� A third 
single�board
 computer� the SBC�
sends interrupts to the Brain PC signalling tactile inputs
resulting from the robot bumping into walls or physical
obstacles� The only outputs of the control system are
motor signals speci	ed by values on particular nodes of
the neural network� these values are sent� via interrupts�
to the SBC� which generates the appropriate stepper mo�
tor movements on the gantry�

Thus all interactions between the three computers
used 
Brain PC� Vision PC and SBC
 are mediated by
interrupts 
see Figure �
� and the overall system is delib�
erately designed so that these interrupts� although inher�
ently asynchronous and unpredictable� are nevertheless
su�ciently infrequent for them not to clash with the in�
trinsic timescales of the neural network� vision and step�
per motor processing�

This setup� with o��board computing and avoidance of
tangled umbilicals� means that the apparatus can be run
continuously for long periods of time � making arti	cial
evolution feasible� A top�level program automatically



Figure �� The gantry�robot� The camera inside the top box
points down at the inclined mirror� which can be turned by the
stepper�motor beneath� The lower plastic disk is suspended
from a joystick� to detect collisions with obstacles�

evaluates� in turn� each member of a population of con�
trol systems� A new population is produced by selective
interbreeding and the cycle repeats�

��� The Vision System

Continuous visual data is derived from the output of
a small monochrome ccd camera� With a wide�angle

about ��o
 	xed�focus lens about �mm in diameter� this
is housed in a box facing vertically downwards onto the
angled mirror of the robot� The ccd produces composite
video output of some � volt peak to peak� with a video
bandwidth of �MHz� A purpose�built Frame�Grabber
transfers a �� � �� image at ��Hz into a high�speed
�K cmos dual�port ram� completely independently and
asynchronously relative to any processing of the image
by the Vision PC�

We advocate an incremental evolutionary approach�
progressing from the simple to the complex� In keeping
with this philosophy� current experiments use very low
bandwidth vision� This implies sub�sampling the image
produced by the camera� Rather than imposing a 	xed
way of sampling the image� we allow this to evolve along
with the neural networks� This is achieved by genetically
specifying the size and position of visual receptive 	elds�
These are circular patches within the visual 	eld of the
camera 
see Figure �
� Up to ��� such receptive 	elds
can be speci	ed with� to ��bit accuracy� the diameter
of the 	eld� and the polar coordinates of the centre of
the 	eld relative to the centre of the camera�s 	eld of
view� The angle of acceptance of the ccd camera 
via the
mirror
 is about ��o� the maximum angle of acceptance
of a receptive 	eld is about ��o� and its maximum angle
of eccentricity o� the cameras visual axis is about ��o�
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Figure �� The di�erent r�oles of the Vision computer� the
Brain computer and the SBC�

To calculate the signal from such a 	eld� the average is
taken of �� pixels in the camera image scattered across
the appropriate area� In this way a value 
� bits
 can
be calculated for each receptive 	eld at least as fast as
the camera image is updated� The only visual inputs
available to the genetically designed robot control system
are such scalar values�
The Vision PC is dedicated solely to processing the

camera output to calculate the visual signals from the
receptive 	elds� At the beginning of a set of trials for
a particular robot� the genetic speci	cation for the vi�
sual morphology 
positions and sizes of receptive 	elds

is passed to this PC� During each trial� whenever the
orientation of the robot changes 
the full circle is dis�
cretized into �� orientations
 a single byte is sent to the
Vision PC from the SBC specifying the new orientation�
Whenever the visual input to any of the receptive 	elds
changes in value 
scaled in the range � to ��
 then the
details of such a change are sent as single�byte interrupts
to the Brain PC�

��� The Brain PC

This is a ��MHz ��� PC which has two separate groups
of tasks to do at di�erent times� Firstly� the Genetic
Algorithm 
GA
 code is run on this machine� Repro�
duction� crossover and mutation are performed here in
between generations� and at the start of a set of trials
for each robot architecture the speci	cation of the visual
morphology is transmitted to the Vision PC� As with
most GAs� however� the amount of time spent running
the genetic machinery is trivial compared with the time
spent running the evaluations� and this latter constitutes
the second group of tasks�
During an individual evaluation� the Brain PC is ded�
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icated to running a genetically speci	ed neural network
for a 	xed period� At intervals during an evaluation� a
signal is sent from the Brain PC to the SBC requesting
the current position and orientation of the robot� These
are used in keeping score according to the current 	tness
function� At the end of a run� a byte sent from the Brain
PC to the SBC requests the return of the robot to the
�origin� of the gantry� The Brain PC receives signals� to
be fed into the neural net� representing sensory inputs
from the Vision PC and the SBC� The only signals that
the Brain PC sends out indicate changes in values of the
left and right virtual motors of the robot� These values�
which are restricted to integers from �� to �� are passed
on as single�byte interrupts to the SBC 
see Figure �
�

��� The SBC

The SBC is a minimal �� bit ����� system with ���K
of RAM and ���K of ROM� running at ��MHz� It has
memory mapped ports that connect it to the Vision PC�
the Brain PC and the various switches and motors at�
tached to the gantry� The SBC does all the transforma�
tions between hardware�relative and robot�relative sig�
nals� plus some housekeeping�

Occasional interrupts from the Brain PC will notify
new values of the desired speeds of the virtual left and
right wheels� These are translated into desired speeds
in the gantry X and Y directions� and desired angular
velocity of the mirror� The SBC also keeps track of the
current position and orientation of the robot� Instanta�
neous changes in desired speed cannot be translated di�
rectly into instantaneous changes in stepper motor pulse
frequency� due to the momentum of the masses these
motors must move� Hence speeds are ramped up rela�
tively slowly towards the desired speed � from zero to
full speed in about � seconds � decelerations are ramped
down rather more swiftly� As the mirror is so light� such
ramping was not deemed necessary for rotation � with
unexpected side�e�ects described below�

Signals from end�stops for maximummovement along
the gantry�frame� and signals from the touch�sensors on
the robot� are also processed by the SBC� A plastic disc in
the horizontal plane is suspended on a joystick vertically
below the robot
see Figure �
� This detects contacts�
on each of � sides of the robot 
in gantry�relative co�
ordinates
� The SBC converts these into robot�relative
directions�

� The robot dynamics

Some issues relating to the physical dynamics have al�
ready been mentioned� the ramping up and down of
stepper motor movements broadly 
and perhaps inac�
curately
 relates to the momentum of a freely mobile
wheeled robot�

With the present setup� on collision with a wall� all
further movement into the wall is prevented� as is any
translational movement along the wall� Hence� of any
desired robot motion� only that component perpendicu�
larly away from the wall is allowed� until contact with
the wall is lost� Angular velocity that attempts to turn
the robot further in towards the wall is ine�ective�

One puzzling phenomenon often observed� particularly
in initial randomly generated populations� was that of a
robot turning on the spot in a noisy fashion� On re�
�ection� this turned out to be an artefact of the way
translational momentum had been implemented in the
SBC code� but without angular momentum� This clearly
showed how the virtual physics as currently implemented
does not accurately re�ect the real physics of a free mo�
bile robot�



� Visual Limitations

The visual inputs are currently subject to various limi�
tations which are worth noting� Firstly� the lower part
of the robot body is supported from the upper half with
two thin vertical bolts� which come into the 	eld of view
when the mirror is facing towards them� These appear as
dark bars � to � pixels wide on the ccd image� and a�ect
the values of any receptive 	elds sampling from this area�
In principle this could directly provide visual information
for two 	xed directions for the robot to �face�� In addi�
tion� these bars tend to occlude any distant target used
in navigation trials� For our early crude experiments this
may not be too signi	cant� but it certainly will matter
when 	ner resolution is needed� and these bars produce
greater e�ects than background noise levels� In future
work we intend to 	t a new head on the gantry which
overcomes this problem�

Secondly� the fact that the mirror turns in discrete
jumps� of ����o at the moment� means that either the
angles of acceptance of the receptive 	elds� or alterna�
tively the horizontal angle subtended by any signi	cant
visual features� should be somewhat greater than ����o�
This could be overcome with a 	ner resolution motor�

Thirdly� the visual inputs are naturally noisy 
see sec�
tion ���
� The natural variation in daylight� as day pro�
gresses into night� causes particular problems� When
the gantry was exposed to such variation� it was dis�
covered that evolved systems that worked well in the
daytime did not work well under arti	cial light alone at
night�time� and vice versa� Our individual robot systems
were evaluated over a period of perhaps � minutes only�
and hence it is no surprise that robustness against such
longterm variations was not achieved� Since the recogni�
tion of this problem the gantry has been largely shielded
against daylight variations� We intend soon to deliber�
ately vary lighting conditions within each robot trial� to
try to achieve robustness against such variations�

� Preliminary Experiments

The following sections describe some initial simple ex�
periments we have carried out� mainly to ascertain how
well our methods cope with the move from simulations
to the real world� We have begun by exploring primitive
visually guided behaviours in static environments� con�
centrating on target approaching� However� as we shall
see� some of the evolved control systems showed surpris�
ing degrees of adaptiveness when tested on more general
versions of the task they were evolved for�

��� Networks and Genotypes

In all of the experiments reported here we used the same
networks and genetic encoding schemes as in our earlier
simulation work 
for full details see ���
� This was mainly

because we have a detailed understanding of their prop�
erties and wanted to see how well they transferred to
real world tasks� However� they are the simplest� and
we believe least powerful� of the classes of networks and
genetic encodings we advocate� and we are currently ex�
ploring more sophisticated methods� Brie�y� the evo�
lutionary algorithms search concurrently for a network
architecture and visual morphology capable of generat�
ing behaviours resulting in a high score on an evaluation
function that implicitly describes a visually guided task�
This is achieved by using a genetic algorithm acting on
pairs of �chromosomes� encoding the network and visual
morphology of a robot control system� One of the chro�
mosomes is a 	xed length bit string encoding the posi�
tion and size of three visual receptive 	elds as described
above� The other is a variable length character string en�
coding the architecture of the control network� Each net
has a 	xed number of input nodes and output nodes� one
input for each visual receptive 	eld and one for each of
the four tactile sensors described earlier� There are four
output nodes� two for each �virtual motor�� The output
signals of these pairs are subtracted to give motor signals
in the range ������� The genotypes encode for a variable
number of hidden units and for a variable number of un�
restricted excitatory and inhibitory connections between
the nodes�
The model neurons use separate channels for excita�

tion and inhibition� Real values in the range ����� prop�
agate along excitatory links subject to delays associated
with the links� The inhibitory 
or veto
 channel mech�
anism works as follows� If the sum of excitatory inputs
exceeds a threshold� Tv� the value ��� is propagated along
any inhibitory output links the unit may have� otherwise
a value of ��� is propagated� Veto links also have associ�
ated delays� Any unit that receives a non zero inhibitory
input has its excitatory output reduced to zero 
i�e� is
vetoed
� In the absence of inhibitory input� excitatory
outputs are produced by summing all excitatory inputs�
adding a quantity of noise� and passing the resulting sum
through a simple linear threshold function� F 
x
� given
below� Noise was added to provide further potentially in�
teresting and useful dynamics� The noise was uniformly
distributed in the real range ��N��N��

F 
x
 �

��
�

�� if x � T�
x�T�

T��T�
� if T� � x � T�

�� if x � T��


�


The networks� continuous nature was modelled by us�
ing very 	ne time slice techniques� In the experiments
described in this paper the following neuron parameter
setting were used� N����� Tv������ T����� and T������
The networks are hardwired in the sense that they do
not undergo any architectural changes during their life�
time� they all had unit weights and time delays on their
connections�



��� Experimental Details

In each of the experiments a population size of �� was
used with a genetic algorithm employing a linear rank�
based selection method� ensuring the best individual in
a population was twice as likely to breed as the median
individual� Each generation took about ��� hours to eval�
uate� The most 	t individual was always carried over to
the next generation unchanged� A specialised crossover
allowing small changes in length between o�spring and
parents was used ���� Mutation rates were set at ��� bit
per vision chromosome and ��� bits per network chromo�
some�
With the walls and �oor of the gantry environment

predominantly dark� initial tasks were navigating to�
wards white paper targets� In keeping with the incre�
mental evolutionary methodology� deliberately simple vi�
sual environments are used initially� as a basis to moving
on to more complex ones� Illumination was provided by
�uorescent lights in the ceiling above� with the gantry
screened from signi	cant daylight variations� However�
the dark surfaces did not in practice provide uniform
light intensities� neither over space nor over time� Even
when the robot was stationary� individual pixel values
would �uctuate by up to � units� on a scale of � to ���
Varying illuminance of di�erent parts of the walls pro�
vided potential visual information� other than the targets
speci	cally displayed�

����� Big Target

In the 	rst experiment� one long gantry wall was covered
with white paper� to a width of ���cm and a height of
��cm� the mirror on the robot� which e�ectively deter�
mines the position of the visual inputs� came about ���
of the way up on this white wall� The evaluation function
E�� to be maximised� implicitly de	nes a target locating
task� which we hoped would be achieved by visuomotor
coordination�

E� �
i���X
i��

Yi 
�


where Yi are the perpendicular distances of the robot
from the wall opposite that to which the target is at�
tached� sampled at �� 	xed time intervals throughout a
robot trial which lasted a total of about �� seconds� The
closer to the target the higher the score� For each robot
architecture � trials were run� each starting in the same
distant corner� but facing in � di�erent directions� these
directions were approximately in � di�erent quadrants�
to give a range of starts facing into obstacle walls as well
as towards the target� As the 	nal 	tness of a robot con�
trol architecture was based on the worst of the � trials 
to
encourage robustness
� and since in this case scores accu�
mulated monotonically through a trial� this allowed later
trials among the � to be prematurely terminated when

Figure �� From those evolved for the �rst task� this is the
behaviour of the one best at the �nd evaluation function� The
dots� and trailing lines� show the front of the robot� and its
orientation� Coarsely sampled positions from each of � runs
are shown� starting in di�erent orientations from the top right
corner�

they bettered previous trials� In addition� any control
systems that had not produced any movement by ��� of
the way into a trial was aborted and given zero score�
Two runs starting from a random initial populations

made little progress after �� generations� For reasons
described in Section �� we then tried starting from a
converged population made entirely of clones of a single
randomly generated individual picked out by us as dis�
playing vaguely interesting behaviour 
but by no means
able to do anything remotely like locate and approach
the target
� In two runs using this method very 	t in�
dividuals appeared in less than �� generations� From a
start close to a corner� they would turn� avoiding contact
with the walls by vision alone�� The best would rotate on
the spot until the target was in their visual 	eld and then
move straight towards it� stopping when they reached it�

����� Small Target

The experiment continued from the stage already
reached� but now using a much narrower target 
��cm

placed about ��� of the way along the same wall the large
target had been on� and away from the robot�s starting
corner 
see Figure �
� with evaluation E��

E� �
i���X
i��


�di
 
�


where di is the distance of the robot from the centre of
the target at one of the sampled instances during an eval�
uation run� Again� the 	tness of an individual was set to
the worst evaluation score from four runs with starting

�They were forced into this by a software error� only discovered

later� which meant that all the tactile sensors were turned o�� This

made this initial task far harder than we had intended�



Figure �� Behaviour of the best of a later generation evolved
under �nd evaluation function� Format as in previous Figure�

conditions as in the 	rst experiment� The initial popula�
tion used was the ��th generation from a run of the 	rst
experiment 
i�e� we incrementally evolved on top of the
existing behaviours
� The behaviour of the best of this
initial population is shown in Figure �� Interestingly� this
was not the best at the previous task � that individual
did very poorly on the new task�

Within six generations a network architecture and vi�
sual morphology had evolved displaying the behaviour
shown in Figure �� This control system was tested from
widely varying random starting positions and orienta�
tions� with the target in di�erent places� and with smaller
and di�erent shaped targets� Its behaviour was general
enough to cope with all these conditions for which it had
not explicitly been evolved�

For comparison a second evolutionary run using E�
throughout was undertaken� this time E�� and the big
target� were not used as a stepping stone� The run
started from the same initial converged population as
was used for the 	rst task� High scoring individuals
emerged after �� generations� When tested on more gen�
eral versions of the task they performed much worse than
the best of the incremental run� This result is sugges�
tive� but we do not have enough data to be able to report
anything statistically signi	cant about the advantages of
doing incremental evolution at this low�level of task�

����� Moving Target

Following a moving target can be thought of as a gen�
eralised version of static target approaching� Hence we
tested a number of the evolved small target locators with
a white cylinder 
of similar width
 substituted for the
target� this was pushed around the gantry area in a se�
ries of smooth movements� The tracking behaviour of
the control system that generated the behaviour shown
in Figure � is illustrated in Figures � and �� To under�
stand how this was achieved� we analysed it�

Figure �� Tracking behaviour of the control system that gen�
erated the behaviour shown in previous Figure� The un�lled
circles show the position of the target at a number of points
on its path 	starting position indicated
� The arrows roughly
indicate the path of the target�

Figure �� Further tracking behaviour of the control system
that generated the behaviour shown in previous Figure�

	 Control System Analysis

In ��� it is shown in detail how evolved control systems of
the type developed here can be analysed in terms of net�
work dynamics and the way in which the visual morphol�
ogy couples the control system with the environment� It
was shown how the active part of the network can be
characterised in terms of major feedback loops and visual
pathways� The active part of the network that generated
the behaviours shown in Figures �� � and � is shown in
Figure ��� and its coupled 
evolved
 visual morphology is
shown in Figure ��� On analysis it was seen that in this
control system only receptive 	elds � and � are involved
in generating visually guided behaviours�

Only a brief description can be given here of the work�
ings of the network� Due to the same software error
mentioned earlier in relation to the tactile sensors� unit
� 
one of the tactile input units
 acts as a source of noise
over the range ��������� This unintended property of the
unit has been exploited by evolution to produce a tightly
self�regulating system� Unit � feeds into the two coupled
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Figure ��� Active network of the best tracker� V� and V�
are visual inputs from receptive �elds � and ��

feedback loops shown in Figure ��� It can be shown that
the resulting subnetwork is responsible for generating a
noisy turn on the spot behaviour when visual inputs to
receptive 	elds � and � 
v� and v�
 are both low 
the
robot is facing a dark object
� When v� is low and v�

is very high� unit � self�inhibits and the same rotational
behaviour follows� When v� is low and v� is medium
high the robot rotates in a medium radius circle� When
v� is high a straight line motion follows� Due to inhi�
bition between motor signals this straight line motion is
maintained as long as v� remains high� irrespective of
v�� The basic behaviour generated then� is to rotate un�
til the white target is within receptive 	eld �� and then
to move in a straight line as long as the target remains
within the 	eld� If the target is lost� the robot rotates
until the target is again within the 	eld of receptor � and
straight line motion is resumed�

Further� it can be shown that in the task it was evolved
to perform 
small target location
 this system�s partic�
ular visual morphology 
especially the position of 	eld
�
 was able to exploit various other visual features in
the environment to ensure a rapid 	xation on the tar�
get� The behaviour generated when v� was medium high
and v� was low was particularly important in provid�
ing the system with surprisingly smooth tracking abili�
ties with the moving target� Other systems tested had
evolved to be too fragilely adapted to the particular task
they were evaluated for� they made a lot of use of visual
features other than the intended target� Consequently�
when started from di�erent positions� or with the mov�
ing target� they tended to chase re�ected light spots on
the walls� Clearly� great care must be taken in setting
up the tasks and environments in order to get behaviour
of the required robustness and generality� At the same
time� it was encouraging to 	nd a number of instances of
evolved control systems that were far more general and
robust than might have been expected from the evalua�
tion function used�
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Figure ��� Subnetwork responsible for rotations in absence
of visual input�
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Figure ��� The large dotted circle indicates the extent of
the entire visual �eld available via camera and mirror� The
smaller circles indicate the relative positions and sizes of the
genetically speci�ed visual receptive �elds 	no� � is not used
�


 Rectangles and Triangles

A further experiment will be very brie�y described here�
Two white paper targets were 	xed to one of the gantry
walls� one was a rectangle ��cm wide and ����cm high�
the other was an isosceles triangle ��cm wide at the base
and ����cm high to the apex� The robot was started
at four positions and orientations near the opposite wall
such that it was not biased towards either of the two
targets� The evaluation function E�� to be maximised�
was�

E� �
i���X
i��

��
D�i
� d�i
 � �
D�i

� d�i
� 
�


where D� is the distance of target�� 
in this case the
triangle
 from the gantry origin� d� is the distance of the
robot from target��� andD� and d� are the corresponding
distances for target�� 
in this case the rectangle
� These
are sampled at regular intervals� as before� The value of
� is 
D� � d�
 unless d� is less than some threshold� in
which case it is �� 
D� � d�
� The value of � 
a penalty
function
 is zero unless d� is less than the same threshold�
in which case it is I � 
D� � d�
� where I is the distance
between the targets� I is more than double the threshold
distance� High 	tnesses are achieved for approaching
the triangle but ignoring the rectangle� It was hoped
that this experiment might demonstrate the e�cacy of
concurrently evolving the visual sampling morphology
along with the control networks�
After about �� generations of a run using as an initial

population the last generation of the incremental small
target experiment� 	t individuals emerged capable of ap�
proaching the triangle� but not the rectangle� from each
of the four widely spaced starting positions and orien�
tations� The behaviour generated by the 	ttest of these
control systems is shown in Figure ��� When started



Figure ��� Behaviour of a �t individual in the two target en�
vironment� The rectangle and triangle indicate the positions
of the targets� The semi circles mark the 
penalty� 	near rect�
angle
 and 
bonus score� 	near triangle
 zones associated with
the �tness function� In these � runs the robot was started di�
rectly facing each of the two target� and twice from a position
midway between the two targets� once facing into the wall and
once facing out�
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Figure ��� Active part of the control system that generated
�t behaviour for the rectangle and triangle experiment� Visual
morphology shown inset�

from many di�erent positions and orientations near the
far wall� this controller repeatedly exhibited very similar
behaviours to those shown�

The active part of the evolved network that generated
this behaviour is shown in Figure ��� The evolved visual
morphology for this control system is shown inset� Only
receptive 	elds � and � were used by the controller�

Whereas the 	t control systems for the previous ex�
periments only made use of one visual receptive 	eld at
a time� this one used two simultaneously� The visual
morphology�networks evolved such that robots rotated
on the spot when both visual inputs were low 
this is
e�ected by the subnetwork made from nodes �� �� � and
��
� When the signal from receptive 	eld � 
v�
 is high
but that from receptive 	eld � 
v�
 is low� the connection
from unit � to unit �� generates a rotational movement�

When v� and v� are both medium high� the inputs from
unit � to units �� and �� tend to cancel each other out
whereas unit �� is strongly activated� again resulting in
a rotational movement� When v� and v� are both high�
the inhibitory links from unit � to unit �� and from unit
�� to itself� come into play� This just leaves unit �� ac�
tive and rotation follows� If v� is high but v� low� similar
behaviour ensues� However� if v� is high and v� is low�
units �� and �� 
via �
 are active and unit �� is inhibited�
Hence straight linemotion is produced� The active recep�
tive 	elds were so arranged to result in the robot tending
to accurately 	xate on the the triangle and moving in a
straight line towards it� It would often 	xate on the edge
of the rectangle but as it moved towards it both visual
signals would go high� resulting in a rotation towards
the triangle� As the robot moved towards the triangle
with only v� high� the looming target would cause v� to
go high� However� the 
evolved
 layout of the receptive
	elds relative to the geometry of the triangle meant that
the ensuing rotational movement very rapidly sent v� low
while v� remained high� and the robot carried on moving
towards the triangle usually only slightly de�ected from
its original path� When it reached the target� depend�
ing on its orientation� the robot either stopped or slowly
rotated away from the triangle and then looped back to�
wards it� These results illustrate that tasks such as these
can be achieved with extremely minimal vision systems
and very small networks�

� An Initially Converged Population

Whereas Genetic Algorithms 
GAs
 are normally used
to search high�dimensional spaces� the modi	ed form
of GAs� �SAGA� ���� employed here uses a genetically
largely converged population� and in e�ect searches a rel�
atively local space of adaptations to the current popula�
tion� arti	cial evolution is treated as exploration� driven
largely by mutation� rather than search� The population
is maintained at some fairly high degree of convergence
by the balance between mutation and selection� For a
continuing sequence of experiments� with tasks of added
complexity� the starting point in each case is the popula�
tion that succeeded before� but there are di�erent choices
for the very 	rst population�

One could start with a randomly generated population

i�e� their genotypes are randomly generated from valid
symbols
� which would be the normal GA technique�
But often in a normal GA problem� di�erent parts of
the genotype contribute semi�independently to the eval�
uation function� and through the Schema Theorem ���
progress of some sort can be made from such a random
start� In our case� however� the genotypes describe con�
trol systems which in turn generate behaviour� with no
simple correlation between the genotypes and the be�
haviour� which means that� at least with encodings like
the one used here� two di�erent genotypes which both



produce promising behaviour will� on recombination� al�
most always produce a genotype with near�average per�
formance � i�e� useless performance� It is only once the
population has largely converged � as advocated with
SAGA ��� � that recombination is likely to be useful�

For this reason� from a start with a randomly gener�
ated population� the early stages will do no more than
allow some early promising candidate to dominate the
population� In which case we can speed up the pro�
cess� and help give some desired initial direction� by our�
selves observing the 	rst random population� choosing
by eye the most promising� and seeding the next gener�
ation with clones of this one� Thereafter the population
settles down to its asymptotic degree of genetic conver�
gence from above� rather than from below� For the ex�
periments reported here� an initial randomly generated
population of size �� was judged by eye on the intuitive
criterion of �interesting� behaviour� Two members dis�
played forward�moving behaviour� which altered in char�
acter when the white target was within view of the visual
system� and one of these two was selected� The infor�
mal criterion of �interestingness� allowed a clear choice�
whereas the �o�cial� evaluation function used thereafter
did not give clear preferences on this initial random pop�
ulation� as the scores it gave there were dominated by
noise� This use of di�erent evaluations over time is
completely consonant with the underlying philosophy of
this approach� that of human�directed evolution of the
robots�

As has already been mentioned� the successes we have
had with initially converged populations are from too
small a sample of experiments to have any statistical
signi	cance� It should also be noted that the genetic
encoding scheme plays an important role in determining
how e�ective crossover is in early generations�

�� Future Work

Encouraged by the initial results with the gantry appa�
ratus we intend to start using it in more complex exper�
iments� In these we intend to use networks with much
richer intrinsic dynamics� and more sophisticated geno�
type to phenotype developmental processes allowing a
less restricted open�ended evolutionary process� We will
explore behaviours in cluttered and dynamic environ�
ments and under changing lighting conditions�

Evaluations with the gantry using a real optic array
take less than one order of magnitude longer than the
early simulations we did using ray�tracing in a very sim�
ple environment� But whereas ray�tracing simulations
rapidly scale up in computational requirements as the en�
vironment is made more complex� with the gantry there
is no such constraint�

�� Conclusions

This paper has described a specialised piece of visuo�
robotic equipment allowing us to evolve visually guided
agents in the real world� It has reported on work that
has demonstrated that our methods developed using sim�
ulation experiments have transferred to the real world�
We have been able to evolve robust visually guided be�
haviours with very small populations in very few gener�
ations� even though the visual signals in the real world
are far more noisy than in our simulations� this is in con�
trast to the di�culties experienced by others using evo�
lutionary techniques� but with di�erent control system
building blocks ���� A number of our evolved control sys�
tems showed interesting levels of adaptation when tested
on generalised versions of the task they were evolved
for� even though they use only one or two visual recep�
tive 	elds and a very small network� We have demon�
strated the e�cacy of concurrently evolving the visual
morphology along with the control networks� We 	nd it
promising that we have obtained interesting results with
a simple type of network and an unsophisticated genetic
encoding� Particularly since we regard both of these as
being among the least powerful of the classes of networks
and genetic encodings we advocate�

Acknowledgements

We thank Tony Simpson� Martin Nock� Jerry Mitchell
and Harry Butterworth for engineering design and con�
struction work on the gantry� The work was funded ini�
tially by a University of Sussex research development
grant� and continuing research is now funded by the UK
Science and Engineering Research Council�

References

��� D� Cli�� I� Harvey� and P� Husbands� Explorations in
evolutionary robotics� Adaptive Behavior� ���	
����
��
�����

��� I� Harvey� Evolutionary robotics and SAGA
 the case for
hill crawling and tournament selection� In C� Langton�
editor� Arti�cial Life III� Santa Fe Institute Studies in
the Sciences of Complexity� Proc� Vol� XVI� pages ����
���� Addison Wesley� �����

��� J� Holland� Adaptation in Natural and Arti�cial Systems�
University of Michigan Press� Ann Arbor� USA� �����

��� P� Husbands� I� Harvey� and D� T� Cli�� Circle in the
round
 State space attractors for evolved sighted robots�
Robotics and Autonomous Systems� forthcoming�

��� C� Reynolds� An evolved� vision�based model of obstacle
avoidance behavior� In C� Langton� editor� Arti�cial Life
III� Santa Fe Institute Studies in the Sciences of Com�
plexity� Proc� Vol� XVI� Addison Wesley�� �����


