
The SAGA Cross�

The Mechanics of Recombination for

Species with Variable�length Genotypes

Inman Harvey

CSRP ���� ����

Cognitive Science Research Paper

Serial No� CSRP ���

The University of Sussex
School of Cognitive and Computing Sciences
Falmer
Brighton BN� �QH
England� U�K�

This paper appears in�
R� M�anner and B� Manderick� editors�
Parallel Problem Solving from Nature �� pages �����	
�
North�Holland� ����

The SAGA Cross� The Mechanics of Recombination

for Species with Variable�length Genotypes

Inman Harvey a

aSchool of Cognitive and Computing Sciences� University of Sussex� Brighton U�K�
inmanh�cogs�susx�ac�uk

�� Introduction

Genetic Algorithms �GAs� have traditionally tended to use genotypes of a predeter	
mined
xed length� The designer of a particular GA� for use as an optimisation technique
within a given search space� decides which parameters are to be represented on the geno	
type� how they are to be coded� and hence the genotype length� For each parameter there
is a given position or set of positions on the genotype which unambiguously code for it�
This can be loosely translated as� the allele �parameter or feature value� for a particular
gene �parameter or feature� is coded for at a particular locus �genotype position�� This
makes it simple for a recombination genetic operator� therefore� to take the same crossover
point in each parent genotype� and exchange homologous segments�
When variable	length genotypes �VLGs� are used� absolute position of some symbols

on the genotype can usually no longer be used to decide what feature those symbols relate
to� Some examples of ways around this problem are given in the next section� A related
problem is� how can one organise a recombination operator so that the resulting o�spring
genotypes are�
rstly� sensibly interpretable� and secondly� have inherited meaningful
building blocks� from both parents�
VLG GAs have been proposed in various domains where they seem to allow a natural

genetic representation for the problem under consideration� and the variety of domains
is re�ected in the variety of representations suggested� In this paper the motivation for
needing VLGs is that of wanting to extend GAs so as to allow for open	ended evolution�
Although GAs have borrowed ideas from natural evolution to use in function optimisation�
what they have ignored is perhaps the most impressive feature of natural evolution� how
over aeons organisms have evolved from simple organisms to ever more complex ones� with
associated increase in genotype lengths� It has been suggested elsewhere that this feature
of evolution will need to be used in the only practical way of developing autonomous robots
��� ���� and more generally this is an obvious approach to incremental design by evolution
of engineering systems� The SAGA framework was introduced in ��� to incorporate the
necessary extensions to standard GAs� and the present paper looks at the consequences
for a recombination operator�
It will be suggested that in this context the identi
cation of the locus of a gene�� or

that section of a genotype which codes for some particular feature� will necessarily be by
use of an identifying template� The problem for recombination becomes then� given a
randomly selected crossover point in one parent genotype� how to identify an appropriate

OVERCROSS OFFSPRINGPARENTS

round head

square head long legs short arms

short legs long arms

square head

round head

PARENTS OFFSPRINGCROSS OVER

Walkman long legs short arms

short legs long arms

Figure �� A crossover operator which works well with �xed lengths may have sad conse�

quences when unthinkingly applied to variable length genotypes�

place to break the other parent genotype so as to exchange homologous sections as far
as is possible� In this we will be aided by the fact that within the SAGA framework the
genetic pool of a population will be largely converged to form a species or quasi�species�
as shown in ��� and brie�y summarised below�
As a matter of practical concern� therefore� an algorithm needs to be developed which

can determine on syntactic� grounds rather than semantic� ones how to exchange ho	
mologous segments� This can be quanti
ed as maximising the similarity �under some
appropriate measure� of the segments exchanged� This is of course a problem which
nature� at the level of molecular biology� has found its own method of tackling� so an
investigation of the relevant literature is suggested� It turns out that molecular biologists
have developed algorithms for their own rather di�erent� but related purposes� They are
interested in quantifying on syntactic� grounds the similarities between two given nu	
cleotide or amino	acid sequences� and doing so with computational e�ciency� and it turns
out that their algorithms can be adapted and extended for our present purposes� The
method of doing so will be here presented� C code for implementing this is available from
the author�

�� Examples of Variable�length systems

VLGs have been proposed for a number of purposes� e�g� Smith�s LS	� classi
ers �����
Koza�s Genetic Programming ����� Goldberg�s Messy GAs ���� Harp and Samad�s genetic
synthesis of neural network architectures ���� Care needs to be taken that a crossover
operation exchanges meaningful building blocks� In the case of LS	� this is relatively
simple� as a genotype is e�ectively a list of rules each coded as a
xed	length string�
The number of such rules is not
xed� and the ordering of them on the genotype has
no signi
cance� hence provided that a crossover exchanges homologous sections of an
individual rule� the resulting o�spring genotype can still be interpreted sensibly� If speci
c
rules needed to be individuated� however� this method would not work�
In Koza�s work� the genotype is interpreted as LISP S	expressions� which can be de	

picted as rooted point	labelled trees with ordered branches� This allows a recombination
operator to swap complete sub	trees between parents� The result is syntactically sensible�
and preserves and transmits the building blocks that the sub	trees e�ectively constitute�

�

This solution relies on the hierarchical tree	decomposition of the genotype� and would
not extend to genotype representations where the interactions between building blocks�
cannot be so decomposed�
In Goldberg�s Messy GAs� each locus on the genotype in e�ect carries its identi
cation

tag around with it� Instead of a crossover operator� cut and splice operators are used�
which allow genotypes of any length to develop over time� But the number of loci is
xed
at the start� and everything is in e�ect based on an underlying
xed	length representation�
which may be underspeci
ed or over	speci
ed� In the former case� where a genotype does
not contain an allele for every locus� the de
ciencies are made up by a competitive
template� scheme� In the latter case� con�icts can arise where the identity tag for a
speci
c locus occurs more than once with di�erent associated values� in this case an
arbitrary rule is used� such as choosing the one nearest a speci
ed end of the genotype� It
should be noted that the solution to the under	speci
cation problem relies on there being
a predetermined number of loci� and cannot be extended to arbitrary numbers of loci�
Harp and Samad use a linear genotype to code for a neural network by having building

blocks of a
xed length on the genotype code for the speci
cation of an individual layer
in the network� including the connectivity from that layer to other layers� The format for
each block is the same� but the number of them is not
xed� A crossover operator can
therefore be used which� when a crossover point in one parent genotype occurs inside a
block� ensures that the crossover in the other parent genotype occurs in the same position
within a block� thus exchanging homologous segments� But unlike Koza�s system� the
interactions between layers in the network� represented by blocks on the genotype� are
not restricted to a hierarchical organisation� So a method must be found for coding
within each block so as to identify the other blocks representing network layers projected
onto� The solution is adopted of giving each block an ID code� and having two forms of
addressing� The
rst is by absolute address� where the ID �for the block being projected
to� is explicitly listed on the genotype� the alternative is by relative addressing� where a
relative address is indicated which speci
es a block by its position relative to the block
being projected from�
The explicit purpose of these alternative forms of addressing is to allow relationships

between blocks �and hence projections between layers in the neural network� to develop
and be sustained and generalised across generations� Absolute addressing allows a target
block to be identi
ed no matter where it
nishes up in a genotype in later generations�
relative addressing allows groups of blocks close together on the genotype to maintain
their mutual interactions�
It can be seen that Harp and Samad�s approach avoids the restrictions inherent in

Smith�s� Koza�s and Messy GAs� Nevertheless there remains one restriction which pre	
vents it being satisfactorily used as it is for genotypes of completely unlimited length� The
number of bits on the genotype that code for the IDs� and for either absolute or relative
addresses being referred to� must be pre	speci
ed� Whereas for instance � bits might seem
adequate �and � bits more than adequate� for genotypes coding for networks with less
than �� layers� for eventually ��� layers or more it would become inadequate� This will
of course seem a practically irrelevant restriction to those who know the computational
requirements of a network with many layers�
Nevertheless� both from a purist perspective� and from a practical perspective when

�

the building blocks are not layers in a network but some smaller design primitives for a
system being constructed� there are reasons for wanting to solve this addressing problem
satisfactorily for arbitrary numbers of addresses� In particular this is so in the SAGA
framework outlined in a later section�

� Template Addressing

Harp and Samad�s addressing system was limited to addresses of
xed size� The obvious
extension is to allow addresses of unlimited length� Assume that any building block
on the genotype has an ID string at one end to identify it� and where within another
block reference needs to be made to the
rst ID string �so as to identify a projection
or interaction between the two features or modules coded for by the two blocks� this
reference is coded for by a reference string� Both ID string and reference string can be
of any length� and it no longer is necessary to think of them as ID numbers� but instead
as strings that need to be somehow matched� In molecular biology such matching of
nucleotide strings can be done through the physical interactions between them�
An initial solution would be to use the identical string for both the address marker and

the reference marker�

ID� code� ID� code� ref�ID� ID� code� ref�ID�

But here the string for ID� appears three times� and when a call is made to ID� a
simple string search for the string will not know which of the three to
nd� unless some
additional code� or some transformation of the ID� is used to distinguish the two uses�
In binary code a simple transformation would be to use the inverse as a template� Ray
was probably the
rst to propose using template matching as a system of addressing�
based on molecular biology� in the context of a synthetic evolutionary system ����� Other
equivalent methods can be devised to tackle the problem�
Thus we could implement absolute addressing by means of ID strings� or templates�

of any size� indeed some system equivalent to this is necessary� Relative addressing for
relative jumps coded by a string of arbitrary length is also easy to implement� but is no
longer necessary� A form of template addressing is both necessary and su�cient to have
the addressing power of Harp and Samad�s system extended to genotypes of arbitrary
length�

�� Outline of SAGA

In this section we digress brie�y to give the context for desiring open	ended evolution�
and hence VLGs�
Some hints from natural evolution have been used by the GA community to produce

e�ective search techniques for complex multi	dimensional search spaces� But this use
of GAs for function optimisation is problem	solving in what is� although enormous� a
pre	de
ned space of possibilities of known size � this size being a maximum of al when
genotypes are of length l with a possible alleles at each position� But the most impres	
sive feature of natural evolution is how over aeons organisms have evolved from simple
organisms to ever more complex ones� with associated increase in genotype lengths� This

�

Search Space Goal

Figure �� The evolution of a standard GA
in a
xed	dimensional search space

"Evolution"

21
N dimensionsN dimensions

no. of dimensions / time in aeonsSaga Space

Figure �� The progress of the always com	
pact course of a species in a SAGA space�

aspect of evolution has been completely ignored in the standard GA literature� GAs have
been adapted to problem	solving� and the problem	solving metaphor or frame of mind
is� I believe� much of the time inappropriate for considering both natural evolution and
potential evolution of control systems for ill	de
ned domains� such as autonomous robots�
The theoretical underpinning for GAs� Holland�s Schema Theorem ��� �� is no longer

valid when the genotypes within a population vary in length� Where an analysis for VLGs
has been o�ered� as in Smith�s LS	� classi
ers ���� and Koza�s genetic programming �����
the analyses o�ered have not satisfactorily extended the notion of a schema such that
schemata are preserved by the genetic operators ��� ���
The conceptual framework of SAGA was introduced in ���� in order to try to under	

stand the dynamics of a GA when genotype lengths are allowed to increase ���� Working
with a
nite population� a standard GA often starts with a random distribution that
spans the whole search space� the genetic operators� particularly recombination� shift the
population over successive generations until hopefully it converges around some optimum
�see
gure ��� If genotype lengths are going to be allowed to increase inde
nitely� then
there is no
nite search space of pre	determined size� and this picture can no longer be
valid� In ��� it is shown� using concepts of epistasis and
tness landscapes drawn from
theoretical biology ����� that progress through such a genotype space will only be fea	
sible through relatively gradual increases in genotype length� A general trend towards
increase in length turns out to be associated with the evolution of a species rather than
global search� The word species I use to refer to a
t population of relative genotypic
homogeneity��

In contrast to the goal	seeking metaphor of
gure �� a journey through SAGA space
can be characterised in the form of
gure �� The conclusion of ���� that only gradual
increases in genotype length are likely to be viable� means that the
nite resources of
the population in searching around its current focus should be concentrated on just such
gradual increases� The analysis given was supplemented by experimentation using an NK
model �����
In general� the problem	solving�� or goal	seeking� metaphor for evolution is misleading�

Within a SAGA space� however� it can still be useful to use this metaphor in the restricted

�This is only indirectly related to a biological de�nition of the word� However it follows frommy de�nition

that crosses between members of the same species have a good chance of being another �t member of the

same species� whereas crosses between di�erent species will almost certainly be un�t�

�

sense of searching around the current focus of a species for neighbouring regions which
are
tter� or in the case of neutral drift� not less
t� Such a search takes place through
application of genetic operators such as crossover� mutation or change	length� The latter
two operators are discussed in ���� In this paper we concentrate on crossover�

�� Where to cross

When evolving systems of arbitrary increasing complexity within the SAGA framework�
it will be assumed that there are building blocks coded for along a linear genotype� and
that interactions between such building blocks are mediated by some addressing system�
as discussed earlier� For recombination it will be relevant that the population will be
largely converged� any two parent genotypes will be broadly similar�
The SAGA cross has therefore the requirements that� given any chosen crossover point

in one parent genotype� a crossover point in the other parent genotype needs to be chosen
so as to minimise the di�erences between the swapped segments� This can be rephrased
as� we should maximise the similarities between the two left segments that are swapped�
and between the two right segments that are swapped� Please note that the VLG crossover
problem that the SAGA cross handles only refers to the choice of the second complemen	
tary crossover�
The similarity has to be based on syntactic� measures rather than semantic�� so can

only be based on equality of symbols� where the genotype is considered as a string of
symbols� The ordering of symbols is also relevant� This leads to the use as a measure of
similarity of the longest common subsequence �LCSS��
Algorithms for e�ciently computing this have been developed for quantifying similar	

ities between two given nucleotide sequences� starting with the Needleman and Wunsch
algorithm ���� ���� and for the problem of how many editing operations are needed to
change one string to another ����� In the present paper a method will be presented of
using the algorithm to solve the VLG crossover problem� The starting place will be
Hirschberg�s exposition ����
Hirschberg de
nes an Algorithm B� which accepts as input strings A�m and B�n of

lengths m and n� and produces as output vector L�n of length �n � ��� Lj will contain
the length of the LCSS of string A�m and substring B�j� An array of size ��n��� is used
for intermediate calculations� K����n�

ALGB�m�n�A�B�L�
�� Initialisation� K��� j�� � �j � � � � � n��
�� for i� � to m do

begin
�� K��� j�� K��� j� �j � � � � � n��
�� for j � � to n do

if A�i� � B�j� then
K��� j�� K��� j � �� � �

else
K��� j�� maxfK��� j � ���K��� j�g�

end
�� L�j�� K��� j� �j � � � � � n�

�

The rationale behind this algorithm is as follows� The length of the longest common
subsequence of two strings A�i and B�j is to be written into L�i� j�� If L�i � �� j � ���
L�i� j � �� and L�i � �� j� are known� then L�i� j� can be derived from them� the value
depending also on whether or not the ith symbol of A and the jth symbol of B match�
L�i� j� must be at least equal to the best of L�i��� j� and L�i� j���� and if the symbols

do match� then L�i� j� will be one better than L�i� �� j � ��� Algorithm B keeps track of
the necessary amounts� and updates them within the j and i loops�
In Hirschberg�s development� a further algorithm C is used to recursively use Algorithm

B� by dividing a given problem into two smaller problems� bottoming out of the recursion
when there are trivial subproblems� This is used to output the sequence which is the
LCSS of A and B� The purposes of the present paper are rather di�erent� and I have
developed an algorithm D to solve the VLG crossover problem�
The initial step is to add a feature to algorithm B so that it will work with substrings�

and equally well when comparing two strings enumerated from one end or from the other
end� For this it is necessary to explicitly pass as inputs the initial and
nal indices for
the substrings of A and B�
Algorithm D accepts input strings A�m and B�n of lengths m and n� and an integer

c which represents the crossover point in A� As output it returns a vector M which
keeps track of the current best	so	far candidates for a crossover point in B �which may
be one point or a sequence of them�� For intermediate calculations two vectors L��n����
L��n � �� are used� which contain the outputs from two separate calls to algorithm B�
Internal integer variables r� s and t are used respectively as the current best score� the
number currently equal to the best	so	far� and a temporary store�

ALGD�m�n�A�B�c�M�
�� ALGB��� c� �� n�A�B�L��
�� ALGB�m� c� �� n� �� A�B�L��
�� r � �� s� ��
�� for i� � to n � � do

begin
�� t� L��i� � L��n � i�
�� if t � r then

s� �� r � t�
�� if t � r then

M�s�� i� s� s� ��
�� end
The rationale behind this algorithm is�
In line �� algorithm B is applied to the left	hand� substring of A� from the start up to

the crossover point� and to the whole of string B� The result is output in L��
In line �� algorithm B is applied to the right	hand substring of A� and to the whole of

B� but treating each string in reverse order� starting from the right	hand ends� The result
is output in L�� Since increasing the length of one of a pair of strings can only either
retain or increase the length of the LCSS� both L� and L� have this property�
The loop started in line � places� for each possible cross point i in B� the sum of LCSSs

for left and right segments into a variable t� As i increases the value of t will each time
either increase or remain steady� until it reaches a peak value or a plateau� thereafter t

�

B-E-C-D-C-D-F

ABC-DCEF

2

3

4

4

5

4

4

3 3 2 2 1

3

3

3 2 2 1

2 1 1

2 1 1

2 2 1 1

2 1 1 1

1 1 1 1

0 0 0 0210

210

210

210

210

110

110

000

BECDCDF

BECDCD

BECDC

BECD

BEC

BE

B

-

-

F

DF

CDF

DCDF

CDCDF

ECDCDF

BECDCDF

FECDCBA

Figure �� Algorithm D on ABC	DCEF �cross between C and D� and BECDCDF �best
cross to be determined�� On left� algorithm B gives in column C best scores matching
substrings against ABC� On right� working backwards� best scores in column D� Central
column shows best total �� matches� given by splitting BEC	DCDF�

will decrease with occasional level stretches�
The purpose of lines � and � is to monitor this� and to store in M the values of i for

the current best� or several best	equal� values of t� Hence when the loop
nishes� the
rst
s values in M contain the proposed crossover positions for maximising t� the sum of left
and right LCSSs�
It is then possible to select at random one of the optimal positions� and return this as

the proposed crossover point� The C code� available from the author� also economises on
memory� rather than using a separate array M � there is enough space to keep track of
the optima as we go in array L�� since we will never overtake what we are reading from
L� with what we are writing into it�

�� Two Point Crossover

Only one	point crossover has been considered here� This has the feature that building
blocks near each end of one genotype are much more likely to get separated than ones
nearer the middle� For some purposes it may be better to use a two point crossover which
avoids this bias� Two crossover points are chosen at random in one parent genotype� and
two complementary points need to be selected in the other parent genotype� the o�spring
are made by swapping the middle sections of each parent�
The present algorithm can be extended to handle this� or indeedmultiple	point crossovers�

by adding further outer loops�

�

	� Computational requirements

This algorithm requires for one	point crossover memory space of order �m � n� where
m and n are the lengths of the two genotypes� The main loops are in algorithm B�
and the time requirements are of order �mn�� The time taken is independent of the
similarity or otherwise of the two genotypes� The only test on symbols on the genotype
is for equality� so whether the genotype uses a binary alphabet or any larger one makes
no di�erence� On a reasonably loaded Sun� using two genotypes each of length ����
characters� approximately one second is needed�
In GAs the computational requirements for
tness	evaluation generally far outweigh

those for genetic operations� and this could also be expected for any system which needed
genotypes of this length�

� Conclusions

Both biological evolutionary theory� and GA theory� rely on the notion of genes or build	
ing blocks being expressed in compact sections on the genotype� For inter	relationships
between such building blocks to be incorporated� a method of identi
cation is needed� and
this issue comes particularly to the fore when crossover is considered� For
xed length
GAs the issue can be solved by identi
cation being implicit in position on the genotype�
but not in general when genotype lengths are variable�
Addressing methods for several variable length genotype GAs have been surveyed� and

their restrictions noted� Harp and Samad�s approach avoids many of these restrictions�
but nevertheless does not extend immediately to genotypes of completely arbitrary length�
It has been suggested that for present purposes some form of template addressing will be
both necessary and su�cient�
A recombination operator needs to be designed that� given any crossover point on

one parent genotype� can choose a complementary crossover on the other parent� when
the genotypes are of arbitrary� di�ering� length� The choice must be made on purely
syntactic� grounds� i�e� through operations solely on the symbols of the genotype� not on
their interpretation� Nevertheless the crossover must exchange homologous segments as
far as is possible� The fact that in a SAGA system� of gradually increasing complexity and
gradually increasing genotype lengths� the population will be largely converged� means
that there will be a high degree of similarity between two parent genotypes�
It should be emphasised here that this crossover operator is completely impartial as to

where the initial choice of a cross on the �rst parent genotype is� it merely then selects
where to cross on the second parent genotype� The
rst cross may� for instance� be
deliberately chosen for di�erent reasons to be more or less disruptive of schemata ����
The SAGA cross is only concerned with the complementary crossover� this is a problem
which conventional GA practice never has to face� as with
xed	length genotypes the
complementary position is trivially obvious�
Building on algorithms developed for the Longest Common Subsequence problem� a

novel algorithm has been presented which allows a random crossover point in one parent
genotype to be optimally matched by a speci
ed crossover point �if relevant� a restricted
range of possible points� in the other parent genotype� The criterion for optimality is

�

well	de
ned in syntactic terms� being that of maximising the sum of the length of the
LCSS in the left	hand segments and the length of the LCSS in the right	hand segments�
The algorithm is computationally e�cient�

Acknowledgment

This work was supported by a grant from the Science and Engineering Research Council�

References

� K�A� De Jong and W�M� Spears� An Analysis of the Interacting Roles of Population
Size and Crossover in Genetic Algorithms� In H�	P� Schwefel and R� M�anner� editors�
Parallel Problem Solving from Nature� pages ������ Springer	Verlag� �����

� David E� Goldberg� K� Deb� and B� Korb� An investigation of messy genetic algo	
rithms� Technical Report TCGA	������ TCGA� The University of Alabama� �����

� David E� Goldberg� Genetic Algorithms in Search� Optimization and Machine Learn�

ing� Addison	Wesley� Reading� Massachusetts� USA� �����
� S�A� Harp and T� Samad� Genetic synthesis of neural network architecture� In L� Davis�

editor� Handbook of Genetic Algorithms� pages �������� Van Nostrand Reinhold� �����
� Inman Harvey� The arti
cial evolution of behaviour� In J�	A� Meyer and S�W� Wilson�

editors� From Animals to Animats� Proceedings of The First International Confer�

ence on Simulation of Adaptive Behavior� pages �������� MIT Press�Bradford Books�
Cambridge� MA� �����

� Inman Harvey� Evolutionary robotics and SAGA� the case for hill crawling and tour	
nament selection� Technical Report CSRP ���� COGS� University of Sussex� �����
Also submitted to Arti
cial Life III� �����

� Inman Harvey� Species Adaptation Genetic Algorithms� The basis for a continu	
ing SAGA� In Proceedings of the First European Conference on Arti�cial Life� MIT
Press�Bradford Books� Cambridge� MA� �����

� D�S� Hirschberg� A linear space algorithm for computing maximal common subse	
quences� Commmunications of the A�C�M�� �������������� �����

� John Holland� Adaptation in Natural and Arti�cial Systems� University of Michigan
Press� Ann Arbor� USA� �����

�� P� Husbands and I� Harvey� Evolution versus design� Controlling autonomous robots�
In Integrating Perception� Planning and Action� Proceedings of �rd Annual Conference
on Arti�cial Intelligence� Simulation and Planning� IEEE Press� forthcoming�

�� Stuart Kau�man� Adaptation on rugged
tness landscapes� In Daniel L� Stein� editor�
Lectures in the Sciences of Complexity� pages �������� Addison Wesley� Santa Fe
Institute Studies in the Sciences of Complexity� �����

�� John R� Koza� Genetic programming� A paradigm for genetically breeding popula	
tions of computer programs to solve problems� Technical Report STAN	CS	��	�����
Department of Computer Science� Stanford University� �����

�� S� B� Needleman and C� D� Wunsch� A general method applicable to the search for
similarities in the amino acid sequence of two proteins� Journal of Molecular Biology�
����������� �����

��

�� Thomas S� Ray� An approach to the synthesis of life� In J�D� Farmer� C�G� Langton�
S� Rasmussen� and C� Taylor� editors� Arti�cial Life II� Addison	Wesley� �����

�� David Sanko�� Matching sequences under deletion�insertion constraints� Proceedings
of the National Academy of Science� USA� ���������� �����

�� Stephen F� Smith� A Learning System based on Genetic Adaptive Algorithms� PhD
thesis� Department of Computer Science� University of Pittsburgh� USA� �����

�� R�A� Wagner and M�J� Fischer� The string	to	string correction problem� Journal of
the A�C�M�� �������������� �����

Appendix

�include �stdio�h	

�include �string�h	

�define MAXLEN �

 �� Max length of genes ��

�define maxa�b� a�	b� � a � b�

������������������������������������

A and B contain genes as char strings

as� ae are start and end of substring of A

lenb is the length of B

L is the output vector mentioned in text

������������������������������������

algbA�as�ae�B�lenb�L�

char �A��B�

int �L�

int as�ae�lenb�

�

int this�last�
�

�� this�last alternate between
 and � to

identify different rows in K���� ��

int fwd�

�� flag to identify whether we are running

forwards or backwards along string A ��

int i�j�

int K����MAXLEN����

�� array described in text ��

fwd�ae	as � � � ����

�� set fwd flag ��

for j�
�j�lenb���j���

K����j��
� �� clear row of K ��

for i�as�i�fwd�ae�fwd�i��fwd�

�� runs backwards if nec ��

��

�

last���this�last�� �� flip this�last ��

for j�
�j�lenb�j���

K�this��j����

A�i���B�fwd��� � j � lenb�j���� �

�� are the chars matching � ��

K�last��j��� � �� yes or ��

maxK�this��j��K�last��j������

�� no ��

�

�� internal calculations finished�

copy into output ��

for j�
�j�lenb���j���

L�j��K�this��j��

�

��

������������������������������������

A and B are char strings for the genes�

of lengths lena and lenb�

cross� is the selected crossover point in A�

algd will return the proposed position for

crossover point in B

������������������������������������

int algdA�B�lena�lenb�cross��

char �A��B�

int lena�lenb�cross��

�

int L��MAXLEN����L��MAXLEN����

�� used by algb ��

int best�
� �� keep track of best ��

int numbest�
� �� and how many equal�best ��

int temp�i�

algbA�
�cross��B�lenb�L���

�� left part of A� and all B ��

algbA�lena���cross����B�lenb�L���

�� right part of A� all B� BOTH BKWDS ��

�� Now go through keeping track of max of

L��i��L��lenb�i�� ��

for i�
�i��lenb�i���

�

temp�L��i��L��lenb�i��

if temp	best�

�numbest�
� best�temp��

if temp��best�

L��numbest����i�

�

�� Now choose at random from the best ��

return L��random� � numbest��

�

��

������������������������������������

Test program to read in file containing �

gene strings� choose a random crossover point

in first� and select appropriate crossover

point in second�

������������������������������������

main�

�

FILE �fp�

char gene��MAXLEN�� �� strings for genes ��

char gene��MAXLEN��

int len��len�� �� lengths of genes ��

int i�j�k�displace��displace��

int cross��cross�� �� crossover points ��

fp�fopen�genefile���r���

fscanffp���s��gene���

fscanffp���s��gene���

fclosefp��

len��strlengene���

len��strlengene���

�� make sure cross� is within gene� ��

cross����random��len������

cross��algdgene��gene��len��len��cross���

printf��n�d �d�n��cross��cross���

�

��

