Artificial Evolution and Real Robots

Inman Harvey
School of Cognitive and Computing Sciences
University of Sussex

Brighton BN1 9QH, UK

Abstract

Artificial evolution as a design methodology allows
the relaxation of many of the constraints that have
held back conventional methods. It does not require a
complete prior analysis and decomposition of the task
to be tackled, as human designers require. However
this freedom comes at some cost; there are a whole new
set of issues relating to evolution that must be consid-
ered. Standard Genetic Algorithms may not be appro-
priate for incremental evolution of robot controllers.
SAGA, Species Adaptation Genetic Algorithms, has
been developed to meet these special needs.

The main cost of an evolutionary approach is the
large number of trials that are required. Simula-
tions — especially those involving vision in complex
environments, or modelling detailed semiconductor
physics — may not be adequate or practical.

Examples of evolved robots will be discussed, in-
cluding a specialised piece of equipment allowed for
the testing of a robot using simple vision in real time,
and what is believed to be the first successful example
of an evolved hardware controller for a robot.

1 Why Evolutionary Robotics?

Humans are naturally evolved creatures, and the se-
lection criteria under which our ancestors were judged
did not include the ability to design complex systems
—- in fact, we are not very good at it. A common and
useful trick to overcome our shortcomings is that of di-
vide and conquer: a complex problem is decomposed
into separate easier sub-problems.

However, the interactions between such sub-
problems must be few in number, so that the human
designers can temporarily ignore them while solving
one sub-problem at a time. When it comes to design-
ing such complex systems as a cognitive control system
for a robot, there are at least three major problems.
e It is not clear how a robot control system should be
decomposed.

e Interactions between separate sub-systems are not
limited to direct connecting links, but also in-
clude interactions mediated wvia the environment.
e As system complexity grows, the number of potential
interactions between sub-parts grows ezponentially.

Classical approaches to robotics have often assumed
a primary decomposition into Perception, Planning
and Action modules. Many people now see this as
a basic error. Brooks’ subsumption approach [1] is ex-
plicitly claimed to be inspired by natural evolution.
Initially simple behaviours are ‘wired into’ a robot,
and thoroughly debugged, before adding the next be-
haviour. This incremental approach echoes the phylo-
genetic history of complex cognitive creatures, some of
whose behaviours we are trying to emulate in robots.
Nevertheless, each new layer of behaviour is wired in
by hand design; despite the heuristics used to min-
imise interactions between layers, it seems that un-
predictable interactions may become insuperable when
the number of layers gets much bigger than 10.

So an obvious alternative approach is to explicitly
use evolutionary techniques to incrementally evolve in-
creasingly complex robot control systems, rather than
attempt to figure out each evolutionary step by hand
design. Unanticipated and elusive interactions be-
tween sub-systems, though tricky or perhaps impene-
trable for human designers, need not directly bother
an evolutionary process where the only benchmark is
the behaviour of the whole system.

2 Artificial Evolution for Robots

Genetic Algorithms (GAs) are the most common
form of algorithm which uses evolutionary ideas for
search, optimisation and machine learning — the fields
covered in [2]. However, recently concerns have been
voiced to the effect that GAs, when originally pro-
posed by Holland [3], were intended as algorithms
for complex adaptive systems, and their use for func-
tion optimisation is perhaps not best suited to their



strengths. Evolutionary robotics typically needs adap-
tive improvement techniques, rather than optimisation
techniques, and this critical but little-understood dis-
tinction needs to be made clear.

Most published GA work, both applications and
theoretical analysis, refers to optimisation problems
which can be seen as search problems in some high-
dimensional search space, of known (usually enor-
mous) size. Each dimension typically corresponds to
some parameter which needs to be set, which is coded
for on a small section of the genotype, a ‘gene’. What
such optimisation problems share is the well-defined fi-
nite nature of the search space. This allows the choice
of a genotype coding, such that a genotype, often bi-
nary, of fixed length can encode any potential solution
within the space of possibilities. In robotics, a geno-
type specifies the characteristics of a control system.

The GA works with a population of such genotypes,
each of which is evaluated in terms of how good is the
potential solution that it encodes. Genotypes which
happen to be fitter in the current population (which
initially may be generated at random) are preferen-
tially selected to be parents of the next generation.
Offspring inherit genetic material from their parents;
usually inheriting part of this from each of two parents.
A small number of random mutations are applied to
the genotypes of the offspring. This cycle of selection,
reproduction with inheritance of genetic material, and
variation, is repeated over many generations, with the
population remaining the same size as old members are
replaced by new ones, the offspring of those members
demonstrated to be fitter.

A GA optimisation problem has typically been seen
as starting with a population of random points effec-
tively spanning and crudely sampling the whole search
space. Successive rounds of selection, reproduction
and mutation focus the population of sample points
towards fitter regions of the space, homing in on an
optimum or near-optimal region. One consequence of
this approach has been the primary reliance on re-
combination as the genetic operator, which mixes and
matches information from different samples in order to
move towards regions of expected higher fitness; muta-
tion is typically relegated to the role of a background
genetic operator.

However, some domains — including much of evo-
lutionary robotics — do not always fall into this con-
venient picture of a fixed-dimensional search space.
Standard GA theory does not necessarily then apply.

In evolutionary robotics a genotype will specify the
control system (possibly more, see below) of a robot
which is expected to produce appropriate behaviours

when tested in its environment. However the evalu-
ation of fitness i1s in terms of the robot’s behaviour;
for all except toy problems there 1s unlikely to be any
obvious way to predict in advance the necessary com-
plexity of control system for a given behaviour. Hence
it is often appropriate to choose a genetic encoding
which allows for, and encodes the characteristics of, a
variable number of components. This has the added
benefit of making incremental evolution possible: ini-
tially simple robots are evolved under a selection cri-
terion based on simple tasks, and then the same robot
population is allowed to increase in complexity in re-
sponse to a gradual and continuing increase in task
complexity. Such incremental evolution calls for GAs
as adaptive improvers rather than GAs as optimisers.

3 SAGA

The conceptual framework of SAGA was introduced
to deal with the dynamics of a GA when genotype
lengths are allowed to increase [4]. It was shown, us-
ing concepts of epistasis and fitness landscapes drawn
from theoretical biology [b], that progress through
such a genotype space will only be feasible through
relatively gradual increases in genotype length. A gen-
eral trend towards increase in length is associated with
the evolution of a species rather than global search —
the population will be largely genetically converged.

Evolutionary search can be thought of as searching
around the current focus of a species for neighbour-
ing regions which are fitter (or in the case of neutral
drift, not less fit) while being careful not to lose gains
that were made in achieving the current status quo.
The population can be visualised as moving around on
a mountainous fitness landscape, where altitude rep-
resents fitness, and movements measured in horizon-
tal directions loosely represent movements in genotype
space. Selection 1s a force which tends to move a pop-
ulation up hills, and keep them centred around a local
optimum; mutation produces offspring exploring out-
wards from the current population.

To increase exploration mutation rates should be
increased; but if they are too high then the popula-
tion disperses completely, losing the current local opti-
mum, and the search becomes random. For any given
selection pressure, there is a maximum rate of mu-
tation which simultaneously allows the population to
retain a hold on its current hill-top, while maximising
search along relatively high ridges in the landscape,
potentially towards higher peaks [6]. In SAGA, this
means that rank-based or tournament selection should
be used to maintain a constant selective pressure (the



expected number of offspring of any individual should
depend on its current ranking within the population,
rather than the ratio of its fitness to the average fit-
ness); and mutation rates should be maintained at a
rate of about 1 mutation per genotype [7].

4 What building blocks?

We are relying on evolution for the design of a con-
trol system, but we must choose appropriate building
blocks for 1t to work with. There is good reason to
believe that the primitives manipulated by the evolu-
tionary process should be at the lowest level possible.
Any high level semantic groupings inevitably incorpo-
rate the human designer’s prejudices. Primitives that
are equivalent to a programming language give rise to
a rugged fitness landscape with steep precipices. A
program taken as a linear string of characters can be
treated as a genotype, but typically a single mutation
in a working program is fatal — a ‘precipice’. Genetic
programming [8] relies on recombination rather than
mutation, but typically relies both on clever, domain-
specific, choice of primitives, and on enormous popu-
lation sizes which are difficult when evaluating robots.

With Brooks [1], we dismiss the classical Percep-
tion, Planning, Action decomposition of robot control
systems. Instead we see the robot — body, sensors,
motors and control system or ‘nervous system’ — as
a dynamical system coupled (via the sensors and mo-
tors) with a dynamic environment [9]. This coupled
interaction generates the robot behaviour which is to
be evaluated. The control system is itself a dynamical
system, and hence its genetic specification should be
at the level of the primitives of a dynamical system.

One convenient form of dynamical system is an (ar-
tificial) neural net (NN). If this takes the form of
a feedforward net, from sensors, perhaps via hidden
nodes, to motors, then such a control system would
have no internal state, and be capable only of gen-
erating reactive behaviour. However if a recurrent
net 1s used, with temporal specifications to determine
the timescales on which internal feedback is propa-
gated, then non-reactive behaviour is also possible.
Dynamic recurrent NNs (DRNNs), with temporal de-
lays on links between nodes, are a class of dynamical
systems capable in principle of replicating to an arbi-
trary degree of accuracy the dynamical behaviour of
any other dynamical system with a finite number of
components. Such DRNNs are equivalent (only triv-
ial transformations are needed) to Brook’s subsump-
tion architectures using Augmented Finite State Ma-
chine (AFSMs). The temporal properties can derive

either from within each AFSM (Brooks), or through
the time-delays on links between them (DRNNs).

One significant difference from subsumption archi-
tecture is the deliberate introduction of internal noise
at the nodes of DRNNs, with two effects. First,
it makes possible new types of feedback dynamics,
such as self-bootstrapping feedback loops and oscilla-
tor loops, which would not initiate themselves without
the noise. Second, 1t helps to make more smooth the
fitness landscape on which the GA is operating; a mu-
tation which deletes a link or a node is comparable to
a lot of noise, and hence the change in behaviour due
to such a mutation is more closely correlated in the
presence of noise than it would otherwise have been.

Thus genotypes need to specify a finite number
of nodes, together with their thresholds or other de-
tails of a non-linear activation function transforming
summed node inputs into node outputs; and links and
connections between nodes, specifying weights and
time-delays on the links. This can be generalised to in-
clude weight-changing rules. A specified subset of the
nodes are designated as input nodes, receiving sen-
sory inputs; similarly there is a set of output or mo-
tor nodes. Other nodes (‘hidden’) can be arbitrary in
number, and genetically specified links are not neces-
sarily restricted to feedforward ones.

5 Experiments

Using these ideas, a series of experiments were per-
formed at Sussex with the gantry-robot using low
bandwidth vision in a noisy real-world domain. A se-
quence of simple navigational tasks of increasing com-
plexity was presented to the robot, and artifical evo-
lution used to develop the control system and the vi-
sual morphology appropriate for success at these tasks.
This work is reported elsewhere [10], and is believed to
be the first example of artificial evolution for a robot
using real vision.

The work used a genetically specified dynamical
system as the control system, which is conceptualised
as a DRNN, but in practice been implemented on a
computer. There is a related approach of evolving con-
trol systems directly onto hardware, which has been
taken within our group by Thompson [11].

This work is intrinsic hardware evolution, in that
for each genetically specified piece of hardware, the
actual hardware is tested in situ; as contrasted with
extrinsic hardware evolution, where simulations of the
hardware are evaluated during evolution. The ac-
tual low-level physics of the hardware can be utilised,



and the realtime dynamics operate at their proper
timescales. A human designer usually constrains and
controls through clocking such features as switching
transients; but by using artificial evolution, such de-
sign constraints can be relaxed in an unclocked system.

Thompson used artificial evolution to design a real
EHW circuit as an on-board controller for a two-
wheeled autonomous mobile robot required to display
simple wall-avoidance behaviour in a wide corridor.
The robot’s only sensors were two sonars mounted on
the left and right sides which fire simultaneously five
times a second; the output from each sonar to the con-
trol system changes when the echo returns. In a con-
ventional system the time of flight would be processed
to estimate the range of obstacles, but in Thompson’s
implementation the pulses are fed directly into the
hardware control system, termed a Dynamic State Ma-
chine (DSM). This is related to a Finite State Machine,
except that each internal signal may (under genetic
control) be clocked or unclocked. The global clock fre-
quency, where used, 1s also under genetic control.

The DSM accepts pulses directly from the sonars,
and outputs signals directly (no post-processing) to
the motors for the left and right wheels which guide the
robot. During evolution a population of DSM specifi-
cations (instantiated one at a time on the real hard-
ware) is evaluated at the task of navigating to the
centre of the corridor. Success was achieved within
35 generations; for full details see [11]. One success-
ful evolved DSMs was found to be using just 32 bits
of RAM and 3 flip-flops, excluding the clock genera-
tion. This minimal hardware produced the appropri-
ate sensorimotor coupling between sonar echo signals
and motor pulses, to guide the robot in its task. This
is believed to be the first ever artificial evolved hard-
ware controller for a robot.

6 Conclusions

Evolutionary robotics allows the relaxation of con-
ventional design constraints, but new theoretical is-
sues need to be studied. The SAGA framework allows
for incremental evolution, and robot control systems
should be treated as a class of dynamical system. Ex-
amples have been given of simple evolved robot be-
haviours in noisy real world conditions, including the
use of evolvable hardware.

Acknowledgements

I acknowledge funding from the E.P.S.R.C. and dis-

cussions with Phil Husbands and Adrian Thompson.

References

[1] Brooks, R. A. “A robust layered control system
for a mobile robot,” IEEE J. Rob. Autom., Vol.
2 pp. 14-23, 1986.

[2] Goldberg, D. E. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley, Reading MA, 1989.

[3] Holland, J. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Ar-
bor, USA, 1975.

[4] Harvey, 1. “Species adaptation genetic algo-
rithms: The basis for a continuing SAGA,” In
Varela, F., Bourgine, P. (eds.), Toward a Prac-
tice of Autonomous Systems, pp. 346-354. MIT
Press/Bradford Books, Cambridge, MA, 1992.

[5] Kauffman, S. “Adaptation on rugged fitness land-
scapes,” In Stein, D. L. (ed.), Lectures in the Sci-
ences of Complezity, pp. 527-618. Addison Wes-
ley, 1989.

[6] Eigen, M., McCaskill, J., and Schuster, P,
“Molecular quasi-species,” Journal of Physical

Chemistry, 92, pp. 68816891, 1988.

[7] Harvey, I. “Evolutionary robotics and SAGA: the
case for hill crawling and tournament selection,”
In Langton, C. (ed.), Artificial Life III, pp. 299
326. Addison Wesley, 1993.

[8] Koza, J. R. “Genetic programming,” Tech. Re-
port STAN-CS-90-1314, Dept. of Comp. Sc.,
Stanford University, 1990.

[9] Beer, R. D., and Gallagher, J. C. “Evolving dy-
namic neural networks for adaptive behavior,”
Adaptive Behavior, 1(1), pp. 91-122, 1992.

[10] 1. Harvey, P. Husbands, and D. CIiff. “Seeing the
light: Artificial evolution, real vision.” In D. Cliff,
P. Husbands, J.-A. Meyer, and S. Wilson, (eds.),
From Animals to Animats 3, pp. 392-401. MIT
Press/Bradford Books, Cambridge MA, 1994.

[11] Thompson, A., Harvey, I., and Husbands, P. “Un-
constrained evolution and hard consequences,” In
Sanchez, E., and Tomassini, M. (eds.), Towards
Evolvable Hardware. Springer-Verlag, 1996.



