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Abstract 
Generic complex systems of many interacting parts can model 
both natural and artificial systems, and the conditions for their 
stability are of interest. Two influential papers (Gardner and 
Ashby, 1970; May, 1972) laid down a mathematical framework 
suggesting that, without some specific constraints on the 
interactions, such systems are very likely to be unstable as they 
increase in size and connectance. We draw attention to a 
programming error in the first paper and to flaws and omissions 
in reasoning in the second that discredit such conclusions when 
applied to nonlinear systems. With nonlinearity the connectance 
strength of an influence of any one variable upon any other will 
vary according to context, which May’s analysis does not 
address. Further, in nonlinear systems there can be many 
equilibria, and global instability requires every relevant local 
equilibrium to be unstable; neglecting this invalidates the 
conclusions. We discuss the relevance of ambiguous circuits 
(Thomas and D’Ari, 1990) and consider simple classes of 
nonlinear functions that generate these, including the hat 
shaped viability functions that generate homeostasis in 
Daisyworld models. We demonstrate that the May results are 
unreliable even for the simplest families of nonlinear systems 
that model common biological, physical or artificial systems. 

Introduction 
An influential early paper (Gardner and Ashby, 1970) used 
computer simulations to assess the probability that a large 
system of interacting component parts that has been 
assembled at random, or has grown haphazardly, will be 
stable or unstable. They considered systems where the 
interactions between parts were linear, and looked at how the 
expectation of stability changed as the number of variables 
increased. This was a theoretical study, to be motivated by its 
possible application to both biological and man-made 
systems: brains (real or artificial), planetary climate systems, 
social or financial systems, ecosystems. The conclusion was 
the suggestion that all such large (random or haphazard) 
complex linear dynamic systems may be expected to show the 
property of being stable up to some critical, fairly small, level 
of connections; but above that phase transition value they are 
overwhelmingly likely to be unstable. From this it could be 
deduced that if one observed large complex linear systems 
that were indeed stable, there must be something exceptional 
and non-random about the way that the parts were connected. 
 The influence of this work stems primarily from its 
extension and development by Robert May, and the 

subsequent proliferation of a wide body of research in this 
area. He replicated a version of the results analytically rather 
than computationally (May, 1972), and claimed that their 
validity extended beyond the linear systems of Gardner and 
Ashby (hereafter: G&A) to systems “which in general may 
obey some quite nonlinear set of first-order differential 
equations”. May’s interest mainly focused on ecological 
systems, and a subsequent book (May, 1973) largely set the 
agenda for discussion of the relationship between complexity 
and stability in ecosystems ever since. 
 Before this work there was a common perception that the 
more diverse was the range of species in an ecosystem, the 
more robust and resilient to perturbations that system would 
be; and further, it was often assumed that this may well be due 
to some underlying law of large numbers that could apply 
very generally across all sorts of systems with many 
interacting components. But the work of G&A and May, 
apparently using very minimal mathematical assumptions, 
appeared to suggest that the opposite was true – at least, in the 
absence of further specific constraints. So subsequent 
argument and analysis have tended to focus on what further 
constraints, what limitations on the number, sign and size of 
interspecies interactions, might be necessary in order to make 
it likely that a complex ecosystem was stable. The 
mathematics, it has largely been assumed, is relatively simple 
and correct. Hence if we want to explain the existence of 
complex stable systems, it looks like we need to add further 
assumptions. 
 In this paper, we shall demonstrate that the reasoning 
within these two primary sources (Gardner and Ashby, 1970, 
May, 1972) is partially invalidated through omission and 
errors, and in particular should not be generalised in this way 
to nonlinear systems. Firstly, we draw attention to a 
programming error in the G&A paper, which has been noted 
previously (Solow et al., 1999). Secondly, we point out that 
May’s attempted extension to nonlinear systems fails to 
specify the distribution from which the relevant connection 
strengths are drawn.  
 Thirdly, and fatally to May’s reasoning, we point out a flaw 
where he claims to go beyond the purely linear systems of 
G&A towards a more general set of nonlinear systems. May 
considers local stability at just a single fixed point in the space 
of possible values for the system, a point that makes sense 
when considering linear systems with negative self-
interactions. Unfortunately, when we move on to nonlinear 
systems there can be a large (and in some circumstances 
unlimited) number of points of potential stability to consider. 



Global instability would require local instability at every one 
of those points. Hence the probability of global stability will 
be underestimated if one just considers local stability at a 
single fixed point, as May does. 
 These various criticisms are, as far as we are aware, all 
drawn together here for the first time. We present examples 
demonstrating that it is not merely exotic nonlinear functions 
that raise these issues. Even simple monotonic nonlinear 
functions such as sigmoids, or the simplest piecewise linear 
functions with a single change of slope, are sufficient to 
invalidate the reasoning. Hat shaped viability functions, as 
used in Daisyworld models, are discussed and it is shown how 
stability arises independently of the sign of the opposing 
effect. The ‘ambiguous circuits’ so produced are related to the 
multistationarity analysis of Thomas (Thomas and Kaufman, 
2001a, 2001b). 
 These flaws in the two foundational papers by Gardner and 
Ashby (1970) and May (1972) suggest that a radical 
reappraisal is needed in the mathematical foundations of a 
substantial body of work that has built up over some 40 years. 
Rather than seeking a route to stability by adding further 
constraints to these abstract models, we need to open the 
doors to those possible locations of stability that have until 
now, through error or omission, been excluded. The 
significance goes beyond ecosystem theory to the study of all 
kinds of natural and artificial systems with complex nonlinear 
interactions, including financial systems (Haldane and May, 
2011). 

Gardner and Ashby on Linear Systems 
Their short paper, a Letter of less than one page in Nature 
(Gardner and Ashby, 1970), was an early example of a 
computer simulation, using a Monte Carlo approach. They 
considered a very simplified formal model of any large system 
of many interacting parts. This could be traffic at an airport, or 
the neurons in a human brain. They asked the question: 
supposing one did not know all the details of the interactions 
between component parts, but modelled these as coming from 
some random distribution that gave the signs and sizes of 
these interactions, then what was the chance that such a large 
system will be stable? Although in the real world most of 
these large systems, perhaps biological or social, will be 
grossly nonlinear, they explicitly restricted themselves to 
considering only systems with linear interactions, as a first 
step towards a more general treatment. They were interested 
only in fixed point equilibria. 
 The model had n component parts. The intention was to 
investigate how the generic properties of such systems varied 
as n increases. The instantaneous state of the system can be 
expressed by a vector x, where xi represents the current value 
of the ith variable. In the very general case of nonlinear 
systems we would have, with different nonlinear functions for 
each i: 

  

€ 

dxi
dt = NonLinFni(x1,x2,…,xn ) 

 
However in this restricted linear case this simplifies to a 
weighted sum of the current values of all the variables: 
 

€ 

dxi
dt = a ji

j
∑ x j

                                Eqns 1 
  

Because this is a linear system, there is a unique equilibrium 
point where for all i dxi/dt=0. The issue will be: what is the 
probability that this unique equilibrium is stable, given the 
distribution from which the weights aji in the connection 
matrix A are drawn. A is the Jacobian matrix of the first-order 
partial derivatives, and in this case of a linear system these 
terms are all scalars, of fixed size and sign; when later we 
move on to nonlinear systems, these terms will be variable in 
both size and sign.  
 G&A chose to make this a partially connected system, with 
a proportion C of the off-diagonal weights being nonzero. 
These nonzero weights were distributed evenly between -1.0 
and +1.0. Further, they ensured that all the weights aii in the 
main diagonal of the connection matrix (self-connections) 
were negative. They distributed these evenly between -1.0 and 
-0.1; in May’s version that followed, May set all these to -1.0. 
 G&A are thus discussing a family of linear feedback 
systems, parameterised by these two values: n, the number of 
component parts, and C, the connectance or the proportion of 
possible interactions between parts that are non-zero. For any 
given values of n and C, their Monte Carlo approach involved 
testing many cases of such systems, with the connection 
weights drawn from the appropriate distributions, and finding 
out through computation what proportion of the systems were 
stable at their unique equilibrium point. For low values of the 
connectance, where the interactions are dominated by the 
stipulated negative values of self-connections, the probability 
of stability was close to 100% for all values of n tested. But as 
the connectance C increased, the probability of stability fell 
away. Using the limited computational facilities of their day 
(Gardner and Ashby, 1970), they tested examples where n 
equals 4, 7 or 10. Their conclusion, illustrated by a figure, was 
that as n increases the relationship between connectance and 
stability changes from (for n=4) a smooth falling away of 
probability of stability as connectance increases towards a 
step function for values of n of 10 or more. Their figure 
(partly replicated by the thin lines in Figure 1 here) suggests 
that for n=10 this phase transition from “almost certainly 
stable” to “almost certainly unstable” occurs at or around a 
connected value of 13%, C=0.13.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Thick lines give the correct results for G&A’s 
examples, for n = 10,7,4 from left to right. Diagonal terms aii 
drawn from [-0.1,-1.0]; a proportion C of off-diagonal terms 
aji (i ≠ j) drawn from [-1.0,1.0], with the remainder zero. Thin 
lines copy the incorrect results that G&A showed for n = 10,7 
(Gardner and Ashby, 1970). 



The Programming Error 
When we replicated their method1 our results were similar for 
n=4, but noticeably different for n=7 or 10. The difference, 
shown in Figure 1, is striking, and in particular eliminates the 
sharp nature of the phase transition claimed for n=10. This 
was their main result, and May claimed on the basis of his 
analytical treatment (May, 1972) to have corroborated this: 
“The sharp transition from stability to instability, which was 
the essential feature of their [G&A] paper is confirmed”. 
Having failed to replicate this sharp transition, the first step 
was to check whether we had misinterpreted their methods. 
But eventually a colleague discovered a rarely cited 1999 
reference (Solow et al., 1999) pointing out the same problem, 
with results agreeing with our own presented here. They 
attributed the problem to some unknown programming error 
in G&A’s code. Further, they comment that this nullifies one 
of May’s conclusions where he had assumed that the G&A 
phase transition was a real phenomenon. Correction of this 
programming error does not alter the conclusion that as n 
increases and C increases the probability of stability goes 
down; it does alter the conclusion that for values of n above 
some fairly small value the relationship between stability and 
connectance turns into something close to a step function.  
 For the purposes of this paper, this programming error is 
the least important of the errors and omissions to be discussed. 
Nevertheless, it is of note that it took nearly 30 years until this 
error was pointed out in print. 

May’s analysis: linear systems 
Whereas G&A explicitly limited themselves to the 
consideration of linear systems “merely as a first step towards 
a more general treatment” (Gardner and Ashby, 1970), May 
claims to be considering systems “which in general may obey 
some quite nonlinear set of first-order differential equations.” 
(May, 1972). His method is to focus on the behaviour of such 
nonlinear equations around “the equilibrium point”. Through 
making a Taylor expansion and ignoring the higher-order 
terms one can consider this locally as a linear system. 
Thereafter, May goes on to analyse the same kind of linear 
system as G&A, while still claiming that it generalises to 
nonlinear systems.  
 Insofar as May’s analysis is restricted to the linear version, 
he tackled analytically much the same class of systems that 
G&A had tackled computationally. To be precise, this was a 
slight variant with qualitatively the same behaviour; in place 
of just C or connectance he considers a term α that is the 
mean square value of the distribution of all off-diagonal 
elements, described as expressing the average interaction 
“strength” (measured on a scale that rates the negative self-
feedbacks on the diagonal of the matrix at -1). May’s results 
were broadly similar, claiming that the central feature of the 
results for large systems is “the very sharp transition” from 
stable to unstable behaviour above a critical value that 
“accords with Gardner and Ashby’s conjecture”. As we have 
pointed out above, in fact the transition is not as sharp as 
                                                             
1 Matlab code at www.informatics.sussex.ac.uk/users/inmanh/stable 

G&A indicated; however the analytical results do agree with a 
correctly coded computational Monte Carlo approach. The 
influential take-home message from both the computational 
and analytical results has been: in any such system of many 
interacting parts, as soon as the average interaction strength 
(interactions between different component parts) rises above 
some small value, the probability that such a system will be 
stable drops to near zero. This limitation on stability becomes 
worse as n, the number of parts, increases. In the context of 
ecosystems, such a result challenges the commonly held 
assumption that the more diverse an ecosystem is, the better it 
is able to remain stable in the face of perturbations. 

Picturing Stability 
In preparation for understanding nonlinear systems, we first 
present in some detail a sketch of how to analyse and visualise 
stability in linear systems. This is basic textbook material, but 
that is the level of the flaws that we are going to exhibit when 
we move on later to nonlinear systems. For a simple system of 
two variables, we can graphically sketch the nullclines (where 
dx/dt=0 and dy/dt=0) and, by plotting the consequences of 
perturbations, analyse for stability. We start with two linear 
examples, Equations 2 and 3, sketched and analysed in 
Figures 2 and 3: 
 

€ 

dx
dt = −x + y 2 +1            

€ 

dy
dt = x

2 − y +1          Eqns 2 
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⎛ 
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⎞ 

⎠ 
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Figure 2: The nullclines for Eqns 2. Thick line for dx/dt=0, 
with horizontal small arrows indicating responses to x-
perturbations. Thin line for dy/dt=0, with vertical small arrows 
for response to y-perturbations. The heavy arrows sum these 
responses, giving a stable equilibrium at the intersection (2,2).  

 
 
 



 
The Jacobian matrix restates the fact that the self-connections 
are -1, and the cross-interactions are 0.5. These latter 
correspond to tan(X-slope) and tan(Y-slope) as those angles 
are indicated in the figure. In contrast, consider this example 
with the same nullclines, though swapped around: 
 

 

€ 

dx
dt = −x + 2y − 2      

€ 

dy
dt = 2x − y − 2           Eqns 3 
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Figure 3: Nullclines for Eqns 3. Thick line (dx/dt=0) has now 
swapped places with thin line (dy/dt=0).  Response arrows 
also differ from Figure 2, equilibrium at (2,2) is now unstable.  

 
 Here we can see that the equilibrium is unstable. We can 
note that the connection strengths, the off-diagonal terms in 
the matrix, also here tan(X-slope) and tan(Y-slope), are now 2 
rather than 0.5. So anecdotally this conforms to a general 
picture that larger connection strengths are more conducive to 
instability; though we should also note that if these connection 
strengths had been of opposite sign, of whatever strength, 
stability would have been the consequence. We can now see 
how this analysis extends to the nonlinear picture.  

May’s analysis: nonlinear systems 
May (1972) does not lay down any constraints on the very 
general class of nonlinear systems, bar implicitly that they 
should be smooth and differentiable so that they can be 
approximated by a linear system around any equilibrium point 
under investigation. For simplicity we start by restricting 
ourselves to systems of the form: 
 

€ 

dxi
dt = Fn jij

∑ (x j )                    Eqns 4 
 

and further restrict the classes of functions to just linear and 
sigmoid. We can demonstrate our essential points with a two-
variable system: 

 
      

€ 

dx
dt = −x + y                 

€ 

dy
dt = 20(1+ e(10−x ))

        Eqns 5 
 

 The numbers have been chosen to demonstrate that there 
are now several equilibria, as demonstrated by the intersection 
of nullclines in Figure 4. We can see that two of these 
equilibria conform to the pattern of Figure 2 (and are stable), 
whereas the central equilibrium conforms to the pattern of 
Figure 3 (and is unstable).  

 

 

 

 

 

 

 

Figure 4: Nullclines for Eqns 5. Three equilibria are circled, 
the central one (open circle) is unstable, the other two (closed 
circles) are stable. 

Which Distribution of Connection Strengths? 
With the aid of this sketch we can make the trivial 
observations that the addition of even a single simple 
monotonic nonlinear function, such as this sigmoid, means 
that there can be several equilibrium points and that in general 
the slope of the nonlinear function, related to connection 
strength, varies from one equilibrium to another.  
 May wishes to extend the conclusions of the linear analysis 
– where the probability of stability depends on the nature of 
the distribution from which connection strengths are drawn – 
to a nonlinear case with an undefined distribution of nonlinear 
functions. But this could only be done systematically by 
firstly specifying the distribution of parameters in the 
specified class or ensemble of nonlinear functions; and 
secondly, determining where on such functions one measures 
the slope. Since there can be several equilibria, this gives 
several possible values for the connection strength. Given that 
low connection strengths tend to be conducive to stability in 
the linear case, it can be noted that many nonlinear functions 
including these sigmoids have regions where the slope is low. 
 May would need to do all this to complete his project of 
generalizing to nonlinear systems. One could then in principle 
find the distribution of connection strengths over all the 
equilibria, and perhaps give an estimate of the proportions of 
these that were stable or unstable. But then further work 
would need to be done to assess whether the system as a 
whole was stable or not, since that is a global property. 



Global versus Local Stability 
 
For a system to be globally unstable, every single equilibrium 
point must be unstable. But for stability it is sufficient for 
there to be just a single stable equilibrium point within the 
region of interest. In the case of linear systems, global 
stability and local stability are one and the same, but May’s 
analysis fails to take account of the fact that nonlinear systems 
are different. Even if we had an estimate of the probability of 
any specific equilibrium point being stable, this may well be a 
gross under-estimate of the chance of there being stability 
somewhere within the system as a whole.  
 In some classes of nonlinear functions, e.g. sinusoidal, 
there is the potential for an unlimited number of intersections 
with a straight line, corresponding to an unbounded number of 
equilibria in the two-variable system. For well-behaved 
curves, as we can see in Figure 4, stable and unstable 
equilibria alternate so that as long as we have more than one 
equilibrium we are guaranteed a stable one.  
 For simplicity, in order to get the main points across, the 
examples above are restricted to systems of just two variables. 
Extending this to an n-variable system with n>2 requires more 
analysis. But in summary, the May analysis simply ignores 
these crucial differences between nonlinear and linear 
systems, and in doing so typically underestimates, perhaps 
grossly, the probability of stability in nonlinear systems.  

Ambiguous Circuits 
Thomas and colleagues (Thomas and D’Ari, 1990; Thomas 
and Kaufman, 2001a, 2001b) discuss the roles of positive and 
negative feedback in nonlinear biological systems. It so 
happens that their main interest is in the positive feedback 
circuits that lead to multistationarity, or switching, in genetic 
regulatory circuits. Nevertheless, much of their analysis can 
be applied to investigating issues of negative feedback circuits 
leading to homeostasis or stability. As with May, they are 
considering a dynamic system of n variables where many (but 
typically not all) pairwise interactions are present. This leads 
to the same connectance or Jacobian matrix. But unlike May 
they explicitly note that in the general nonlinear case the 
strengths (and indeed possibly the signs) of these interactions 
will vary throughout phase space.  
 Following their analysis, we note that any connectance 
matrix A can be considered as composed of multiple 
overlapping feedback circuits. For any such circuit, the 
indices are circular permutations of each other. For instance in 
a 3-variable system as sketched in Figure 5, the full list of 
potential circuits is: <a11>, <a22>, <a33>, <a12a21>, <a23a32>, 
<a31a13>, <a12a23a31>,  <a21a13a32>.  If one or more of the 
connections in such a circuit is zero, that circuit as a whole is 
non-functional; but otherwise, a count-up of the number of 
negative connection weights decides whether that individual 
feedback circuit constitutes a negative feedback (odd number 
of negatives) or positive feedback (even number). The 
limiting case of such a circuit is that constituted by self-
feedback, given by the term aii on the main diagonal; that 
minimal circuit will be non-functional, negative-feedback or 
positive-feedback depending on whether its value is zero, or 
its sign is negative or positive.  

 Thomas and Kaufman (2001a) defined a full-circuit as 
those circuits and unions of disjoint circuits that involve all 
the variables of a system. Hence in this 3-variable system, 
there are six possible full-circuits: 
<a11•a22•a33>, <a11•a23a32>, <a22•a31a13>, <a33•a12a21>, 
<a12a23a31>,  <a13a32a21> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The eight potential circuits, differentiated by 
shading, within a system of 3 variables fully interconnected. 

These correspond to the terms of the determinant of the 
Jacobian matrix. For any one such full-circuit, considered in 
isolation, the type of steady state this generates will be 
determined entirely by the signs, plus or minus, of the various 
component circuits that comprise this full-circuit. Given that 
in nonlinear systems any (or all) connection strengths can vary 
according to position in phase space, and given that the 
change of sign of any one connection will  change the sign of 
any component circuit of which it is part, we can see that this 
will alter the type of steady state generated.  
 This highlights the significance of those connection 
strengths in a nonlinear system that change in sign as one 
moves through phase space. These arise from nonmonotonic 
functions that generate circuits that switch between negative 
and positive according to context – ‘ambiguous’ circuits – and 
thereby generate ambiguous full-circuits. Such changes in 
sign, in one or many such connections, carve up the phase 
space into different regions, and one can expect the properties 
of steady states to differ from one such region to the next. 
This gives the richness of possibilities to nonlinear systems 
that is missing from the linear ones. 

Plausible nonlinearities 
It might be argued that with some systems, although 
interactions are potentially nonlinear they are ‘linear enough’ 
for there to be only a single equilibrium. Here we present and 
discuss some simple nonlinear functions, to see where and 
how they generate multiple possible equilibria. If one was to 
analyse fully the probability of stability in some class of 
nonlinear systems, these might be appropriate simple classes 
to start on. 



Sigmoids 
Sigmoids are commonly used to model physical or biological 
systems, since they represent an effect that is monotonic yet 
with asymptotes at lower and upper bounds. A widespread 
example of where they are used in artificial systems would be 
Artificial Neural Networks. We have already seen above 
(Equations 5) that even a simple monotonic function such as a 
sigmoid is not ‘linear enough’ to avoid multiple equilibria.  
The ambiguous circuits discussed above, generating changes 
in stability through nonmonotonic functions, do not exhaust 
the ways in which multiple equilibria can exist. Figure 4 
demonstrates how both stable and unstable equilibria can be 
generated merely by a change in strength of a connection 
without change in sign. 

Piecewise linear with a single bend 
Even simpler than a sigmoid, consider a piecewise linear 
function coupled with a linear function: 
 

€ 

dx
dt =max(0,2 + y − 2x)        

€ 

dy
dt = x − y       Eqns 6 

 
These are both linear except that dx/dt is constrained not to go 
below zero. As can be seen from Figure 6, this is sufficient to 
generate a pair of equilibria, one stable and the other unstable. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 6: A perturbation analysis of Equations 6, using the 
same conventions as in Figure 4. There is a stable equilibrium 
at (2,2) and an unstable equilibrium at the origin (0,0). 

Sinusoidal functions 
 
We have seen how the single inflexion of a sigmoid allows the 
possibility of 3 intersections with a straight line and hence 3 
equilibria. Crudely speaking, the more bends the more 
possibilities for intersections, and with oscillatory functions 
such as a sine wave the slope changes in sign repeatedly and 
indefinitely. The combination of a straight line and a sine 
wave can lead to an arbitrary number of equilibria that will 
alternate between stable and unstable. Going further, it can be 
shown (Kaufman and Thomas, 2002) that a system of 3 
variables: 

€ 

dx
dt = −bx + sin(y)         

€ 

dy
dt = −by + sin(z)  

€ 

dz
dt = −bz + sin(x)                                           Eqns 7 

can, depending on the parameter b, move from having a single 
steady state for b>1, through multiple steady states as b 
decreases, with the number of steady states tending to infinity 
as b→0. The dynamics change from simple to chaotic, with 
periodic or multiperiodic windows. The many changes of sign 
within the regions where nullclines intersect provide 
ambiguous circuits and increase the richness of possibilities.  

Hat-shaped functions 
 

 
Figure 7: Three ‘hat-functions’ with broadly similar 
consequences: gaussian, truncated parabola, and witches hat. 

 
Unimodal  ‘hat-shaped’ functions whose slopes have a single 
change of sign are an important class of simple nonlinear 
functions that share some of the asymptotic properties of 
sigmoids. The examples in Figure 7 share the property of 
dropping to zero (or approaching zero in the case of a 
gaussian) each side of a central region. If we take any of these 
hat-functions as y=H(x), this could represent a viability 
function of an organism or species y that can only survive (in 
the case of the gaussian version: survive to any significant 
level) within some  range of values of an environmental 
variable bounded above and below. These can be considered 
amongst the most basic of nonmonotonic functions, and it 
turns out that they do indeed play a crucial role in giving rise 
to homeostasis, or a particular form of stable equilibrium, in 
Daisyworld models. Those who use Daisyworld models 
(which are one class of nonlinear complex system) assert that 
homeostasis arises naturally in these, whereas many critics 
such as Kirchner (2002) consider the probability to be 
vanishingly small unless the parameters are fixed somehow. 
This controversy illustrates some of the archetypal contrasting 
viewpoints presented in the complexity-stability debate, and 
hence we shall review this at greater length. 

Daisyworld 
 Lovelock introduced the Daisyworld model (Watson and 
Lovelock, 1983) as a possible explanation of how organisms 
coupled in mutual feedback with some environmental variable 
could form a homeostatic system, biotic-environmental, as is 
proposed in the Gaia Hypothesis (Lovelock, 1972). The Faint 
young Sun paradox (Sagan and Mullen, 1972) suggests that 
despite the heat output of the sun changing significantly over 
the last few billion years the planetary climate has maintained 
itself around the temperatures conducive for life. The Gaia 
Hypothesis suggests that this arises through homeostatic 
properties of the interactions between biota and environment. 
In the Daisyworld model the organisms (Daisies) have a 
viability whose dependence on temperature is given by a hat-



function; the truncated parabola version is used in Watson and 
Lovelock (1983). In turn, through differential absorption or 
reflection of sunlight, these Black or White Daisies had a 
positive or negative affect on the same local temperature that 
influenced their viability. Such systems can be analysed for 
stability in the context of noise or perturbations at two levels.  
 In the first instance, any equilibrium state of such a system 
can be analysed for stability or instability in the presence of 
small levels of noise; only stable equilibria will persist, and 
only stable equilibria that have the biota (Daisies) within their 
viability zone are relevant. But the main interest of 
Daisyworld models is the extent to which such stable 
equilibria can persist in the face of major systemic external 
perturbations, such as major changes in heat output of the sun. 
It turns out that the Daisyworld temperature is maintained 
within the viability zone for significantly greater ranges of 
solar forcing with the biotic feedback to the local temperature, 
as compared to without such feedback. This homeostasis 
arises from the nonmonotonic nature of the hat-function. 
 

 
Figure 8: The witches hat-function represents the dependency 
of Black Daisies on local temperature.  

 
Harvey (2004) showed how a simplification of the 
Daisyworld model produced the same effects, using a witches 
hat-function. A reduced version of such homeostasis can be 
shown with just one species of Daisies, e.g. Black ones. With 
Y black daisies, local temperature T, level of solar forcing S, 
then for suitable constants k1 k2 we have: 
 

€ 

dY
dt = H(T) −Y     

€ 

dT
dt = S − k1T + k2Y      Eqns 8 

 
The equilibria are shown where the corresponding lines 
intersect in Figure 8. The different sloping lines, intersecting 
the temperature axis at A1, A, A2, correspond to different 
possible levels of solar forcing. It can be seen that, depending 
on the level of solar forcing, there is either one equilibrium 
(e.g. at A1 or lower temperatures, or at A2 and higher 
temperatures) or three (e.g. A, B, C). This latter case gives us: 
a possible stable equilibrium with zero Daisies at A; or an 
unstable equilibrium with Daisies at B, the instability being 
despite the temperature being viable; or a further stable 
equilibrium at C with Daisies present within their temperature 
viability-zone. This last stable equilibrium is the focus of 
interest, and we consider the range of solar forcing for which 
C exists; i.e., for which there is a stable population of Daisies 
within the local temperature viability zone. From inspection of 
Figure 8 we can see that the biotic feedback (from Black 

Daisies increasing local temperature) has given rise to viable 
local temperature over a wider range of solar forcing 
(corresponding to the range A1↔A2 in the figure) than in the 
absence of such feedback (corresponding to D↔A2, the 
unassisted viability range of the hat-function).  
 Thus the presence of Black Daisies extends the range of 
viability towards lower solar forcing (the ‘faint young sun’); 
conversely, White Daisies (giving rise to a line ABC with a 
negative slope in contrast to the positive slope in Figure 8) 
would extend the range of viability towards higher solar 
forcing, a hotter sun. This increased range of homeostasis 
arises from the nonmonotonic nature of the hat-function 
generating extra possible equilibria.  

Criticism of Daisyworld 
This present analysis of the G&A and May papers was 
originally motivated by work on Daisyworld models (Harvey, 
2004) that are one class of these nonlinear systems of a Gaian 
biota/environment. Such models display homeostasis under a 
wide range of conditions, yet critics frequently voice the 
suspicion that this must be because the parameters are 
carefully chosen from an improbable subset, biased towards 
negative feedback, in order to achieve stability. For instance 
Kirchner (2002) suggests that Gaian regulation depends on an 
implausible assumption that the influence of biota on the 
environment have a strong tendency to be environment-
enhancing rather than environment-degrading. This, it is 
implied, suggests that such influence has been biased by the 
modeler to have the appropriate sign, positive or negative. 
Yet, as is shown in Harvey (2004), regardless of the sign of 
such a biota→environment effect, when combined with a hat-
shaped viability function environment→biota, the resulting 
ambiguous circuit has the potential for both stable and 
unstable equilibria within the viability range. Stable equilibria 
will inevitably be ‘selected’ in preference to unstable, but 
since this is independent of the sign of the 
biota→environment effect it cannot be attributed to some 
biased choice of this sign. In either case the viable stable 
equilibrium gives a context that defines this effect as locally 
environment-enhancing.  
 This has inevitably been a limited review of the basics of 
Daisyworld models, missing out many layers of subtlety. For 
instance the role of hysteresis has not been mentioned, and the 
significance of those stable equilibria that are within the 
viability zone, as contrasted with stable equilibria 
corresponding to extinction, has been treated only briefly. But 
the main point to be emphasised here is that the interesting 
(and often counter-intuitive) properties of these models arise 
from exactly those features of nonlinear systems that May had 
omitted in his analysis. 
 Importantly in this context, the homeostasis of Daisyworld 
systems extends to those with large numbers of variables. 
Applying these lessons to the construction of artificial 
systems, it has been demonstrated (Harvey, 2004) that a 
simulated robot coupled with the environment via an 
arbitrarily large number of interactions comprising hat-
functions (on sensory inputs) and linear functions (on 
consequent outputs) could find a homeostatic equilibrium. 
This is so even if the signs of the linear functions are set 
positively or negatively at random, and the relevant 



parameters are varied across some two orders of magnitude. 
Other examples of systems with multiple interacting 
component parts achieving equilibrium through the use of hat-
functions can be found in Dyke et al. (2007) and McDonald-
Gibson et al. (2008). In these cases there was a single 
environmental variable, and numerous biotic variables subject 
to hat-function viability limits. The Daisystat (Dyke, 2010) 
extends this approach to multiple environmental variables.  

Conclusions 
The core of this paper is the demonstration that May’s (1972) 
generalization to nonlinear systems – of results that largely 
hold true in linear systems (Gardner and Ashby, 1970) – is 
flawed. The method, through linearization around an assumed 
single equilibrium point, will at best give local stability; there 
may be many equilibria, and global stability can arise through 
stability at just one of these. With nonlinear interactions the 
size, and potentially also the sign, of the connection strengths 
varies according to position in phase space, and there is no 
attempt to account for this. To be rigorous, the probability of 
global stability would depend on assessing the (differing) 
probabilities of local equilibria, and combining these to 
calculate the probability that at least one was stable. No 
attempt at this was presented in (May, 1972), and hence his 
conclusions should be rejected. His calculations 
underestimate, potentially by a massive factor, the probability 
of stability in systems “which in general may obey some quite 
nonlinear set of first-order differential equations”. 
 The ambiguous circuits proposed by Thomas and 
colleagues in their analysis of multistationarity have been 
used above to explain how a plurality of equilibria can be 
generated by nonmonotonic functions. But even simple 
monotonic functions such as a sigmoid can generate 
alternating stable and unstable equilibria. A number of 
different simple nonlinear functions were analysed, to 
demonstrate just how easy it is to breach the assumptions 
upon which May was relying. 

Does this matter? 
Daisyworld models, particularly as the number of variables 
increase, are just one example of a complex nonlinear system 
where one would expect May’s analysis to be relevant. These 
demonstrate typical properties of many families of complex 
nonlinear systems: if one treats the slower variables as 
parameters and the faster variables as thermal noise, then the 
remaining variables at intermediate timescales will settle 
down to a metastable equilibrium (that may be disturbed at a 
‘tipping point’ when a ‘parameter’ shifts enough). In ecology 
it used to be a common view that ecosystems developed 
through succession towards a single equilibrium state or 
‘climax’ (Clements, 1916); but nowadays ecologists are more 
open to the possible of multiple possible equilibria in an 
ecosystem.  
 Our intuitions based on understanding simple linear 
systems can all too easily lead us into error when considering 
complex nonlinear ones, with multiple overlapping circuits of 
feedback. This appears to be the root of the problem here. We 
are not aware of any previous exposure of these flaws in May 
(1972); indeed the author is still citing it without qualification 

(Haldane and May, 2011) in the context of ‘banking 
ecosystems’ where clearly there are nonlinearities. It took 
nearly 30 years for the basic programming errors in G&A to 
be pointed out in print, and 40 years is too long for these 
further significant flaws to remain unchallenged.  
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