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Artificial Evolution: A New Path for Artificial Intelligence?

P. Husbands, I. Harvey, D. Cliff, and G. Miller

School of Cognitive and Computing Sciences, University of Sussex,
Brighton, United Kingdom

Recently there have been a number of proposals for the use of artificial evolution
as a radically new approach to the development of control systems for autonomous
robots. This paper explains the artificial evolution approach, using work at Sussex
to illustrate it. The paper revolves around a case study on the concurrent evolution
of control networks and visual sensor morphologies for a mobile robot. Wider intel-
lectual issues surrounding the work are discussed, as is the use of more abstract
evolutionary simulations as a new potentially useful tool in theoretical biology.
 1997 Academic Press

1. INTRODUCTION

This paper discusses and attempts to justify a particular approach to the
development of autonomous agents with sensorimotor capabilities. The topic
is treated from the standpoint of practical Artificial Intelligence, although
potential wider implications are indicated. The method advocated is artificial
evolution. Populations of agents are interbred under the influence of a task-
based selection pressure. Starting from a population of random individuals,
agents capable of performing the task well emerge.

The aim of this paper is to introduce some of the motivations underlying
the use of artificial evolution and some of the key technical issues involved
in implementing it. Little or no familiarity with the approach is assumed. In
order to make much of the discussion more concrete, the central section of
the paper (Section 5) is concerned with one particular experiment in evolu-
tionary robotics.

Before discussing artificial evolution in some detail, the orientation of the
work in relation to other areas of artificial intelligence will be dealt with.
First, what do we mean by an autonomous agent? Simply this: a self-govern-
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ing system that makes its own way in the world; there are no hidden leads
or radio links connecting it to an operator. This is a rather large class, but,
for reasons that will become clear shortly, we will restrict ourselves to those
autonomous systems with sensorimotor capabilities.

The perspective taken on Artificial Intelligence (AI) is as follows. AI is
regarded as the study of intelligence in natural and artificial systems through
the construction of intelligence generating mechanisms. Along with Brooks
and others (Brooks, 1991; Varela, Thompson, & Rosch, 1991) we regard the
proper study of intelligence as an investigation into the interactions between
autonomous agents and their environments. This involves the study of entire
nervous systems; perception cannot be separated from action. Indeed, from
our perspective nervous systems, natural and artificial, should be regarded
as rather complex control systems. We agree with Brooks that the most sensi-
ble way to pursue such a study is through the construction of autonomous
robots to act in complex, uncertain, dynamic environments. This follows
from the belief that the greater part of intelligent behavior in animals (includ-
ing humans) is bound up with sensorimotor coordination and ‘‘every day’’
survival skills. It is very hard to simulate in any detail an agent’s sensory
and motor couplings with its environment. Although more abstract computer
models have their uses, as discussed later, they cannot reflect many of the
messy real-time constraints imposed on embodied agents. To take these into
account, it is frankly easier to use robots situated in the real world than it
is to try and build some all encompassing super-simulation. Intelligence is
a vague relative term used to label many adaptive behaviors (behaviors that
tend to improve an organism’s chance of survival—see (Ashby, 1952) for
a good more precise definition). The old-fashioned human-centered notions
of intelligence commonly used in the AI community until recently (Boden,
1977), with their stifling focus on abstract problem solving and deliberative
thought, are here regarded as far too restrictive. Insects are intelligent. Hu-
mans are intelligent. The interesting questions are what mechanisms underly
this intelligence and how can we build a robot that exhibits intelligence in
this sense?

The kind of research described later is often placed under the ever wider
umbrella of Artificial Life. However, most of this work fits neatly into the
more specific field of Animat (artificial animals) research. However, since
it is mainly concerned with developing mechanisms to generate intelligent
behaviors, it can quite validly be regarded as a new approach to AI (Wilson,
1991).

Having provided some context, this paper continues with an argument for
the use of artificial evolution in autonomous agent research, this is followed
by a more detailed exposition of genetic algorithms, artificial evolution, and
evolutionary robotics. The central section of the paper is concerned with a
case study on the evolution of visually guided behaviors on a specialized
mobile robot. The paper continues with a discussion of some of the more
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advanced aspects of evolutionary robotics. We advocate the use of artificial
neural network based robot controllers, which in turn means that issues to
do with the genetic encoding of the networks become central to the endeavor.
We outline a set of desirable properties for such encodings. A number of
encoding schemes developed by other researchers are reviewed, and we pre-
sent new methods of our own. Next a number of the most pertinent issues
in evolutionary robotics are outlined. There follows a discussion of the possi-
bility of using artificial evolutionary techniques to help tackle more specifi-
cally scientific questions about natural sensorimotor systems.

2. WHY EVOLVE?

Animals that we often think of as rather simple (e.g., arthropods—that
class of invertebrates including insects) in fact display a range of sophisti-
cated adaptive behaviors, involving complex sensorimotor coordination
(Young, 1989). These behaviors are generated by remarkably few nerve
cells, which might suggest that they are based on simple mechanisms. How-
ever, in general this does not appear to be the case (Ewert, 1980). Despite
their size, the dynamics of arthropod nervous systems are intricate.

Under present technological constraints, control systems for autonomous
robots will necessarily involve relatively small numbers of ‘‘components,’’
be they implemented in hardware or software. This suggests an analogy with
arthropods: it is very likely that it will be necessary to develop complicated
dynamical systems to control autonomous robots acting in uncertain complex
environments.

Forty years of autonomous robotics research has taught us that generating
the degree of sensorimotor coordination needed to sustain adaptive behavior
in the real world is no easy matter (Moravec, 1983). We believe this is be-
cause the control systems needed will be of the complex dynamical systems
variety, and these are inherently extremely difficult to design by traditional
means. Indeed, the situation is even worse than is often expected; suitable
sensor and actuator properties (including morphologies) are inextricably
bound to the most appropriate ‘‘internal’’ dynamics of the control system
and vice versa. Imposing the simplifying constraint of cleanly dividing the
system’s operation into a pipeline of sensing, internal processing, and acting
now appears to be far too restrictive (Brooks, 1991; Beer, 1990).

To put it in slightly more abstract terms, we strongly suspect (along with
Brooks, many biologists, and increasing numbers of cognitive scientists (Slo-
man, 1993)) that useful control systems to generate interesting behavior in
autonomous robots will necessarily involve many emergent interactions be-
tween the constituent parts (even though there may be hierarchical functional
decomposition within some of these parts). However, we go further by claim-
ing that there is no evidence that humans are capable of designing systems
with these characteristics using traditional analytical approaches. We are



ARTIFICIAL EVOLUTION 133

very good at designing highly complex systems if we can divide them up
into almost insulated subsystems with well defined interactions. However,
when the number of interactions between modules increases exponentially
with the addition of new modules, the design problem becomes intractable.

We, and a number of other authors, have suggested that the use of artificial
evolution to fully, or partially, automate the design process may be a way
forward (Cliff, Harvey, & Husbands, 1993; Beer & Gallagher, 1992). A num-
ber of research projects are now actively exploring this possibility. This new
area is often referred to as evolutionary robotics.

The artificial evolution approach maintains a population of viable geno-
types (chromosomes), coding for control architectures. The genotypes are
interbred according to a selection pressure, much as in standard genetic algo-
rithm work. This is controlled by a task-oriented evaluation function: the
better the robot performs its task the more evolutionarily favored is its control
architecture. Rather than attempting to hand design a system to perform a
particular task or range of tasks well, the evolutionary approach allows their
gradual emergence. There is no need for any assumptions about means to
achieve a particular kind of behavior, as long as this behavior is directly or
implicitly included in the evaluation function.

3. GENETIC ALGORITHMS AND ARTIFICIAL EVOLUTION

Genetic algorithms (GAs) are adaptive search strategies based on a highly
abstract model of biological evolution (Holland, 1975). They can be used
as an optimization tool or as the basis of more general adaptive systems.
The fundamental idea is as follows. A population of structures, representing
candidate solutions to the problem at hand, is produced. Each member of
the population is evaluated according to some fitness function. Fitness is
equated with goodness of solution. Members of the population are selectively
interbred in pairs to produce new candidate solutions. The fitter a member
of the population the more likely it is to produce offspring. Genetic operators
are used to facilitate the breeding; that is, operators which result in offspring
inheriting properties from both parents (sexual reproduction). The offspring
are evaluated and placed in the population, quite possibly replacing weaker
members of the last generation. The process repeats to form the next genera-
tion. This form of selective breeding quickly results in those properties which
promote greater fitness being transmitted throughout the population: better
and better solutions appear. Normally some form of random mutation is also
used to allow further variation. A simple form of this algorithm is as follows.

1. Create initial population of strings (genotypes). Each string of symbols
(genes) is a candidate solution to the problem.

2. Assign a fitness value to each string in the population.
3. Pick a pair of (parent) strings for breeding. The fitter the string the more

likely it is to be picked.
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4. Put offspring produced in a temporary population.
5. Is the temporary population full? If yes, go to 3, else go to 6.
6. Replace the current population with the temporary population.
7. Has some stopping criteria being fulfilled? If yes, exit, if no, go to 2.
This population-based survival of the fittest scheme has been shown to

act as a powerful problem solving method over a wide range of complex
domains (Grefenstette, 1985, 1987; Schaffer, 1989; Belew & Booker, 1991;
Davis, 1990).

The loose analogies between GAs and natural evolution should be clear.
The structures encoding a solution to the problem (often strings of characters)
can be thought of as the genotypes or artificial DNA. There will be some
process for interpreting the structure as a solution: the phenotype. The inter-
pretation is often implicitly embedded in the evaluation function and can be
complex. When the encoding and the evaluation function are static (search
space of fixed dimensions, a single well-defined evaluation function), we are
in the realms of optimization. When they are not, the GA can be used to
build adaptive systems; systems that are able to cope with a changing envi-
ronment. The latter scenario is closer to the situation existing in natural evo-
lution and is exploited in evolutionary robotics, as will be made clear in the
next section.

There are many different implementations of this idea, varying markedly
in their specifics, for further details see Holland (1975), Goldberg (1989)
and Mitchell (1996). The breeding phase, where offspring are produced from
parents, can makes use of a number of different ‘‘genetic’’ operators. Cross-
over is most often used. With this operator, sections of the parental genotype
strings are exchanged to form new genotypes. Mutation is very common and
involves randomly changing single genes (characters on the genotype string)
to new legal values.

3.1 Evolutionary Robotics

The basic notion of Evolutionary Robotics is captured in Fig. 1. The evolu-
tionary process, based on a genetic algorithm, involves evaluating, over
many generations, whole populations of control systems specified by artifi-
cial genotypes. These are interbred using a Darwinian scheme in which the
fittest individuals are most likely to produce offspring. Fitness is measured
in terms of how good a robot’s behavior is according to some evaluation
criterion.

Just as natural evolution involves adaptations to existing species, we be-
lieve GAs should be used as a method for searching the space of possible
adaptations of an existing robot, not as a search through the complete space
of robots: successive adaptations over a long timescale can lead to long-term
increases in complexity. For this reason, whereas most GAs operate on fixed-
length genotypes, we believe it is necessary to work instead with variable-
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FIG. 1. The basic notion of evolutionary robotics.

length genotypes. This leads to an incremental approach. A series of gradu-
ally more demanding task-based evaluation schemes are used. In this way
new capabilities are built on existing ones and the search space is always
constrained enough to be manageable.

The basis for extending standard GAs to cope with this has been worked
out by Harvey (1992b, 1994, 1992a), who describe the Species Adaptation
Genetic Algorithm (SAGA). In SAGA, the population being evolved is al-
ways a fairly genetically converged species; and increases in genotype length
(or other metric of expressive power), associated with increases in complex-
ity, can happen only very gradually.

4. EVOLVE NETWORKS

Much of the work described in this paper uses artificial neural networks
of some variety as the basic building blocks of the control systems being
developed. We believe this is the most appropriate choice. For reasons given
in Cliff et al. (1993), network search spaces are generally smoother than
spaces of explicit control programs. Networks are naturally amenable to
open-ended approaches and allow the researcher to work with very low-level
primitives, thereby avoiding incorporating too many preconceptions about
suitable control system properties. We advocate unrestricted recurrent real-
time dynamical networks as one of the most general class of behavior gener-
ating systems. However, such systems are far too unconstrained, with a great
many potential free parameters (such as neuron time constants and thresholds
and connection delays and weights) to admit hand design. Therefore, this
class of intrinsically very powerful systems can only really be explored with
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the help of automated techniques, of which artificial evolution is a front
runner.

5. AN EXAMPLE EXPERIMENT

This section makes much of the surrounding discussion more concrete by
focusing on a particular experiment to evolve a network-based control sys-
tem for a mobile robot engaged in visually guided tasks of increasing com-
plexity.

There are many different ways of realizing each stage of the cycle shown
in Fig. 1. A crucial decision is whether or not to use simulation at the evalua-
tion stage, transferring the end results to the real world. Since an evolutionary
approach potentially requires the evaluation of populations of robots over
many generations, a natural first thought is that simulations will speed up the
process, making it more feasible. Despite initial scepticism (Brooks, 1992), it
has recently been shown that control systems evolved in carefully con-
structed simulations, with an appropriate treatment of noise, transfer ex-
tremely well to reality, generating almost identical behaviors in the real robot
(Jakobi, Husbands, & Harvey, 1995; Thompson, 1995). However, both of
these examples involved relatively simple robot–environment interaction dy-
namics. Once even low-bandwith vision is used, simulations become alto-
gether more problematic. They become difficult and time consuming to con-
struct and computationally very intensive to run. Hence evolving visually
guided robots in the real world becomes a more attractive option. The case
study described in this section revolves around a piece of robotic equipment
specially designed to allow the real-world evolution of visually guided be-
haviors—the Sussex gantry robot.

5.0.1. Concurrent evolution of visual morphologies and control networks.
Rather than imposing a fixed visual sampling morphology, we believe a more
powerful approach is to allow the visual morphology to evolve along with
the rest of the control system. Hence we genetically specify regions of the
robot’s visual field to be subsampled, these provide the only visual inputs
to the control network. It would be desirable to have many aspects of the
robot’s morphology under genetic control, although this is not yet technically
feasible.

5.0.2. The gantry robot. The gantry robot is shown in Fig. 3. The robot
is cylindrical, some 150 mm in diameter. It is suspended from the gantry
frame with stepper motors that allow translational movement in the X and
Y directions, relative to a coordinate frame fixed to the gantry. The maximum
X (and Y) speed is about 200 mm/sec. Such movements, together with appro-
priate rotation of the sensory apparatus, correspond to those which would
be produced by left and right wheels. The visual sensory apparatus consists
of a CCD camera pointing down at a mirror inclined at 45° to the vertical
(see Fig. 4). The mirror can be rotated about a vertical axis so that its orienta-
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FIG. 2. The different roles of the Vision computer, the Brain computer and the SBC.

FIG. 3. The Gantry viewed from above. The horizontal girder moves along the side rails,
and the robot is suspended from a platform which moves along this girder.
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FIG. 4. The gantry robot. The camera inside the top box points down at the inclined mirror,
which can be turned by the stepper motor beneath. The lower plastic disk is suspended from
a joystick, to detect collisions with obstacles.

tion always corresponds to the direction the ‘‘robot’’ is facing. The visual
inputs undergo some transformations en route to the control system, de-
scribed later. The hardware is designed so that these transformations are done
completely externally to the processing of the control system.

The control system for the robot is run off-board on a fast personal com-
puter, the ‘‘Brain PC.’’ This computer receives any changes in visual input
by interrupts from a second dedicated ‘‘Vision PC.’’ A third (single-board)
computer, the SBC, sends interrupts to the Brain PC signaling tactile inputs
resulting from the robot bumping into walls or physical obstacles. The only
outputs of the control system are motor signals. These values are sent, via
interrupts, to the SBC, which generates the appropriate stepper motor move-
ments on the gantry.

The roles of the three computers are illustrated in Fig. 2. Continuous visual
data is derived from the output of the small monochrome CCD camera. A
purpose-built Frame Grabber transfers a 64 3 64 image at 50 Hz into a high-
speed 2 K CMOS dual-port RAM, completely independently and asynchro-
nously relative to any processing of the image by the Vision PC. The Brain
PC runs the top-level genetic algorithm and during an individual evaluation,
it is dedicated to running a genetically specified control system for a fixed
period. At intervals during an evaluation, a signal is sent from the Brain PC
to the SBC requesting the current position and orientation of the robot. These
are used in keeping score according to the current fitness function. The Brain
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PC receives signals, to be fed into the control system, representing sensory
inputs from the Vision PC and the SBC. The visual signals are derived from
averaging over genetically specified circular receptive patches in the cam-
era’s field of view.

This setup, with off-board computing and avoidance of tangled umbilicals,
means that the apparatus can be run continuously for long periods of time—
making artificial evolution feasible.

A top-level program automatically evaluates, in turn, each member of a
population of control systems. A new population is produced by selective
interbreeding and the cycle repeats. For full technical details of the system
see Harvey et al. (1994).

5.0.3. The artificial neural networks. The artificial neurons used have sepa-
rate channels for excitation and inhibition. Real values in the range [0,1]
propagate along excitatory links subject to delays associated with the links.
The inhibitory (or veto) channel mechanism works as follows. If the sum of
excitatory inputs exceeds a threshold, Tv, the value 1.0 is propagated along
any inhibitory output links the unit may have, otherwise a value of 0.0 is
propagated. Veto links also have associated delays. Any unit that receives
a non zero inhibitory input has its excitatory output reduced to zero (i.e., is
vetoed). In the absence of inhibitory input, excitatory outputs are produced
by summing all excitatory inputs, adding a quantity of noise, and passing
the resulting sum through a simple linear threshold function, F(x), given
below. Noise was added to provide further potentially interesting and useful
dynamics. The noise was uniformly distributed in the real range [2N, 1 N].

F(x) 5 5
0, if x # T1

x 2 T1

T2 2 T1

, if T1 , x , T2

1, if x $ T2

. (1)

The networks’ continuous nature was modeled by using very fine time
slice techniques. In the experiments described in this paper the following
neuron parameter setting were used: N 5 0.1, Tv 5 0.75, T1 5 0.0, and T2

5 2.0. The networks are hardwired in the sense that they do not undergo
any architectural changes during their lifetime, they all had unit weights and
time delays on their connections. These networks are just one of the class
we are interested in investigating.

5.0.4. The genetic encoding. Two ‘‘chromosomes’’ per robot are used.
One of these is a fixed length bit string encoding the position and size of
three visual receptive patches as described above. Three eight-bit fields per
patch are used to encode their radii and polar coordinates in the camera’s
circular field of view. The other chromosome is a variable-length character
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FIG. 5. The genetic encoding scheme.

string encoding the network topology. The genetic encoding used for the
control network is illustrated in Fig. 5.

The network chromosome is interpreted sequentially. First the input units
are coded for, each preceded by a marker. For each node, the first part of
its gene can encode node properties such as threshold values; there then
follows a variable number of character groups, each representing a connec-
tion from that node. Each group specifies whether it is an excitatory or veto
connection, and then the target node is indicated by jump type and jump
size. In a manner similar to that used in Harp and Samad (1992), the jump
type allows for both relative and absolute addressing. Relative addressing is
provided by jumps forward or backward along the genotype order; absolute
addressing is relative to the start or end of the genotype. These modes of
addressing mean that offspring produced by crossover will always be legal.
There is one input node for each sensor (three visual, four tactile).

The internal nodes and output nodes are handled similarly with their own
identifying genetic markers. Clearly this scheme allows for any number of
internal nodes. The variable length of the resulting genotypes necessitates a
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careful crossover operator which exchanges homologous segments. In keep-
ing with SAGA principles, when a crossover between two parents can result
in an offspring of different length, such changes in length (although allowed)
are restricted to a minimum (Harvey, 1992a). There are four output neurons,
two per motor. The outputs of each pair are differenced to give a signal in
the range [21,1].

5.0.5. Experimental setup. In each of the experiments a population size of
30 was used with a genetic algorithm employing a linear rank-based selection
method, ensuring the best individual in a population was twice as likely to
breed as the median individual. Each generation took about 1.5 hr to evaluate.
The most fit individual was always carried over to the next generation un-
changed. A specialised crossover allowing small changes in length between
offspring and parents was used (Cliff et al., 1993). Mutation rates were set
at 1.0 bit per vision chromosome and 1.8 bits per network chromosome.

With the walls and floor of the gantry environment predominantly dark,
initial tasks were navigating toward white paper targets. In keeping with the
incremental evolutionary methodology, deliberately simple visual environ-
ments are used initially, as a basis to moving on to more complex ones.
Illumination was provided by fluorescent lights in the ceiling above, with
the gantry screened from significant daylight variations. However, the dark
surfaces did not in practice provide uniform light intensities, neither over
space nor over time. Even when the robot was stationary, individual pixel
values would fluctuate by up to 13%.

5.1. Results

5.1.1. Big target. In the first experiment, one long gantry wall was covered
with white paper. The evaluation function e1, to be maximized, implicitly
defines a target locating task, which we hoped would be achieved by visuo-
motor coordination

e1 5 ^
i520

i51

Yi, (2)

where Yi are the perpendicular distances of the robot from the wall opposite
that to which the target is attached, sampled at 20 fixed-time intervals
throughout a robot trial which lasted a total of about 25 sec. The closer to
the target the higher the score. For each robot architecture four trials were
run, each starting in the same distant corner, but facing in four different
partially random directions, to give a range of starts facing into obstacle
walls as well as toward the target. As the final fitness of a robot control
architecture was based on the worst of the four trials (to encourage ro-
bustness), and since in this case scores accumulated monotonically through
a trial, this allowed later trials among the four to be prematurely terminated
when they bettered previous trials. In addition, any control systems that had
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FIG. 6. Behavior of the best of a later generation evolved under second evaluation function.
The dots and trailing lines show the front of the robot and its orientation. Coarsely sampled
positions from each of four runs are shown, starting in different orientations from the top right
corner.

not produced any movement by 1/3 of the way into a trial was aborted and
given zero score.

The run was started from a converged population made entirely of clones
of a single randomly generated individual picked out by us as displaying
vaguely interesting behavior (but by no means able to do anything remotely
like locate and approach the target). In two runs using this method very fit
individuals appeared in less than 10 generations. From a start close to a
corner, they would turn, avoiding contact with the walls by vision alone,
then move straight toward the target, stopping when they reached it.

5.1.2. Small target. The experiment continued from the stage already
reached, but now using a much narrower target placed about 2/3 of the way
along the same wall the large target had been on, and away from the robot’s
starting corner (see Fig. 6), with evaluation e2

e2 5 ^
i520

i51

(2di), (3)

where di is the distance of the robot from the center of the target at one
of the sampled instances during an evaluation run. Again, the fitness of an
individual was set to the worst evaluation score from four runs with starting
conditions as in the first experiment. The initial population used was the 12th
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FIG. 7. Tracking behavior of the control system that generated the behavior shown in Fig.
6. The unfilled circles show the position of the target at a number of points on its path (starting
position indicated). The arrows roughly indicate the path of the target.

generation from a run of the first experiment (i.e., we incrementally evolved
on top of the existing behaviors).

Within six generations a network architecture and visual morphology had
evolved displaying the behavior shown in Fig. 6. This control system was
tested from widely varying random starting positions and orientations, with
the target in different places, and with smaller and different-shaped targets.
Its behavior was general enough to cope with all these conditions for which
it had not explicitly been evolved. It was also able to cope well with moving
targets as shown in Figs. 7 and 8.

5.1.3. Rectangles and triangles. The experiment continued with a distin-
guish-between-two-targets task. Two white paper targets were fixed to one
of the gantry walls: one was a rectangle, the other was an isosceles triangle
with the same base width and height as the rectangle. The robot was started
at four positions and orientations near the opposite wall such that it was not
biased toward either of the two targets. The evaluation function e3, to be
maximized, was

e3 5 ^
i520

i51

[β(D1i
2 d1i

) 2 σ (D2i
, d2i

)], (4)

where D1 is the distance of target 1 (in this case the triangle) from the gantry
origin; d1 is the distance of the robot from target 1; and D2 and d2 are the
corresponding distances for target 2 (in this case the rectangle). These are
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FIG. 8. Further tracking behavior of the control system that generated the behavior shown
in Fig. 7.

sampled at regular intervals, as before. The value of β is (D1 2 d1) unless
d1 is less than some threshold, in which case it is 3 3 (D1 2 d1). The value
of σ (a penalty function) is zero unless d2 is less than the same threshold,
in which case it is I 2 (D2 2 d2), where I is the distance between the targets;
I is more than double the threshold distance. High fitnesses are achieved for
approaching the triangle but ignoring the rectangle. It was hoped that this
experiment might demonstrate the efficacy of concurrently evolving the vi-
sual sampling morphology along with the control networks.

After about 15 generations of a run using as an initial population the last
generation of the incremental small target experiment, fit individuals
emerged capable of approaching the triangle, but not the rectangle, from each
of the four widely spaced starting positions and orientations. The behavior
generated by the fittest of these control systems is shown in Fig. 9. When
started from many different positions and orientations near the far wall, and
with the targets in different positions relative to each other, this controller
repeatedly exhibited very similar behaviors to those shown.

The active part of the evolved network that generated this behavior is
shown in Fig. 10. The evolved visual morphology for this control system is
shown in the inset. Only receptive fields 1 and 2 were used by the controller.

Detailed analyses of this evolved system can be found in Harvey, Hus-
bands, & Cliff (1994) and Husbands (1996). To crudely summarize, unless
there is a difference in the visual inputs for receptive fields 1 and 2, the robot
makes rotational movements. When there is a difference it moves in a straight
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FIG. 9. Behavior of a fit individual in the two target environment. The rectangle and triangle
indicate the positions of the targets. The semicircles mark the ‘‘penalty’’ (near rectangle) and
‘‘bonus score’’ (near triangle) zones associated with the fitness function. In these four runs
the robot was started directly facing each of the two targets, and twice from a position midway
between the two targets: once facing into the wall and once facing out.

line. The visual sensor layout and network dynamics have evolved such that
it fixates on the sloping edge of the triangle and moves toward it.

The case study described above has been included to provide a concrete
focus to the issues discussed in this paper. However, this is only one experi-
ment of many, making use of one particular type of network, genetic encod-
ing, and experimental setup. The rest of this paper introduces other aspect
of such research.

6. GENETIC ENCODINGS AND DEVELOPMENTAL SCHEMES

Once the decision to evolve network-based systems has been taken, the
question of how to encode the networks on an artificial genotype becomes
crucially important. Without a suitable encoding scheme little progress can
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FIG. 10. Active part of the control system that generated fit behavior for the rectangle and
triangle experiment. Visual morphology shown in the inset.

be made. In the simplest schemes the genotype is a direct description of the
network wiring. An example of that kind of scheme is the genetic encoding
used with the gantry robot and described in the previous section. Such encod-
ings will necessarily be restrictive. Much more powerful approaches,
allowing complete open-endedness and modularity through the repeated use
of genotype sections, must involve a more complex interpretive process.1

This can be thought of as being loosely analogous to the developmental pro-
cesses that occur in nature to produce a phenotype from a genotype. Since
we regard encoding issues as being central to evolutionary development of
control systems, this and the following section concentrate on this area.

Gruau (1992) defines seven properties of genetic encoding of neural net-
works that should be considered. These include: completeness, any NN archi-
tecture should be capable of being encoded; compactness, one encoding
scheme is more compact than the second if for any NN architecture the first
genetic encoding is shorter than that given by the second; closure, implies
that any genotype encodes some architecture; modularity, a genetic encoding
would be modular if parts of the genotype specify subnetworks of the com-
plete network, and other parts specify the connections between such subnet-
works, this decomposition could be recursive. We endorse all these consider-
ations, especially modularity which would seem necessary for sensorimotor
systems employing vision. Additional points are: smooth interaction with

1 In this context modularity refers to a developmental process analogous to the use of subrou-
tines in programs. For instance, the left limbs and right limbs of animals will not be indepen-
dently ‘‘coded for’’ in DNA, but rather generated by the same genetic information expressed
more than once.
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genetic operators, the encoding should allow relatively smooth movements
around the search space; the encoding should not presuppose the dimension-
ality of the search space, incremental evolution requires an open-ended ap-
proach in which the dimensionality of the search space cannot be specified
in advance, the encoding should allow variable numbers of neurons and con-
nections; the encoding must allow specification of sensory and motor proper-
ties as well as that of a control network.

Kitano (1990) developed an early method for encoding networks which
took into account some of the issues raised above. Although his technique
was not specifically developed for sensorimotor systems, it can be applied
to them. The genotype was used to encode a graph generation grammar.
Kitano’s system allows a linear genotype to operate on a square matrix of
characters, initially 1 3 1. Each act of rewriting expands the matrix into
four quadrants each the same size as the previous matrix, with the contents
of each quadrant specified by the genotype. At the end of a succession of n
such rewriting steps, a network connection matrix of size 2n 3 2n is produced.
In this way scalability and modularity start to be implemented in a compact
genetic encoding of large regular networks.

Gruau (1992) discusses Kitano’s work and also acknowledges earlier work
by Wilson (1987). Gruau’s cellular encoding is a form of ‘‘neural network
machine language,’’ which he claims has all the above desirable properties.
This is a form of rewriting grammar, where the rewriting is considered as
a form of developmental process involving ‘‘rewriting neurons’’ or ‘‘cells.’’
Rewriting operators include PAR which divides a cell into two cells that
inherit the same input and output links as their parent, CLIP which can cut
links, WAIT which delays rewriting operations so as to change the order in
which later operations are carried out. Further operators SPLIT and CLONE
allow for the desirable property of modularity to be achieved. In total 13
operators are used. Although it has not yet been done, he proposes using his
method for the development of sensorimotor control systems.

7. DEVELOPMENTAL SCHEMES FOR SENSORIMOTOR SYSTEMS

This section outlines three schemes recently developed at Sussex for en-
coding network-based sensorimotor control systems. They take into account
the issues listed earlier and are specifically aimed at encoding whole control
systems: that is, control networks along with sensor and motor morphologies.

7.1. A Language and Compiler Scheme

Experience with the primitive encoding we used in our early evolutionary
robotics simulation studies (Cliff et al., 1993) lead us to develop a language-
and compiler-type genetic encoding scheme which is tailored to the demands
of evolving sensory–motor coordination morphologies and in particular to
encoding repeated structures as are commonly found necessary in dealing
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with visual sensory processing. As with genetic programming, the genome
is a program, which is expressed as a 1D string—although at the conceptual
level a higher-dimensional space offers a more appropriate descriptive
framework. The encoding scheme is essentially a new programming lan-
guage, called ‘‘NCAGE’’ (from ‘‘Network Control Architecture Genetic En-
coding’’); NCAGE allows for specifying sensory—motor controller mor-
phologies based on ‘‘neural network’’ parallel-distributed processing
architectures. The artificial genomes are interpreted as NCAGE programs
which are ‘‘compiled’’ in a ‘‘morphogenesis’’ process to create controller
structures. It is important to note that we do not consider the DNA-encoded
genomes of biological systems as programs and neither do we consider bio-
logical morphogenesis as comparable to compiling or executing a computer
program. The notions of ‘‘genome-as-program’’ and ‘‘morphogenesis-as-
compilation’’ used here are nothing more than metaphors invoked in the
exposition of what is at present essentially an engineering endeavor.

It is beyond the scope of this paper to fully describe this new encoding
scheme: a brief description of its key features is given below.

The NCAGE language draws on elementary vector-graphics programming facilities
found in many graphics languages (and in platform-specific vector graphic extensions
to general programming languages). It thus bears superficial similarities to turtle-
graphics languages such as LOGO. Essentially, the genome is interpreted as a se-
quence of subroutine specifications and subroutine calls. Subroutines may call other
subroutines including themselves. Subroutine calls are made from ‘‘positions’’ in a
high-dimensional space (typically conceptualized as one of a number of distinct but
superpositioned Euclidian 2 spaces or 3 spaces). Calls may reposition a ‘‘cursor’’
(cf. turtle) or may place one or more ‘‘neurons’’ of differing types at a position
specified relative to the current cursor position.

The encoding scheme is modular, has varying resolution of numeric val-
ues, is robust with respect to crossover and mutation, allows for recursively
repeatable structures (with systematic variations where necessary), and has
inbuilt symmetry and symmetry-breaking facilities. Structure specifications
are largely independent of their position on the genome, and so a transposi-
tion operator can be used to good effect. An inversion operator is also used,
but because the genome is read left-to-right, inversion does not preserve
structure specifications and is used primarily as an operator for achieving
extremely high mutation rates within a localized sequence on the genome,
while preserving the statistical distribution of characters on the inverted por-
tion of the genome.

Because the encoding has to satisfy requirements imposed by the genetic
operators, NCAGE differs significantly from traditional computer program-
ming languages. The most marked difference is that portions of the genome
may be interpreted ‘‘junk’’ or ‘‘silent’’ code: while many programming lan-
guages allow for the specification of subroutines which are never called, most
will generate terminal error conditions when the subroutines are partially
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complete or nonexistent. The NCAGE interpreter does not generate an error
when it encounters calls to unspecified subroutines (such calls are simply
ignored), and sequences of instructions which cannot be parsed as generating
useful structures are likewise ignored.

The genomes are expressed in a three-character alphabet, although in prin-
ciple a binary alphabet could be employed at the cost of proportionately
longer strings. Under the three-character scheme, two characters are used as
bits for data, and the third is a ‘‘stop’’ control character used for terminating
specifications at varying levels in the genome interpretation process. The-
oretically, any sufficiently long random string over the chosen alphabet will
be interpretable as a specification of a controller architecture. However, prac-
tical considerations entail that some structure (i.e., high-order correlations)
are introduced in the generation of initial random genomes, to reduce their
length. Experience with the encoding indicates that the inclusion of junk
code on the genome increases the robustness of the encodings with respect
to the genetic operators employed.

7.2. A Force Field Development Scheme

A second, contrasting, scheme makes use of a highly implicit dynamical
process governed by a system of ordinary differential equations, the parame-
ters of which are encoded on the genotype. This process describes the growth
of a network-based sensorimotor control system. Again, in no way is this
scheme intended to be a model of any biological process. It was developed
simply as a method having the properties we believe are desirable for artifi-
cial evolution.

In this force field scheme, ‘‘neurons’’ are positioned across a two-dimen-
sional plane where they exert attractive forces on the free ends of ‘‘den-
drites’’ growing out from themselves and other neurons. The ends of the
dendrites move under the influence of the force field created by the distribu-
tion of neurons. If a dendrite end moves to be within a small distance, e,
from a neuron it stops growing and connects to that neuron (which may be
its parent). Dendrites do not affect each other and may cross in arbitrary
ways. The equations of motion of the dendrite ends are given by ordinary
differential equations of the form shown in Eq. (5).
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where RW ij is the position vector of the end of the jth dendrite of the ith neuron
(henceforth referred to as endij). The first term on the RHS of Eq. (5) repre-
sents the vector sum of the attractive forces exerted on endij by all neurons.
These forces are of the form given in Eq. (6).
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where rWijk is the vector from endij to the center of neuron k. GSi and ASk are
genetically determined constants. The second term in Eq. (5) is a ‘‘viscous’’
resistive force to prevent dendrites sailing off into outerspace. The third term
provides a force in the direction of motion of the dendrite end and is inversely
proportional to the cube of lij, the current length of the dendrite. This force
drops off very rapidly but encourages dendrites to, at least initially, escape
from the influence of their parent neuron. Gij is a genetically encoded con-
stant. In the computational implementation of the scheme, the differential
equations were approximately integrated using the Euler method with an
adaptive time step. One feature of this method is that the lengths of the
resulting dendrite paths can be translated into time delays or weights for use
in the operation of the network.

A genotype to be used with this scheme must encode the parameters of the
equations, along with the positions of the neurons and the initial directions of
growth of the dendrites. In principle, a large number of different encodings
would suffice. However, as already discussed, it is preferable to use an en-
coding exhibiting the desirable properties outlined in Section 7. A particular
encoding meeting these requirements, and specially developed for the force
field method, is briefly outlined below.

In this method a bit string is used as a neutral encoding medium. That is,
any bit string can be interpreted as a control system (although it may be an
empty one). The core of the interpreting algorithm is as follows. The string
is scanned from left to right until a particular type of marker (short bit pat-
tern) is found. If the marker bounds the start of a valid string section, se-
quences of bits are read and turned into ‘‘neuron’’ parameter values for use
with the force field development scheme. As with the previously described
language and compiler model, each of these read operations counts the num-
ber of 1s in a sequence and uses that number to map to the parameter value.
The algorithm rewinds back to the start-section marker and then searches
forward to the next occurrence of a second type of marker. This signals a
new ‘‘mode’’ of interpretation in which dendrite properties are determined.
This is repeated until yet another form of marker is encountered. The algo-
rithm then moves back to the first marker and searches forward to the next
occurrence of a start-section marker. The whole process then repeats. This
‘‘looping back’’ behavior means the algorithm can potentially reuse parts
of the string many times. This results in the encoding of relatively large
parts of the networks being localized on the string. This produces a form of
modularity, where repeated patterns are formed by the reexpression of parts
of the genotype.

The position of a neuron is described by genetically determined distance
and direction from the last neuron to be laid down. The existence or other-
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wise of a particular marker determines whether or not a neuron acts as a
visual receptor. If it is a visual receptor, its position on the plane is mapped
onto a position within the robot’s receptive field. In the scheme currently
being used, two special motor neurons are placed near the center of the plane.
The network then develops around them. This is convenient for a two motor
system, but many other ways of handling motor neurons can be incorporated
into the method.

7.3 A Cell Division Method

In this proposal, a naive model is used of the development of a multicellu-
lar organism by cell division from a single initial cell. Every cell contains
the same DNA, the genotype, which acts as a constraint on an intracellular
dynamics of transcription and translation of ‘‘enzymes’’ which themselves
initiate or repress the production of further enzymes. The genotype and also
the enzymes are bit strings.

Within one cell, any initial enzymes are template-matched against the ge-
notype; wherever matches occur, transcription from the genotype starts and
produces further enzymes. The ensuing intracellular dynamics can be in-
fluenced by intercellular ‘‘signals’’ received from neighboring cells. The
production of particular enzymes initiates cell-splitting; other particular en-
zymes, when they are first produced, signal the completion of the develop-
mental process.

In this way, from an initial single cell with a genotype, development pro-
duces a number of cells that can be considered as positioned in some space
with neighborhood relations. Although all containing the same DNA, the
cells can be differentiated into different classes by the particular distinctive
internal dynamics of their enzyme production process. Thus at this stage the
whole group of cells can be interpreted as a structure with organization; for
instance, as a neural network with different cells being ‘‘neurons’’ with spe-
cific characteristics, and with connections specified between them.

8. SOME RELATED WORK ON EVOLUTIONARY DEVELOPMENT OF
SENSORIMOTOR CONTROL SYSTEMS

This section provides a brief high-level review of research into the use
of genetic algorithm based techniques for the development of sensorimotor
control systems for autonomous agents.

In a traditional autonomous robotics context, mention is made of a pro-
posed evolutionary approach in Barhen, Dress, & Jorgensen (1987). A stu-
dent of Brooks discussed some of the issues involved, with reference to sub-
sumption architectures, in Viola (1988). De Garis (1992) proposed using
GAs for building behavioral modules for artificial nervous systems, or ‘‘arti-
ficial embryology.’’ However, it is only recently that more complete propos-
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als have been made to use evolutionary approaches in robotics (Brooks,
1992; Husbands & Harvey, 1992).

Brooks (1992) outlines an approach based on Koza’s genetic programming
techniques (Koza, 1992). He acknowledged that time constraints would prob-
ably necessitate the use of simulations. However, he stressed the dangers of
using simulated worlds rather than real worlds. He proposed that by evolving
the control program incrementally the search space can be kept small at any
time. He noted that symmetries or repeated structures should be exploited
so that only a single module needs to be evolved, which is then repeatedly
used. Brooks proposed a high-level language, GEN, which could be evolved,
and then compiled down into BL (Behavior Language) and further on down
onto the actual robot hardware.

Important work on an evolutionary approach to agent control using neural
networks has been done by Beer and Gallagher (1992). They explore the
evolution of continuous-time recurrent neural networks as a mechanism for
adaptive agent control, using as example tasks chemotaxis, and locomotion-
control for a six-legged insect-like agent. The networks are based on the
continuous Hopfield model (Hopfield, 1982), but allow arbitrary recurrent
connections. They used a standard genetic algorithm to determine neuron
time constants and thresholds and connection weights. A fixed number of
network parameters are encoded in a straightforward way on bitstring ‘‘geno-
types.’’ They report success in their objectives; in the case of locomotion
control, controllers were evolved that in practice generated a tripod gait
(front and back legs on one side in phase with the middle leg on the opposite
side). This was achieved both with and without the use of sensors which
measured the angular position of each leg.

Beer and Gallagher (1992) develop a dynamical systems perspective on
control systems for autonomous agents, influenced by early work in Cyber-
netics (Ashby, 1952). In further developments of their evolutionary ap-
proach, Yamauchi and Beer (1994) evolve networks which can control au-
tonomous agents in tasks requiring sequential and learning behavior.

Colombetti and Dorigo (1992) use Classifier Systems (CSs) for robot con-
trol. In this work the ALECSYS implementation is used to build a hierarchi-
cal architecture of CSs—one for each desired behavior, plus a coordinating
CS. Results are reported which have been generated in simulations and then
transferred to a real robot.

Parisi, Nolfi, and Cecconi (1992) investigated the relationship between
learning and evolution in populations of back-propagation networks; these
networks were the ‘‘brains’’ of animals that received sensory input from a
simple cellular world in which the task was to collect ‘‘food.’’ This work
made use of abstract computer models rather than real robots.

Koza successfully used the technique of genetic programming to develop
subsumption architectures (Brooks, 1986) for simulated robots engaged in
wall-following and box-moving tasks (Koza, 1992).
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Craig Reynolds (1993) uses genetic programming to create control pro-
grams which enable a simple simulated moving vehicle to avoid collisions.
He comments that these solutions are brittle, vulnerable to any slight changes
or to noise. In further work where the fitness-testing includes noise, he re-
ports that the brittleness problem is overcome, and only compact robust solu-
tions survive (Reynolds, 1994).

Floreano and Mondada (1994) were able to run a GA on a real robot in
real time, rather than a simulation. The GA set the weights and thresholds
in a simple recurrent network where every sensory input was connected to
both motor outputs. The task was to traverse a circular corridor while
avoiding obstacles, and this work demonstrates that with well-designed
equipment it is possible to avoid the problems associated with simulations.

9. SOME COMMON OBJECTIONS

One common objection to the use of artificial evolution is the amount of
time it is likely to take to evolve anything useful. This is difficult to answer.
However, work done so far has shown that it is possible to evolve simple
control systems in simulation in a matter of 2 or 3 hr (Jakobi et al., 1995)
and in the real world in about 1 day (Harvey et al., 1994). It is too early to
say how things will scale up as more complex tasks are used.

Another complaint is that the entire morphology of the robot, as well as
its control system, should be evolved. This is a valid criticism. Successful
adaptive behavior depends on harmonious relationships between body mor-
phology and nervous system dynamics. However, some progress is being
made in this direction in the work of Harvey, Husbands, and others where
the visual morphology of a real robot is concurrently evolved along with a
control network (Harvey et al., 1994). As described earlier, this is done by
allowing the subsampling pattern (position and size of receptive fields) of a
video camera image to be under evolutionary control (see Section 5).

Sometimes it is stated that as more complex tasks are investigated, it will
become extremely difficult to design evaluation functions. Opinion is divided
over this issue. One of the implicit assumption of the field is that it is gener-
ally much easier to produce a criteria for deciding how well a robot achieved
a task than it is to specify how the task should be achieved. Evaluation func-
tions can be very implicit. For instance, tasks such as exploration and forag-
ing can be set up as straight survival tests. Only those robots that maintain
viability for sufficiently long get a chance to breed. Maintaining viability
will involve finding and exploiting energy sources. However, issues relating
to evaluation, both explicit and implicit, are likely to become increasingly
important as attempts are made to evolve more complex behaviors.

Finally, a common assumption is that the evolved systems will be impossi-
ble to understand. There are two answers to this. The first is that there is no
evidence to suggest that the systems will be impenetrable. The second is that
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even if they are, so what. One of the aims of this kind of work is to develop
mechanism to generate certain sorts of behaviors and then to gain insight
by analyzing these mechanisms. Both Beer and Gallagher (1992) and Hus-
bands et al. (1995) have used dynamical systems approaches to analyzing
evolved controllers. They have both demonstrated ways to choose a state
space at the appropriate level to allow a clear picture of the internal mecha-
nisms. Husbands et al. also show how to incorporate an understanding of
agent–environment coupling into the analysis. So far these kinds of analysis
have been for relatively simple systems. It is possible that as things become
more complex, state spaces at a tractable level of abstraction will not be
found. However, if the robot works, and is robust and reliable, an important
aspect of the research would still be successful.

10. EVOLUTIONARY SIMULATIONS AS SCIENCE: TRACING
THE ORIGINS AND EFFECTS OF SENSORIMOTOR

SYSTEMS IN NATURE

While much of the work mentioned so far is biologically informed and
inspired, most of it has a strong engineering characteristic. In other words,
the primary goal is to develop working control systems for autonomous mo-
bile robots and then to understand their underlying mechanisms. However,
this field can potentially offer new tools and methods for investigating more
specifically scientific topics. That is the focus of this section, where the use
of artificial evolution in the context of more abstract computer studies will
be discussed.

Very little is known about the evolutionary origins and effects of basic
sensorimotor systems in nature. Brains and behaviors do not fossilize well,
so normal paleontological methods cannot generally be used to trace the
evolution of sensorimotor systems. Behavioral ecologists can construct opti-
mality or game theoretic models of how behavioral strategies evolve, but
these models are usually too abstract to explain the evolution of specific
sensorimotor systems in specific species. Even experimental studies in fast-
breeding species cannot study sensorimotor evolution for more than a few
dozen generations. Neuroethologists can derive phylogenies and probable
selective pressures by comparing sensorimotor adaptations across species,
but cannot test evolutionary hypotheses very directly. Because of these meth-
odological problems, evolutionary computer simulations are our only real
hope for understanding the long-term adaptation of sensorimotor systems to
habitats and econiches and the long-term coevolution of sensorimotor sys-
tems interacting within and between species.

This gap in our scientific understanding of sensorimotor evolution is im-
portant because (1) sensorimotor control is the essence of ‘‘adaptive
agency,’’ and the evolution of sensorimotor control is fundamental to the
success of all animal species, and (2) sensorimotor systems, once evolved,
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can in turn exert strong selection pressures on other organisms, resulting
in the evolution of camouflage, warning coloration, mimicry, lures, protean
behavior, sexual displays, communication, and many other forms of adaptive
display. This second phenomenon has received increasing attention in the
last few years and has been termed ‘‘psychological selection’’ (Miller, 1993;
Miller & Freyd, 1993), ‘‘sensory drive’’ (Endler, 1992), ‘‘sensory exploita-
tion’’ (Ryan, 1990), ‘‘signal selection’’ (Zahavi, 1991), and ‘‘the influence
of receiver psychology on the evolution of animal signals’’ (Guilford &
Dawkins, 1991). In such cases of ‘‘sensory exploitation,’’ where behavioral
adaptations in one animal evolve to exploit particular sensory biases in other
animals, we clearly cannot understand the co-evolution without simulating
the relevant sensorimotor systems in some detail.

Genetic algorithms offer a general, openended method for simulating the
evolutionary origins and effects of sensorimotor systems, because such sys-
tems can be modeled at almost any size and any level of description, from
detailed neural network designs (as we have used in our evolutionary robotics
work), up to abstract parameters of behavioral strategies, and because such
systems can be left to evolve in any simulatable habitat or ecosystem. Since
different scientific problems require simulations at quite different scales and
levels of description, we must be explicit about our research goals and careful
about finding the right simulation methods for those goals. For example,
studying the phylogeny of visual circuits in a particular genus of beetle might
require evolving quite detailed neural networks under particular ecological
conditions, but the studying the general influence of visual associative learn-
ing on the evolution of warning coloration might require much more general
models of vision in predators and coloration in prey. In general, engineering
research needs more detailed, lower-level simulations of sensorimotor sys-
tems than almost any scientific research would require, because sensorimotor
systems for autonomous robots must actually work, whereas sensorimotor
models of animals need only fit the neuroethological data.

Even if one’s scientific goal is to understand neural development, learning,
perception, or the mechanisms of dynamic behavior, rather than evolution
itself, there is still considerable benefit to parameterizing one’s model of the
phenomenon in a way that allows alternative models to evolve through GA
methods. Simulated evolution can be used to test the plausibility, robustness,
and evolutionary stability of models of development and behavior just as
real evolution tested the actual mechanisms of development and behavior
that are being modeled. Human imagination is poor at envisioning alterna-
tives to one’s cherished model of some behavioral phenomenon; simulated
evolution can act as a constructive critic that generates alternative hypotheses
which can then be tested by observation and experimentation.

In the future, we envision a more integrated science of sensorimotor evolu-
tion that combines data and methods from cladistics, experimental psychol-
ogy, neuroethology, behavioral ecology, population genetics, and computer
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simulation. Evolutionary simulation is unusually exciting, colorful, and fast
as an empirical research method, but ideally, it will be absorbed into the
scientific mainstream as just one means among many for studying natural
evolutionary processes.

11. CONCLUSIONS

Using artificial evolution as a new approach to AI has been discussed.
More specifically it has been advocated for the development of network-
based controllers for autonomous robots, autonomous robotics being seen as
the most appropriate vehicle for AI research. It has been argued that it has
at least the following advantages.

• It allows the exploration of areas of design space that are not amenable
to traditional rational analytic hand-design methods.

• It allows the concurrent exploration of control architectures and sensor
morphologies in a principled way.

• It enables us to work with very low-level primitives and helps to throw
away as many preconceptions as possible about how behaviors should be
generated.

Some discussion of the role of artificial evolution in more abstract studies
of potential benefit to theoretical biology has also been given.
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