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�� Introduction

Genetic Algorithms �GAs� have traditionally tended to use genotypes of a predeter	
mined 
xed length� The designer of a particular GA� for use as an optimisation technique
within a given search space� decides which parameters are to be represented on the geno	
type� how they are to be coded� and hence the genotype length� For each parameter there
is a given position or set of positions on the genotype which unambiguously code for it�
This can be loosely translated as� the allele �parameter or feature value� for a particular
gene �parameter or feature� is coded for at a particular locus �genotype position�� This
makes it simple for a recombination genetic operator� therefore� to take the same crossover
point in each parent genotype� and exchange homologous segments�
When variable	length genotypes �VLGs� are used� absolute position of some symbols

on the genotype can usually no longer be used to decide what feature those symbols relate
to� Some examples of ways around this problem are given in the next section� A related
problem is� how can one organise a recombination operator so that the resulting o�spring
genotypes are� 
rstly� sensibly interpretable� and secondly� have inherited meaningful
building blocks� from both parents�
VLG GAs have been proposed in various domains where they seem to allow a natural

genetic representation for the problem under consideration� and the variety of domains
is re�ected in the variety of representations suggested� In this paper the motivation for
needing VLGs is that of wanting to extend GAs so as to allow for open	ended evolution�
Although GAs have borrowed ideas from natural evolution to use in function optimisation�
what they have ignored is perhaps the most impressive feature of natural evolution� how
over aeons organisms have evolved from simple organisms to ever more complex ones� with
associated increase in genotype lengths� It has been suggested elsewhere that this feature
of evolution will need to be used in the only practical way of developing autonomous robots
��� ���� and more generally this is an obvious approach to incremental design by evolution
of engineering systems� The SAGA framework was introduced in ��� to incorporate the
necessary extensions to standard GAs� and the present paper looks at the consequences
for a recombination operator�
It will be suggested that in this context the identi
cation of the locus of a gene�� or

that section of a genotype which codes for some particular feature� will necessarily be by
use of an identifying template� The problem for recombination becomes then� given a
randomly selected crossover point in one parent genotype� how to identify an appropriate
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Figure �� A crossover operator which works well with �xed lengths may have sad conse�

quences when unthinkingly applied to variable length genotypes�

place to break the other parent genotype so as to exchange homologous sections as far
as is possible� In this we will be aided by the fact that within the SAGA framework the
genetic pool of a population will be largely converged to form a species or quasi�species�
as shown in ��� and brie�y summarised below�
As a matter of practical concern� therefore� an algorithm needs to be developed which

can determine on syntactic� grounds rather than semantic� ones how to exchange ho	
mologous segments� This can be quanti
ed as maximising the similarity �under some
appropriate measure� of the segments exchanged� This is of course a problem which
nature� at the level of molecular biology� has found its own method of tackling� so an
investigation of the relevant literature is suggested� It turns out that molecular biologists
have developed algorithms for their own rather di�erent� but related purposes� They are
interested in quantifying on syntactic� grounds the similarities between two given nu	
cleotide or amino	acid sequences� and doing so with computational e�ciency� and it turns
out that their algorithms can be adapted and extended for our present purposes� The
method of doing so will be here presented� C code for implementing this is available from
the author�

�� Examples of Variable�length systems

VLGs have been proposed for a number of purposes� e�g� Smith�s LS	� classi
ers �����
Koza�s Genetic Programming ����� Goldberg�s Messy GAs ���� Harp and Samad�s genetic
synthesis of neural network architectures ���� Care needs to be taken that a crossover
operation exchanges meaningful building blocks� In the case of LS	� this is relatively
simple� as a genotype is e�ectively a list of rules each coded as a 
xed	length string�
The number of such rules is not 
xed� and the ordering of them on the genotype has
no signi
cance� hence provided that a crossover exchanges homologous sections of an
individual rule� the resulting o�spring genotype can still be interpreted sensibly� If speci
c
rules needed to be individuated� however� this method would not work�
In Koza�s work� the genotype is interpreted as LISP S	expressions� which can be de	

picted as rooted point	labelled trees with ordered branches� This allows a recombination
operator to swap complete sub	trees between parents� The result is syntactically sensible�
and preserves and transmits the building blocks that the sub	trees e�ectively constitute�
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This solution relies on the hierarchical tree	decomposition of the genotype� and would
not extend to genotype representations where the interactions between building blocks�
cannot be so decomposed�
In Goldberg�s Messy GAs� each locus on the genotype in e�ect carries its identi
cation

tag around with it� Instead of a crossover operator� cut and splice operators are used�
which allow genotypes of any length to develop over time� But the number of loci is 
xed
at the start� and everything is in e�ect based on an underlying 
xed	length representation�
which may be underspeci
ed or over	speci
ed� In the former case� where a genotype does
not contain an allele for every locus� the de
ciencies are made up by a competitive
template� scheme� In the latter case� con�icts can arise where the identity tag for a
speci
c locus occurs more than once with di�erent associated values� in this case an
arbitrary rule is used� such as choosing the one nearest a speci
ed end of the genotype� It
should be noted that the solution to the under	speci
cation problem relies on there being
a predetermined number of loci� and cannot be extended to arbitrary numbers of loci�
Harp and Samad use a linear genotype to code for a neural network by having building

blocks of a 
xed length on the genotype code for the speci
cation of an individual layer
in the network� including the connectivity from that layer to other layers� The format for
each block is the same� but the number of them is not 
xed� A crossover operator can
therefore be used which� when a crossover point in one parent genotype occurs inside a
block� ensures that the crossover in the other parent genotype occurs in the same position
within a block� thus exchanging homologous segments� But unlike Koza�s system� the
interactions between layers in the network� represented by blocks on the genotype� are
not restricted to a hierarchical organisation� So a method must be found for coding
within each block so as to identify the other blocks representing network layers projected
onto� The solution is adopted of giving each block an ID code� and having two forms of
addressing� The 
rst is by absolute address� where the ID �for the block being projected
to� is explicitly listed on the genotype� the alternative is by relative addressing� where a
relative address is indicated which speci
es a block by its position relative to the block
being projected from�
The explicit purpose of these alternative forms of addressing is to allow relationships

between blocks �and hence projections between layers in the neural network� to develop
and be sustained and generalised across generations� Absolute addressing allows a target
block to be identi
ed no matter where it 
nishes up in a genotype in later generations�
relative addressing allows groups of blocks close together on the genotype to maintain
their mutual interactions�
It can be seen that Harp and Samad�s approach avoids the restrictions inherent in

Smith�s� Koza�s and Messy GAs� Nevertheless there remains one restriction which pre	
vents it being satisfactorily used as it is for genotypes of completely unlimited length� The
number of bits on the genotype that code for the IDs� and for either absolute or relative
addresses being referred to� must be pre	speci
ed� Whereas for instance � bits might seem
adequate �and � bits more than adequate� for genotypes coding for networks with less
than �� layers� for eventually ��� layers or more it would become inadequate� This will
of course seem a practically irrelevant restriction to those who know the computational
requirements of a network with many layers�
Nevertheless� both from a purist perspective� and from a practical perspective when
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the building blocks are not layers in a network but some smaller design primitives for a
system being constructed� there are reasons for wanting to solve this addressing problem
satisfactorily for arbitrary numbers of addresses� In particular this is so in the SAGA
framework outlined in a later section�

� Template Addressing

Harp and Samad�s addressing system was limited to addresses of 
xed size� The obvious
extension is to allow addresses of unlimited length� Assume that any building block
on the genotype has an ID string at one end to identify it� and where within another
block reference needs to be made to the 
rst ID string �so as to identify a projection
or interaction between the two features or modules coded for by the two blocks� this
reference is coded for by a reference string� Both ID string and reference string can be
of any length� and it no longer is necessary to think of them as ID numbers� but instead
as strings that need to be somehow matched� In molecular biology such matching of
nucleotide strings can be done through the physical interactions between them�
An initial solution would be to use the identical string for both the address marker and

the reference marker�

ID� code� ID� code� ref�ID� ID� code� ref�ID�

But here the string for ID� appears three times� and when a call is made to ID� a
simple string search for the string will not know which of the three to 
nd� unless some
additional code� or some transformation of the ID� is used to distinguish the two uses�
In binary code a simple transformation would be to use the inverse as a template� Ray
was probably the 
rst to propose using template matching as a system of addressing�
based on molecular biology� in the context of a synthetic evolutionary system ����� Other
equivalent methods can be devised to tackle the problem�
Thus we could implement absolute addressing by means of ID strings� or templates�

of any size� indeed some system equivalent to this is necessary� Relative addressing for
relative jumps coded by a string of arbitrary length is also easy to implement� but is no
longer necessary� A form of template addressing is both necessary and su�cient to have
the addressing power of Harp and Samad�s system extended to genotypes of arbitrary
length�

�� Outline of SAGA

In this section we digress brie�y to give the context for desiring open	ended evolution�
and hence VLGs�
Some hints from natural evolution have been used by the GA community to produce

e�ective search techniques for complex multi	dimensional search spaces� But this use
of GAs for function optimisation is problem	solving in what is� although enormous� a
pre	de
ned space of possibilities of known size � this size being a maximum of al when
genotypes are of length l with a possible alleles at each position� But the most impres	
sive feature of natural evolution is how over aeons organisms have evolved from simple
organisms to ever more complex ones� with associated increase in genotype lengths� This
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Figure �� The progress of the always com	
pact course of a species in a SAGA space�

aspect of evolution has been completely ignored in the standard GA literature� GAs have
been adapted to problem	solving� and the problem	solving metaphor or frame of mind
is� I believe� much of the time inappropriate for considering both natural evolution and
potential evolution of control systems for ill	de
ned domains� such as autonomous robots�
The theoretical underpinning for GAs� Holland�s Schema Theorem ��� �� is no longer

valid when the genotypes within a population vary in length� Where an analysis for VLGs
has been o�ered� as in Smith�s LS	� classi
ers ���� and Koza�s genetic programming �����
the analyses o�ered have not satisfactorily extended the notion of a schema such that
schemata are preserved by the genetic operators ��� ���
The conceptual framework of SAGA was introduced in ���� in order to try to under	

stand the dynamics of a GA when genotype lengths are allowed to increase ���� Working
with a 
nite population� a standard GA often starts with a random distribution that
spans the whole search space� the genetic operators� particularly recombination� shift the
population over successive generations until hopefully it converges around some optimum
�see 
gure ��� If genotype lengths are going to be allowed to increase inde
nitely� then
there is no 
nite search space of pre	determined size� and this picture can no longer be
valid� In ��� it is shown� using concepts of epistasis and 
tness landscapes drawn from
theoretical biology ����� that progress through such a genotype space will only be fea	
sible through relatively gradual increases in genotype length� A general trend towards
increase in length turns out to be associated with the evolution of a species rather than
global search� The word species I use to refer to a 
t population of relative genotypic
homogeneity��

In contrast to the goal	seeking metaphor of 
gure �� a journey through SAGA space
can be characterised in the form of 
gure �� The conclusion of ���� that only gradual
increases in genotype length are likely to be viable� means that the 
nite resources of
the population in searching around its current focus should be concentrated on just such
gradual increases� The analysis given was supplemented by experimentation using an NK
model �����
In general� the problem	solving�� or goal	seeking� metaphor for evolution is misleading�

Within a SAGA space� however� it can still be useful to use this metaphor in the restricted

�This is only indirectly related to a biological de�nition of the word� However it follows frommy de�nition

that crosses between members of the same species have a good chance of being another �t member of the

same species� whereas crosses between di�erent species will almost certainly be un�t�
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sense of searching around the current focus of a species for neighbouring regions which
are 
tter� or in the case of neutral drift� not less 
t� Such a search takes place through
application of genetic operators such as crossover� mutation or change	length� The latter
two operators are discussed in ���� In this paper we concentrate on crossover�

�� Where to cross

When evolving systems of arbitrary increasing complexity within the SAGA framework�
it will be assumed that there are building blocks coded for along a linear genotype� and
that interactions between such building blocks are mediated by some addressing system�
as discussed earlier� For recombination it will be relevant that the population will be
largely converged� any two parent genotypes will be broadly similar�
The SAGA cross has therefore the requirements that� given any chosen crossover point

in one parent genotype� a crossover point in the other parent genotype needs to be chosen
so as to minimise the di�erences between the swapped segments� This can be rephrased
as� we should maximise the similarities between the two left segments that are swapped�
and between the two right segments that are swapped� Please note that the VLG crossover
problem that the SAGA cross handles only refers to the choice of the second complemen	
tary crossover�
The similarity has to be based on syntactic� measures rather than semantic�� so can

only be based on equality of symbols� where the genotype is considered as a string of
symbols� The ordering of symbols is also relevant� This leads to the use as a measure of
similarity of the longest common subsequence �LCSS��
Algorithms for e�ciently computing this have been developed for quantifying similar	

ities between two given nucleotide sequences� starting with the Needleman and Wunsch
algorithm ���� ���� and for the problem of how many editing operations are needed to
change one string to another ����� In the present paper a method will be presented of
using the algorithm to solve the VLG crossover problem� The starting place will be
Hirschberg�s exposition ����
Hirschberg de
nes an Algorithm B� which accepts as input strings A�m and B�n of

lengths m and n� and produces as output vector L�n of length �n � ��� Lj will contain
the length of the LCSS of string A�m and substring B�j� An array of size ��n��� is used
for intermediate calculations� K����n�

ALGB�m�n�A�B�L�
�� Initialisation� K��� j�� � �j � � � � � n��
�� for i� � to m do

begin
�� K��� j�� K��� j� �j � � � � � n��
�� for j � � to n do

if A�i� � B�j� then
K��� j�� K��� j � �� � �

else
K��� j�� maxfK��� j � ���K��� j�g�

end
�� L�j�� K��� j� �j � � � � � n�
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The rationale behind this algorithm is as follows� The length of the longest common
subsequence of two strings A�i and B�j is to be written into L�i� j�� If L�i � �� j � ���
L�i� j � �� and L�i � �� j� are known� then L�i� j� can be derived from them� the value
depending also on whether or not the ith symbol of A and the jth symbol of B match�
L�i� j� must be at least equal to the best of L�i��� j� and L�i� j���� and if the symbols

do match� then L�i� j� will be one better than L�i� �� j � ��� Algorithm B keeps track of
the necessary amounts� and updates them within the j and i loops�
In Hirschberg�s development� a further algorithm C is used to recursively use Algorithm

B� by dividing a given problem into two smaller problems� bottoming out of the recursion
when there are trivial subproblems� This is used to output the sequence which is the
LCSS of A and B� The purposes of the present paper are rather di�erent� and I have
developed an algorithm D to solve the VLG crossover problem�
The initial step is to add a feature to algorithm B so that it will work with substrings�

and equally well when comparing two strings enumerated from one end or from the other
end� For this it is necessary to explicitly pass as inputs the initial and 
nal indices for
the substrings of A and B�
Algorithm D accepts input strings A�m and B�n of lengths m and n� and an integer

c which represents the crossover point in A� As output it returns a vector M which
keeps track of the current best	so	far candidates for a crossover point in B �which may
be one point or a sequence of them�� For intermediate calculations two vectors L��n����
L��n � �� are used� which contain the outputs from two separate calls to algorithm B�
Internal integer variables r� s and t are used respectively as the current best score� the
number currently equal to the best	so	far� and a temporary store�

ALGD�m�n�A�B�c�M�
�� ALGB��� c� �� n�A�B�L��
�� ALGB�m� c� �� n� �� A�B�L��
�� r � �� s� ��
�� for i� � to n � � do

begin
�� t� L��i� � L��n � i�
�� if t � r then

s� �� r � t�
�� if t � r then

M�s�� i� s� s� ��
�� end
The rationale behind this algorithm is�
In line �� algorithm B is applied to the left	hand� substring of A� from the start up to

the crossover point� and to the whole of string B� The result is output in L��
In line �� algorithm B is applied to the right	hand substring of A� and to the whole of

B� but treating each string in reverse order� starting from the right	hand ends� The result
is output in L�� Since increasing the length of one of a pair of strings can only either
retain or increase the length of the LCSS� both L� and L� have this property�
The loop started in line � places� for each possible cross point i in B� the sum of LCSSs

for left and right segments into a variable t� As i increases the value of t will each time
either increase or remain steady� until it reaches a peak value or a plateau� thereafter t
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Figure �� Algorithm D on ABC	DCEF �cross between C and D� and BECDCDF �best
cross to be determined�� On left� algorithm B gives in column C best scores matching
substrings against ABC� On right� working backwards� best scores in column D� Central
column shows best total �� matches� given by splitting BEC	DCDF�

will decrease with occasional level stretches�
The purpose of lines � and � is to monitor this� and to store in M the values of i for

the current best� or several best	equal� values of t� Hence when the loop 
nishes� the 
rst
s values in M contain the proposed crossover positions for maximising t� the sum of left
and right LCSSs�
It is then possible to select at random one of the optimal positions� and return this as

the proposed crossover point� The C code� available from the author� also economises on
memory� rather than using a separate array M � there is enough space to keep track of
the optima as we go in array L�� since we will never overtake what we are reading from
L� with what we are writing into it�

�� Two Point Crossover

Only one	point crossover has been considered here� This has the feature that building
blocks near each end of one genotype are much more likely to get separated than ones
nearer the middle� For some purposes it may be better to use a two point crossover which
avoids this bias� Two crossover points are chosen at random in one parent genotype� and
two complementary points need to be selected in the other parent genotype� the o�spring
are made by swapping the middle sections of each parent�
The present algorithm can be extended to handle this� or indeedmultiple	point crossovers�

by adding further outer loops�
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	� Computational requirements

This algorithm requires for one	point crossover memory space of order �m � n� where
m and n are the lengths of the two genotypes� The main loops are in algorithm B�
and the time requirements are of order �mn�� The time taken is independent of the
similarity or otherwise of the two genotypes� The only test on symbols on the genotype
is for equality� so whether the genotype uses a binary alphabet or any larger one makes
no di�erence� On a reasonably loaded Sun� using two genotypes each of length ����
characters� approximately one second is needed�
In GAs the computational requirements for 
tness	evaluation generally far outweigh

those for genetic operations� and this could also be expected for any system which needed
genotypes of this length�


� Conclusions

Both biological evolutionary theory� and GA theory� rely on the notion of genes or build	
ing blocks being expressed in compact sections on the genotype� For inter	relationships
between such building blocks to be incorporated� a method of identi
cation is needed� and
this issue comes particularly to the fore when crossover is considered� For 
xed length
GAs the issue can be solved by identi
cation being implicit in position on the genotype�
but not in general when genotype lengths are variable�
Addressing methods for several variable length genotype GAs have been surveyed� and

their restrictions noted� Harp and Samad�s approach avoids many of these restrictions�
but nevertheless does not extend immediately to genotypes of completely arbitrary length�
It has been suggested that for present purposes some form of template addressing will be
both necessary and su�cient�
A recombination operator needs to be designed that� given any crossover point on

one parent genotype� can choose a complementary crossover on the other parent� when
the genotypes are of arbitrary� di�ering� length� The choice must be made on purely
syntactic� grounds� i�e� through operations solely on the symbols of the genotype� not on
their interpretation� Nevertheless the crossover must exchange homologous segments as
far as is possible� The fact that in a SAGA system� of gradually increasing complexity and
gradually increasing genotype lengths� the population will be largely converged� means
that there will be a high degree of similarity between two parent genotypes�
It should be emphasised here that this crossover operator is completely impartial as to

where the initial choice of a cross on the �rst parent genotype is� it merely then selects
where to cross on the second parent genotype� The 
rst cross may� for instance� be
deliberately chosen for di�erent reasons to be more or less disruptive of schemata ����
The SAGA cross is only concerned with the complementary crossover� this is a problem
which conventional GA practice never has to face� as with 
xed	length genotypes the
complementary position is trivially obvious�
Building on algorithms developed for the Longest Common Subsequence problem� a

novel algorithm has been presented which allows a random crossover point in one parent
genotype to be optimally matched by a speci
ed crossover point �if relevant� a restricted
range of possible points� in the other parent genotype� The criterion for optimality is
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well	de
ned in syntactic terms� being that of maximising the sum of the length of the
LCSS in the left	hand segments and the length of the LCSS in the right	hand segments�
The algorithm is computationally e�cient�
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Appendix

�include �stdio�h	

�include �string�h	

�define MAXLEN �


 �� Max length of genes ��

�define maxa�b� a�	b� � a � b�

������������������������������������

A and B contain genes as char strings

as� ae are start and end of substring of A

lenb is the length of B

L is the output vector mentioned in text

������������������������������������

algbA�as�ae�B�lenb�L�

char �A��B�

int �L�

int as�ae�lenb�

�

int this�last�
�

�� this�last alternate between 
 and � to

identify different rows in K���� ��

int fwd�

�� flag to identify whether we are running

forwards or backwards along string A ��

int i�j�

int K����MAXLEN����

�� array described in text ��

fwd�ae	as � � � ����

�� set fwd flag ��

for j�
�j�lenb���j���

K����j��
� �� clear row of K ��

for i�as�i�fwd�ae�fwd�i��fwd�

�� runs backwards if nec ��

��



�

last���this�last�� �� flip this�last ��

for j�
�j�lenb�j���

K�this��j����

A�i���B�fwd��� � j � lenb�j���� �

�� are the chars matching � ��

K�last��j��� � �� yes or ��

maxK�this��j��K�last��j������

�� no ��

�

�� internal calculations finished�

copy into output ��

for j�
�j�lenb���j���

L�j��K�this��j��

�

��



������������������������������������

A and B are char strings for the genes�

of lengths lena and lenb�

cross� is the selected crossover point in A�

algd will return the proposed position for

crossover point in B

������������������������������������

int algdA�B�lena�lenb�cross��

char �A��B�

int lena�lenb�cross��

�

int L��MAXLEN����L��MAXLEN����

�� used by algb ��

int best�
� �� keep track of best ��

int numbest�
� �� and how many equal�best ��

int temp�i�

algbA�
�cross��B�lenb�L���

�� left part of A� and all B ��

algbA�lena���cross����B�lenb�L���

�� right part of A� all B� BOTH BKWDS ��

�� Now go through keeping track of max of

L��i��L��lenb�i�� ��

for i�
�i��lenb�i���

�

temp�L��i��L��lenb�i��

if temp	best�

�numbest�
� best�temp��

if temp��best�

L��numbest����i�

�

�� Now choose at random from the best ��

return L��random� � numbest��

�

��



������������������������������������

Test program to read in file containing �

gene strings� choose a random crossover point

in first� and select appropriate crossover

point in second�

������������������������������������

main�

�

FILE �fp�

char gene��MAXLEN�� �� strings for genes ��

char gene��MAXLEN��

int len��len�� �� lengths of genes ��

int i�j�k�displace��displace��

int cross��cross�� �� crossover points ��

fp�fopen�genefile���r���

fscanffp���s��gene���

fscanffp���s��gene���

fclosefp��

len��strlengene���

len��strlengene���

�� make sure cross� is within gene� ��

cross����random��len������

cross��algdgene��gene��len��len��cross���

printf��n�d �d�n��cross��cross���

�

��


