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Abstract

This paper introduces the notions of �quasi�species	 and �error threshold	 from
molecular evolutionary biology� The error threshold is a critical mutation rate
beyond which the e
ect of selection on the population changes drastically� We
reproduce� using GAs � and hence �nite populations � some interesting results
obtained with an analytical model � using in�nite populations � from the evo�
lutionary biology literature� A reformulation of a previous analytical expression �
which explicitly indicates the extent of the reduction in the error threshold as we
move from in�nite to �nite populations� is derived� Error thresholds are shown
to be lower for �nite populations� Moreover� as in the in�nite case� for low muta�
tion rates recombination can reduce the diversity of the population and enhance
overall �tness� For high mutation rates� however� recombination can push the pop�
ulation over the error threshold� and thereby cause a loss of genetic information�
These results may be relevant to optimizing the exploration�exploitation balance
in GAs� Choices for critical GA parameters such as population size� mutation and
recombination rates� should be reconsidered in the light of this new knowledge�

� Introduction

One of the major issues in genetic algorithms 
GAs� is the relative importance of two genetic
operators� mutation and recombination 
crossover� �Spe���� Although there exists a large
body of conventional wisdom concerning the roles of recombination and mutation� these
roles have not been completely characterized for typical �tness landscapes� Recombination



is the primary operator distinguishing GAs from other stochastic search methods� therefore
much theoretical work in GAs is aimed at depicting the role of recombination in genetic
search� but precise knowledge is still lacking �MFH��� MH��� Mit����

We are not alone� Questions on the evolution of sex and the role of sexual reproduction
in nature have been among the major unsolved issues in evolutionary biology over many
decades� Several hypotheses and models have been proposed to explain why sexual re�
production is maintained in most organisms in spite of the high cost associated with it
�Wil��� MS��� ML���� The GA theory community is beginning to pay attention to results
coming from evolutionary biology �Boo��� Lev��� Lev���� and in particular from the �eld of
population genetics� There is much more to be learned that is of potential interest to GA
theory�

In this paper we reproduce� using GAs � and hence �nite populations � some interesting
results obtained with an analytical model � using in�nite populations � from the evo�
lutionary biology literature� These results concern the interaction between recombination
and mutation on evolving populations of the so called �quasi�species	 
explained below�� and
show some unexpected e
ects of recombination on population evolution and the magnitude
of the �error threshold	 � The error threshold is a critical mutation rate at which the pop�
ulation evolutionary dynamics change radically� There exists a phase transition between
and �ordered� 
selection�dominated� regime and a �disordered� 
mutation�dominated� one�
Mutation rates above this critical value cause a loss of the genetic information gained so far�
The notion of error threshold� then� seems to be related to the idea of an optimal balance
between exploitation and exploration in genetic search� Molecular biology research reveals
that real virus populations � which are very e�ciently evolving entities � have mutation
rates very close but below their theoretically expected error threshold �� Therefore� we argue
that the notion of error threshold may well be related to the notion of optimal mutation
rates in GAs �

Section � introduces the theory of quasi�species� and the notion of error�threshold� Section
� reformulates an expression introduced by Nowak and Shuster �NS���� This new refor�
mulation explicitly indicates the reduction in the error threshold as we move from in�nite
to �nite populations� Section � also discusses the relevance of error threshold to optimal
mutation rates� Section � gives a detailed recapitulation of an analytical model dealing with
recombination in populations of quasi�species� Section � describes the GA implementation
translating this analytical model� Section � presents the main results� and ��nally� section
� discusses the results and their relevance to the theory of GAs�

� Quasi�Species

The concept of a �quasi�species	 was developed in the context of polynucleotide replication�
and in particular studies of early RNA evolution �Eig��� ES��� EMS���� A protein space�
�MS��� or more generally a sequence space� can be modeled as the space of all possible
sequences of length � drawn from a �nite alphabet of size A� Each sequence has a �tness

�Here we simplify by assuming a uniform mutation rate across the genotype and through time�
We thank C� R� Stephens for pointing out that these assumptions may be misleading for real virus
populations

�For the purposes of this paper� we de�ne the optimal mutation rate as that which solves the
problem with optimal e�ciency� i�e� the least number of function evaluations



value which speci�es its replication rate� or expected number of o
spring per unit time� The
�tnesses of all A� possible sequences de�ne a ��tness landscape	� When A � �� a binary
alphabet� the �tness landscape is equivalent to specifying �tness values at each vertex of
a ��dimensional hypercube� with some mathematical imagination 
and some caution � � � �
this can be pictured as spread out over a geographical landscape where �tness is analogous
to height� and the dynamics of evolution of a population correspond to movement of the
population over such a landscape�

Given an in�nite population� and a speci�ed mutation rate governing errors in 
asexual�
replication� one can determine the stationary sequence distribution reached after any tran�
sients from some original distribution have died away �EMS���� Unless the mutation rate
is too large or di
erences in �tnesses too small� the population will typically cluster around
the �ttest sequence
s�� forming a concentrated cloud� the average Hamming distance be�
tween two members of such a distribution drawn at random will be relatively small� Such a
clustered distribution is called a �quasi�species	�

With a large �nite population on the same �tness landscape the sequence distribution after
many generations will typically be similar to that of the in�nite case� The distribution will
be noisy due to stochastic e
ects of the �nite population size N � N is commonly far less than
the number of possible sequences A� � With �nite populations we can relax the requirement
of waiting for a stationary �nal distribution� a �nite population will cluster very earlier on
in an evolutionary run� Even in the absence of selective pressures the convergence time for
a population of size N is of order N generations in asexual populations and approximately
order N 
ln
������ generations in a sexual population with uniform crossover �AM����

With �nite populations we can also relax the requirement for a signi�cant variation of �t�
nesses across the landscape� Even on a completely �at �tness landscape� where all sequences
have the same �tness� a �nite population will drift around in a quasi�species cluster or family
of clusters �DP����

These general results are relevant to GAs� with mutation and crossover in a �nite population�
Populations will genetically converge to a cluster or quasi�species after a limited number of
generations� the �width	 of such clusters being largely determined by the balance between
selection 
inward� and mutation 
outward� pressures� modi�ed by the e
ects of genetic drift�
For long term evolution within a GA� almost all of the run will be with such a clustered
population� This genetic convergence is not a bar to further exploration and increase in
�tness� and GAs can be modi�ed to behave appropriately� as in Species Adaptation Genetic
Algorithms �Har��� Har����

��� The Error Threshold

When there are variations in �tness � the landscape is more or less rugged � and a
low mutation rate� then the stationary sequence distribution of an in�nite population will
be focused around the point
s� of highest �tness� The same can be seen with a �nite
population centered around point
s� that are locally of highest �tness� As the mutation
rate is increased� the local distribution widens and ultimately loses its hold on the local
optima� Genetic Algorithm search can be considered as a balance between exploration 
of
the new� and exploitation 
of what has been previously found to be �t�� When mutation
rates are too high then the search process can no longer exploit its history and it becomes
random search�



This can be seen at its clearest in an extreme form of a �tness landscape which contains
a single peak of �tness � � �� all other sequences having a �tness of �� With an in�nite
population there is a phase transition at a particular error rate p� the mutation rate at each
of the � loci in a sequence� Following �ES���� we can determine analytically this critical
error rate� which is de�ned as the rate above which the proportion of the in�nite population
on the peak drops to chance levels� The characteristic population distribution above and
below this phase transition can be observed in �gure �a�

Let q � � � p be the per�locus replication accuracy� Then at the phase transition the
probability of accurate replication of the �master sequence	 on the peak needs to be balanced
by its superior replication rate� so as to equate with the replication of all the other sequences

we are� following Eigen and Shuster model �ES���� ignoring back�mutations from these to
the master sequence�� Thus

�q� � �
h

�� p�

�

p

i�p
� � 
��

where p is very small� so we can approximate the contents of the square brackets by e���
which leads to

p �
ln
��

�

��

For mutation rates lower than this critical value� the error threshold� the proportion of
master sequences in the population will build up� giving the quasi�species centered around
the peak�

The error threshold is of signi�cance for GAs because it determines a critical upper bound for
the balance between exploration and exploitation� In general� to maximize exploration the
mutation rate should be as high as possible� but it should not be above the error threshold�
Thus� the optimal balance between exploration and exploitation in GAs is assumed to be
found with a mutation rate close to the error threshold but below it�

The single peak landscape abstraction employed here� is analogous to an scenario more
familiar to the GA community� that is� a single block in the Royal Road Landscape �MFH����
In the �nal stage of the search in this landscape� the �nal block
s� need to be completed
without losing those that have been completed already� These spiky landscapes are one
extreme of a continuum� with any less rugged landscape the error threshold would be larger
and the phase transition less sharp�

The above calculations are for in�nite populations� For practical applications in GAs we
must consider how the picture changes for �nite populations�

� The Error Threshold in Finite Populations

In �NS��� the calculations of an error threshold for in�nite asexually replicating populations

which we will now call p��are extended to �nite populations 
where we shall call the critical
rate pN for a population of size N �� In this latter case it is easier for a population to lose its



grip on the solitary spike of superior �tness in a single peak landscape because of the added
hazard of natural �uctuations in a �nite population� The main result is presented as�

The error threshold can be expanded in a power series of the reciprocal square
root of the population size� and this increases with ��

p
N in su�ciently large

populations�

More precisely� the reciprocal square root factor applies to the di�erence between the critical
replication accuracy in an in�nite population qmin
��� and the equivalent qN in a population
size N � The reference is to the second term in the following expansion� on the assumption
that the third and subsequent terms are relatively insigni�cant and can be ignored �NS����

qN � q�

�
� �

�
p
� � �

�
p
N

�
�
� � ��
�N

�

� � �����
�N���

� � � �

�

��

where as before � is the genotype length� and � is the selection strength or superiority
parameter of the master sequence� In many practical circumstances � may lie between �
and �� this implies� for values of N � ��� and of � � ��� that qN should di
er from q�
by only of the order of � or less� However� error thresholds are usually reckoned in terms
of critical error rates p � � � q� and it turns out that the proportionate changes in critical
values of p are much more signi�cant in �nite populations than the changes in q� Equation
� was introduced by Nowak and Shuster �NS���� Here we derive a reformulation of this
equation� which makes explicit the reduction in the critical mutation rate as we move from
an in�nite population to one of size N � In other words� instead of calculating the critical
replication accuracy 
qN �� we wish to calculate the critical error rate 
pN ��

p� � pN
p�

�
�
p
� � �
�� p��

�
p
Np�


��

ignoring further terms in the expansion� Using 
�� to substitute for p�� we have as the
proportionate reduction in the error threshold�

p� � pN
p�

�
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N

�
�

ln
��
� �
�

�

��

For large values of � the second term in the bracket is relatively insigni�cant and we have

p� � pN
p�
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p
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Alternatively� we can present equation 
�� as�
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In the experiments to be discussed below � � ������ the genotype length is small at � � ���
making it less easy to ignore in equation 
��� We can calculate in this case p� � ���������
p���� � �������� a reduction of ����� and p��� � �������� a reduction of ����� �

��� Relevance of Error Threshold to Optimal Mutation Rates

On a single spike �tness landscape� the error threshold speci�es a maximum mutation rate
above which the population or quasi�species will lose any 
above random� presence that it
may have on the peak� What relevance does this have to GA problems� where researchers
are generally more interested in the di
erent problem of �nding the peak in the �rst case!
GA researchers may be more concerned to �nd an optimalmutation rate than the unfamiliar
concept of an error threshold� In this section we shall brie�y and selectively survey work on
optimal mutation rates� and then relate these to the concerns of this paper�

Optimal mutation rates can be thought of as those which maintain an ideal balance be�
tween exploration and exploitation� Too low a mutation rate implies too little exploration
� in the limit of zero mutation� successive generations of selection remove all variety from
the population� and once the population has converged to a single point in genotype space
all further exploration ceases� On the other hand� clearly mutation rates can be too ex�
cessive� in the limit where mutation places a randomly chosen allele at every locus on an
o
spring genotype� then the evolutionary process has degenerated into random search with
no exploitation of the information gleaned in preceding generations�

Any optimal mutation rate must lie between these two extremes� but its precise position
will depend on a number of factors including� in particular� the form of the �tness landscape
under consideration� In conventional GAs� choice of mutation rates tends to be a low �gure�
typically ���� or ����� per bit as a background operator� However� the work on quasi�species
and error thresholds 
section �� suggest that evolution works e�ciently when mutation rates
are directly below the threshold value above which information is destroyed� This idea is
supported by T� B"ack �B"ac��� who suggests that �an optimal mutation rate for a GA is
relatively large and turns mutation into an additional search operator��

Moreover� in conventional GAs� mutation rates are usually decided upon without regard
to the genotype length� This despite suggestions from experimentation in �SCED��� that
optimal rates mopt � ������
N������l������ 
where N is population size and l is genotype
length�� in �HM��� that earlier higher values should decrease exponentially towards mopt �

���
N
p
l�� for some constant �� and in �DeJ��� quoted in �HM��� as recommending mopt �

��l� The notion of error threshold con�rms that the choice of an optimal mutation rate
should consider the genotype length� Thus� such formulae point towards the right direction
in this respect� However� they cannot be generally applicable� because they ignore at least
two factors which are relevant�

�� Selection pressure�

�� �Junk	 or redundant loci�



One can propose simple thought experiments that support these ideas� Considering the �rst
point� selective pressure� a generational GA can be seen as alternate applications of selection
and then genetic operators� Any given selective pressure SH can be emulated by two succes�
sive applications of a lower selective pressure 
SL where SLSL � SH � without genetic opera�
tors� If the only genetic operator under consideration is mutation� where application of the
optimal mutation rate is symbolized byM � then one generation of selection 
at the original
selective pressure� followed by mutation can be expressed as SHM � SLSLM �� SLMSLM �
Clearly optimal mutation rates cannot be identical under these di
erent selective pressures�
so any general formula must take account of this�

Turning to the second point� let us consider a di
erent thought experiment where for geno�
types of length l the optimal mutation rate under selective pressure S is m mutations per
genotype� We could in principle add an arbitrary number of �junk	 or redundant loci to the
genotypes� without a
ecting the evolutionary dynamics as long as the expected number of
mutations in the l relevant loci remained at M � However� direct application of the formula
�m mutations per genotype	 
calculated on the new genotype length of �l� gives a revised�
sub�optimal� mutation rate applied to the non�redundant loci� So once again� any general
formula expressed in terms of mutations�per�genotype must take account of redundancy�

It can be seen from this discussion that general formulae for optimal mutation rates cannot
be along the lines cited above� It can� however� be proposed that a mutation rate just
below the error threshold is an optimal mutation rate for one extreme form of landscape
under speci�c conditions� The single peak landscape studied above represents this extreme
case� where the limiting behavior of the population as mutation rates increase gives rise to
a phase transition at the error threshold� Here there is explicitly no redundancy� and the
error threshold is indeed calculated in terms of selective pressure�

Suppose one starts with a population genetically converged at some point on the landscape
other than the peak� and is seeking to 
a� �rst �nd and then 
b� maintain a presence on the
peak� Then 
in the absence of elitism �� we need a mutation rate which 
a� maximizes the
rate of 
in this context� random search and yet 
b� lies below the error threshold�

So error thresholds can be seen to be related to optimal mutation rates in this one extreme
special case� It should be mentioned here that some authorities suggest that� in the natural
world� e
ective mutation rates per genotype are generally maintained close to the error
threshold at something of the order of one per genotype where genotype lengths vary from
���� 
bacterial viruses� to ����	 
humans� �ES����

� Viral Quasi�Species and Recombination

Most mathematicalmodels describing quasi�species focus on point mutations as the principal
source of variation� However� Boerlijst et al� �BBN��� propose a mathematical model of
quasi�species dynamics which incorporates both mutation and recombination� In particular
they study virus populations� Viruses are infectious agents found in all life forms 
plants�
animals� fungi and bacteria�� A virus particle consist of a core of nucleic acid� which may
be DNA or RNA� surrounded by a protein coat� Certain viruses named �retro�viruses	 
e�g�
HIV� can recombine their genetic material� They carry two copies of their genetic material

�We are here assuming that circumstances do not allow elitism to be a viable option � for
instance there may be some noise in �tness evaluations�



in every virus particle� thus� recombination may occur when two distinct strains of the
same virus simultaneously infect a single cell� Virus populations are quasi�species� The
model of Boerlijst and co�workers speci�cally deals with retro�virus recombination� They
�rst consider viral quasi�species dynamics without recombination� Distinct viral strains
are represented by bitstrings of length L� A set of di
erential equations 
see Appendix�
describe the change in uninfected cells x� infected cells yi and free viruses vi� In this model
a parameter� p� stands for the mutation rate per bit� Next paragraph describes the analytical
results obtained in this case�

From now on� following the notation of Boerlijst et al�� we will use pc to indicate the critical
mutation rate 
or error threshold��

Without mutation 
p � ��� the strain with the largest reproductive ratio Ri will outcompete
all other strains� With mutation 
p � �� there is a critical error rate� pc 
the error threshold
discussed in section ��� beyond which the strain with the highest Ri fails to be selected

any more than any other strain�� Boerlijst et al� consider a single peak �tness landscape�
where a strain F has the highest reproductive ratio� RF � and all other strains have the
same but lower reproductive ratio R� If p � pc the quasi�species will be centered around
the �ttest strain F � which will be the most abundant� If p � pc the �ttest strain F will
not be preferentially selected and each virus strain will have essentially the same relative
abundance�

��� Bitstring recombination model

In �BBN��� the mathematical model is then adapted to include recombination 
see Ap�
pendix�� and here we will summarize their results� Variables for double infected cells� and
for viruses produced by these cells are incorporated� Double infected cells Yij � are infected
with strain i and superinfected by strain j� vij represents the free virus produced by these
super�infected cells� of which �� will be homozygous type i� �� will be homozygous type
j� and �� will be heterozygous� Due to this characteristic of the model� the recombination
rate� r� has a maximumat r � ���� because only heterozygous virus particles can 
e
ectively�
recombine� To model recombination itself �uniform crossover	 �Sys��� is employed�

The steady state structure of the new set of equations including recombination is studied�
Bitstrings have length ��� The recombination rate has a maximum at r � ���� for the
reasons given above� Two abstract �tness landscapes� 
a� Isolated peak landscape� and 
b�
Plateau landscape� are considered�

�a� Isolated peak landscape First� the case where only one strain F has an increased Ri

value� a so�called �isolated peak	 landscape� is studied� This single bit string has �tness
RF � �� all other strings 
designed as mutants� have �tness Ri � ���� The steady state
mutant distribution for this landscape� produces the following results� For an error rate
of p � ������ the recombinant population 
compared against the population without
recombination� is more compact in that there are less rare mutants� but there is also less
of strain F � This distribution is qualitatively similar to that obtained experimentally for
�nite populations 
in this paper�� thus �gure �a illustrates this distribution� although
for a distinct mutation rate�

On the other hand� for a slightly increased error rate of p � ������ recombination drives
the population beyond the error threshold� resulting in an almost uniform distribution



of mutants 
see �gure �b� again for a qualitatively similar distribution�� Thus� for an
isolated peak landscape� recombination is always disadvantageous for the virus� because
it decreases the abundance of F and shifts the error threshold towards lower mutation
rates�

�b� Plateau landscape In this scenario� the �tness of mutants close by the �ttest strain
F is increased to RH�

� ���� and RH�
� ��� � Where H� is the set of all mutants with

a Hamming distance of � from the �ttest string F � and H� the set of all mutants with
a Hamming distance of � from F � In this case the steady state distribution of mutants
shows that� before the error threshold at p � ������ the recombinant population is
again more compact� and it has more of its �mass� in the middle of the �tness plateau

�gure �a mirrors these results� although for a distinct mutation rate�� If the error rate
is increased� at a certain point 
around p � ������� and fairly suddenly� recombination
can no longer keep the population in the middle of the �tness plateau 
see �gures
�b and �d�� On the other hand� the transition around the error threshold with no
recombination is very smooth� and the magnitude of the error threshold itself is larger�
acting around p � ���� 
�gure �c qualitatively mirrors this behavior�� Thus� in this
situation� recombination is advantageous to the virus for small mutation rates�

����� Main conclusions for in�nite recombinant populations

To summarize� Boerlijst et al� main conclusions are�

� For small mutation rates 
i�e� below the error threshold�� recombination can focus the
quasi�species around a �tness optimum�

� Recombination shifts the error threshold to lower mutation rates� and make the tran�
sition sharper�

� Recombination is advantageous 
in the sense that it increases average population �t�
ness� if �tness is more correlated �as in the plateau landscape 
b� � and if the mutation
rate is su�ciently small�

Finally� the authors claim that they have extensively tested the diploid bit�string model for
other �tness distributions such as �smooth	 �tness peaks� multiple peaks and random distri�
butions� that they have looked into alternatives to uniform crossover� such as one�point and
multi�point crossover� and that in all this cases the main conclusion holds� recombination
shifts the error threshold towards lower mutation rates and makes the transition sharper�

� Methods

Now we have described in detail the analytical model of Boerlijst and co�workers� we can
move to the discrete world of computer simulations� Results obtained using in�nite pop�
ulation models� can not be expected to automatically apply to the more realistic case of
�nite populations� Thus� we endeavored to develop a genetic algorithm simulation model
to study similar scenarios in the latter case� Moreover� the Boerlijst et al� study deals with
a particular type of recombination in viruses� Our study employs a more general scheme of
recombination � that used in GAs� For the GA implementation the following choices were
made� A generational GA with �tness proportionate selection is employed� The genetic



operators utilized are bit mutation and uniform crossover� Chromosomes have length ���
For both abstract �tness landscapes modeled� the isolated peak and plateau landscapes� the
�ttest string F is considered to be the string of all zeros � ��������������� � with no
loss of generality� Any other bitstring or strain is referred to as a �mutant	� and belongs
to one of the Hamming distance classes Hi� where i is the Hamming distance to F � in
this case the number of ones in the bitstring� To run the experiments� the populations are
initialized as follows� For the single peak landscape� around �� of the population is set on
the peak and the rest is randomly generated� For the plateau landscape �� is set on the
peak� �� on the H� compartment� �� on the H� compartment� and the rest is randomly
generated� The �tness values� for both landscapes� are those employed by Boerlijst et al�

see section ��� above�� Population sizes are set to ��� for one group of experiments and to
���� for another� This is intended to study the e
ect of population size on the magnitude
of the error threshold� To be able to compare the results with those of Boerlijst et al�� the
crossover rate is set to ��� in all experiments for sexual populations� The per bit mutation
rate p is the subject of study� thus it is varied from p � ����� to p � ����� with a step size
of ������ The number of generations per GA run is set to ���� This value was empirically
selected� the distribution of mutants is fairly stable by this point in all cases� In order to
cope with stochastic noise� each GA run is repeated �� times and the results are averaged�
GA parameters are summarized in the following table�

Chromosome length ��
Population size ��� or ����
Crossover rate ��� or ���
Mutation rate ����� to ����� Step � �����
Generations ���
Trials per GA run ��

Table �� GA parameters

� Results

The experimental results obtained with the GA model described above mirrored quali�
tatively those produced by Boerlijst et al� 
section ����� However� the error�threshold
magnitudes di
er considerably� In fact� the error threshold for �nite populations is� in all
scenarios� signi�cantly smaller than for the in�nite case�

Before further discussing the results obtained with the GA model� let us consider �a basic
principle of recombination�� as exposed by Boerlijst et� al� 
�BBN����� This principle holds
for any type of recombination� and turns out to be an important element for understanding
the e
ects of recombination in population evolution� and the stable distribution of mutants�

Consider two sequences i and j with a genetic distance dij 
for a bitstring model
dij is the Hamming distance�� Assume that these sequences recombine to produce
an o
spring k� If recombination is the only source of variation� we have

dik � djk � dij�

The genetic di
erence between the parents equals the sum of the genetic di
erence
between o
spring and each of the parents� This relation is important for our



understanding of recombination� It shows that in sequence space recombination is
always inwards pointing� 
�BBN���� p� �����

The following subsections discuss in detail the results obtained with the GA model�

	�� Single peak landscape

Figure � re�ects the distribution of mutants� above and below the error threshold for the
recombinant population in an isolated peak �tness landscape� These plots� using logarithmic
scale for the vertical axis� are almost mirror images of those shown in 
�BBN���� p� ������

Figure �a shows mutant distribution for an error rate of p � ����� with or without recom�
bination� The recombinant population turns out to be more compact � less diverse � in
some sense� there are fewer rare mutants� there is also fewer of strain F � This e
ect of
recombination can be understood as follows 
�BBN���� p� ������ Most of the population is
of strain F � If strain F recombines with e�g� a strain in H�� then� according to the principle
of recombination discussed above� the o
spring lies anywhere between F and H��

On the other hand� �gure �b shows that for a slightly increased error rate 
p � ������
recombination drives the population beyond the error threshold� resulting in an almost
uniform distribution of mutants� As it can be seen� the bulk of the recombinant population
is in the H� and H� compartments� because these contain the most strains� The explanation
suggested by Boerlijst and co�workers is as follows�

Where recombination acts as a converging operation when F is involved� it acts as
a diverging operation in other cases� If for instance two mutants in H� recombine�
the product lies everywhere between F and H�� 
�BBN���� p� �����

Similar distributions are observed at error rates of p � ������ and p � ����� respectively�
for in�nite populations �BBN����

	�� Plateau landscape

In the isolated peak landscape� recombination seems to be disadvantageous for the popula�
tion� because it decreases the abundance of F and shifts the error threshold towards lower
mutation rates� However� recombination can be advantageous for more correlated �tness
landscapes� as for instance the plateau landscape 
see section ����� Figure �a shows the
distribution of mutants in a plateau landscape for an error rate p � ���� � now with a
linear scale� It can be seen that the bulk of the population is in the H� compartment�
Recombination between two H� strains generates o
spring anywhere between F and H��
Recombination thus shifts part of the population back to the middle of the �tness plateau�
However� for a slightly increased error rate� p � ������ recombination drives� again� the
population beyond the error threshold 
see �gure �b��

	�� Population size and the magnitude of the error threshold

Figures � and � show graphically the critical mutation rate in the distinct scenarios for two
population sizes � ��� and �����

It should be mentioned that whereas for in�nite populations on a single peak landscape
the de�nition of the error threshold is straight forward 
there is a clear phase transition��



this is not the case for �nite populations 
where the transition is less sharp�� Moreover� if
�tness is more correlated �as in the plateau landscape� the transition is even less noticeable�
Nevertheless the error threshold can be identi�ed visually for �nite populations 
see �gures
� and �� with some degree of uncertainty�

Table � summarize the error thresholds values for �nite populations in the single peak and
plateau landscapes� as observed experimentally to the nearest step size of ������ Whereas
table � show the error thresholds for in�nite populations� as calculated in section � for an
asexual population in a single peak landscape� and as reported by Boerlijst et al� �BBN���
for the other cases�

It should be noticed that the error thresholds observed experimentally for �nite asexual
populations � sizes ��� and ���� � in the single peak �tness landscape� coincide very
accurately with the values for these critical errors as calculated in section � 
p���� � ��������
and p��� � ����������

Single Peak Plateau
�

 �


 �

 �




Asexual ����� ����� ����� �����
Sexual ����� ����� ����� �����

Table �� Error thresholds for �nite populations �sizes ��� and �����

Single Peak Plateau
Asexual �������� � ����
Sexual � ������ � �����

Table �� Error thresholds for in�nite populations� For the asexual population on a single
peak landscape� the value is calculated using the formula derived in section �� The others
values are taken from �gures � and � in Boerlijst et al� paper�

It can be observed that�

� The error threshold for an asexually replicating population is in all scenarios smaller
than for a sexually replicating one�

� For asexual replication� the error threshold is smaller the smaller the population size�
This reduction can not be seen for sexually replicating populations� however� this may
not be conclusive as experiments with a smaller mutation rate step should be realized�

� Error thresholds are higher for the more correlated �tness landscape studied � the
plateau landscape�

� The transition in mutant distribution around the error threshold� is sharper in the case
of sexually replicating populations compared to the asexual ones�



� Discussion

For �nite populations and in both abstract �tness landscapes studied� the stable mutant
distribution was seen to be qualitatively similar to that for in�nite populations� Thus� the
main conclusions of Boerlijst and co�workers� summarized in section ����� above� hold in
this case� However� the error thresholds are smaller in most scenarios for �nite populations�
Moreover� for asexually replicating populations� the smaller the population� the smaller the
magnitude of the error threshold compared to the in�nite case� In the single peak landscape�
the experimental results for asexually replicating populations were accurately predicted by
the analytic expression derived in section ��

The relevance of these results to the theory of GAs is twofold� First� in the study of optimal
mutation rates� if as mentioned in section ��� the notion of error threshold turns out to be
relevant in this respect� Secondly� in understanding both th role of recombination� and the
interaction between recombination and mutation in GAs operation�

Although we have studied simple �tness landscapes� the isolated �tness landscape is an
extreme case in the continuum of less rugged landscapes� The plateau landscape is a less
extreme case that also showed distinct behaviors below and above a critical mutation rate�
Further experiments are currently being designed to asses the correlation between error
thresholds and optimal mutation rates in distinct scenarios� If� as we expect� optimal
mutation rates are closely related to error thresholds� higher values for mutation rates
should generally be used in GAs for practical applications� Moreover� the following general
suggestions� could be made�

� Given that error thresholds are inversely proportional to chromosome length� the mu�
tation rate should be smaller� the longer the chromosome�

� Given that error thresholds were shown to be lower for small�sized populations� the
mutation rate should be smaller� the smaller the population size�

� Given that recombination shifts the error threshold to lower mutation rates� the muta�
tion rate should be smaller when recombination is used�

� Given that recombination was shown to increase the population average �tness in more
correlated landscapes� the more correlated the �tness landscape is� the more the ad�
vantages of using recombination�

These suggestion should be tested using more realistic �tness functions� However� simple
abstract �tness landscapes turn out to be very useful tools to explore evolutionary dynamics�
and to test hypotheses regarding the roles of genetic operations in population evolution�

Finally a computational �microanalytical	 or �agent�based	 model � in this case the GA �
could o
er some advantages over an analytical model for evolutionary biology studies� In
particular� there is the possibility of modifying the general assumption of random mating�
allowing instead more biologically inspired patterns of sexual selection� Preliminary studies
show that assortative mating can considerably increase the critical error rate� This allows�
in consequence� the use of higher mutation rates without losing genetic information� which
may have implications for the exploration aspect of GAs�
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Appendix

Boerlijst et al� model �BBN��� describes the change in uninfected cells x� infected cells yi�
and free virus vi without recombination�

dx

dt
� � � 	x� x

X
i


ivi 
��

dyi
dt

� x
X
j

Qij
jvj � aiyi 
��

dvi
dt

� kiyi � uivi 
��

In this model � is the in�ux rate of uninfected cells� 	� ai and ui are the death rates of�
respectively� uninfected cells� infected cells� and free virus� 
i is the infection rate� ki the
production rate of new free virus� and Qij is the probability of strain j mutating to strain
i� The mutation matrix is given by�

Qij � pHij 
� � p�L�Hij 
��

Here p is the mutation rate per bit� L is the bitstring length� and Hij is the Hamming
distance between strings i and j� Error free replication is given by Qij � 
� � p�L�

Equations 
���
�� are adapted to include recombination� Double infected cells Yij are added�
which are infected with strain i and superinfected with strain j� vij is the free virus produced
by this super�infected cells� of which �� will be homozygous type i� �� will be homozygous
type j� and �� will be heterozygous� The new set of equations becomes�

dx

dt
� � � 	x� xV 
��

dyi
dt

� xVi � aiyi � syiV 
��

dyij
dt

� syiVj � aijyij 
��

dvi
dt

� kiyi � uivi 
��

dvij
dt

� kijyij � uijvij 
��

Here s is the rate of super�infection� V �
P

i 
ivi �
P

ij 
ijvij is the sum of all infectious
virus and Vi �

P
j Qij
jvj �

P
j Qij

P
klMjkl
klvkl is the sum of infectious virus of type

i� after mutation and recombination� with Mjkl being the probability of strain k and l
recombining to strain j� All other variables and parameters are as described in equations

���
���
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Figure �� The e
ect of recombination on mutant distribution in a single peak �tness land�
scape for a population size of ����� The recombination rate is ���� Alogarithmic scale is
used for the vertical axis� 
a� Below the error threshold 
p � ����� the recombinant popula�
tion is more compact� 
b� For a slightly increased mutation rate p � ������ recombination
can push the population over the error threshold� Hi denotes the sum of all mutants with
a Hamming distance i to F 
the �ttest string��
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Figure �� The e
ect of recombination on mutant distribution in a plateau �tness landscape
for a population size of ����� The recombination rate is ���� A linear scale is used for the
vertical axis� 
a� Below the error threshold 
p � ����� the recombinant population is again
more compact� and it has more of its mass in the middle of the �tness plateau� 
b� For a
slightly increased mutation rate p � ������ recombination can no longer keep the population
in the middle of the �tness plateau�



(a) Asexual. Single Peak
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Figure �� Mutant distribution for a population of size ��� � asexual and sexual populations
in the two abstract landscapes studied� The mutation rate varies from ����� to ���� with a
step of ������ The error threshold can be identi�ed visually as the mutation rate just before
the error classes become equally distributed 
the lines become parallel�� The vertical axis
shows the fraction of the population� and the horizontal axis the mutation rate� The �ttest
string 
F� and the error classes H� and H� are indicated in all cases�



(a) Asexual. Single Peak
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Figure �� Mutant distribution� now for a population of size ���� �asexual and sexual
populations in the two abstract landscapes studied� The mutation rate varies from ����� to
���� with a step of ������ The vertical axis shows the fraction of the population� and the
horizontal axis the mutation rate�


