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Abstract. We analyse how the conventional Genetic Algorithm can be stripped 
down and reduced to its basics. We present a minimal, modified version that 
can be interpreted in terms of horizontal gene transfer, as in bacterial 
conjugation. Whilst its functionality is effectively similar to the conventional 
version, it is much easier to program, and recommended for both teaching 
purposes and practical applications. Despite the simplicity of the core code, it 
effects Selection, (variable rates of) Recombination, Mutation, Elitism (‘for 
free’) and Geographical Distribution.  

Keywords: Genetic Algorithm, Evolutionary Computation, Bacterial 
Conjugation. 

1   Introduction 

Darwinian evolution assumes a population of replicating individuals, with three 
properties: Heredity, Variation, and Selection. If we take it that the population size  
neither shrinks to zero, nor shoots off to infinity -- and in artificial evolution such as a 
genetic algorithm we typically keep the population size constant -- then individuals 
will come and go, whilst the makeup of the population changes over time. 
    Heredity means that new individuals are similar to the old individuals, typically 
through the offspring inheriting properties from their parents. Variation means that 
new individuals will not be completely identical to those that they replace. Selection 
implies some element of direction or discrimination in the choice of which new 
individuals replace which old ones. In the absence of selection, the population will 
still change through random genetic drift, but Darwinian evolution is typically 
directed: in the natural world through the natural differential survival and mating 
capacities of varied individuals in the environment, in artificial evolution through the 
fitness function that reflects the desired goal of the program designer. 
Any system that meets the three basic requirements of Heredity, Variation and 
Selection will result in evolution. Our aim here is to work out the most minimal 
framework in which that can be achieved, for two reasons: firstly theoretical, to see 
what insights can be gained when the evolutionary method is stripped down to its bare 
bones; secondly didactic, to demystify the Genetic Algorithm (GA) and present a 
version that is trivially easy to implement. 



2   GAs Stripped to the Minimum 

The most creative and challenging parts of programming a GA are usually the 
problem-specific aspects. What is the problem space, how can one best design the 
genotypic expression of potential solutions or phenotypes, and the genotype-
phenotype mapping, how should one design an appropriate fitness function to achieve 
ones goals?  

 
Though this may be the most interesting part, it is outside the remit of our focus 

here on those evolutionary mechanisms that can be generic and largely independent of 
the specific nature of any problem. So we will assume that the programmer has found 
some suitable form of genotype expression, such that the genetic material of a 
population can be maintained and updated as the GA progresses; for the purposes of 
illustration we shall assume that there is a population size P of binary genotypes 
length N. We assume that all the hard problem-specific work of translating any 
specific genotype in the population into the corresponding phenotype, and evaluating 
its fitness, has been done for us already.  

Given these premises, we wish to examine the remaining GA framework to see 
how it can be minimized. 

2.1   Generational and Steady State GAs  

Traditionally GAs were first presented in generational form. Given the current 
population of size P, and their evaluated fitnesses, a complete new generation of the 
same size was created via some selective and reproductive process, to replace the 
former generation in one fell swoop. A GA run starts with an initialized population, 
and then loops through this process for many successive generations. This would 
roughly correspond to some natural species that has just one breeding season, say 
once a year, and after breeding the parents die out without a second chance.  
    There are many natural species that do not have such constraints, with birth and 
death events happening asynchronously across the population, rather than to the beat 
of some rhythm. Hence the Steady State GA, which in its simplest form has as its 
basic event the replacement of just one individual from P by a single new one (a 
variant version that we shall not consider further would replace two old by two new). 
The repetition of this event P times is broadly equivalent to a single generation of the 
Generational GA, with some subtle differences. 
    In the Generational version, no individual survives to the next generation, although 
some will pass on genetic material. In the Steady State version, any one individual 
may, through luck or through being favoured by the selective process, survive 
unchanged for many generation-equivalents. Others, of course may disappear much 
earlier; the average lifetime of each individual will be P birth/death events, as in the 
generational case, but there will be more variance in these lifetimes.  
    There are pragmatic considerations for the programmer. The core piece of code in 
the Steady State version, will be smaller, although looped through P times more, than 
in the Generational GA. The Generational version needs to be coded so that, in effect, 
P birth/death events occur in parallel, although on a sequential machine this will have 



to be emulated by storing a succession of consequences in a temporary array; 
typically two arrays will be needed for this-generation and next-generation. If the 
programmer does have access to a cluster of processors working in parallel, then a 
Steady State version can farm out the evaluation of each individual (usually the 
computational bottleneck) to a different processor. The communication between 
processors can be very minimal, and the asynchronous nature of the Steady State 
version means that it will not even be necessary to worry too much about keeping 
different processors in step.  

    These are suggestive reasons, but perhaps rather weak, subjective and indeed 
even aesthetic, for favouring a Steady State version of a GA. A stronger reason for 
doing so in a minimalist GA is that it can exploit a very simple implementation of 
selection. 

2.2   Selection  

Traditionally but regrettably, newcomers to GAs are usually introduced to ‘fitness-
proportionate selection’, initially in a Generational GA. After the fitnesses of the 
whole current population are evaluated by whatever criterion has been chosen, and 
specified as real values, these values are summed to give the size of the reproductive 
‘cake’. Then each individual is allocated a probability of being chosen as a parent 
according to the size of its own slice of that cake. 
    This method has three virtues: it will indeed selectively favour those with higher 
fitnesses; it has some tenuous connection with the different biological notion of 
fitness (although in the biological sense any numbers associated with fitness are based 
on observing, after the event, just how successful an individual was at leaving 
offspring; as contrasted with the GA approach that reverses cause and effect here); 
and lastly, it happens to facilitate, for the theoreticians, some mathematical theorem-
proving. But pragmatically, this method often leads to unnecessary complications. 
    What if the chosen evaluation method allocates some fitnesses that are negative? 
This would not make sense under the biological definition, but where the 
experimenter has chosen the evaluation criteria it may well happen.  This is one 
version of the general re-scaling issue: different versions of a fitness function may 
well agree in ordering of different members of the population, yet have significantly 
different consequences. One worry that is often mentioned is that, under fitness-
proportionate selection, one often sees (especially in a randomized initial population) 
many individuals scoring zero, whilst others get near-zero; though this may reflect 
nothing more than luck or noise, the latter individuals will dominate the next 
generation to the complete exclusion of the former. 

    These issues motivated many complex schemes for re-scaling fitnesses before 
then implementing fitness-proportionate selection. But -- although it was not initially 
reflected in the standard texts -- many practitioners of applying GAs to real-world 
problems soon abandoned them in favour of rank-based methods.  



2.3   Rank-based and Tournament Selection  

The most general method of rescaling is to use the scores given by the fitness function 
to order all the members of the population from fittest to least fit; and thereafter to 
ignore the original fitness scores and base the probabilities of having offspring solely 
on these relative rankings.  A common choice made is to allocate (at least in 
principle) 2.0 reproductive units to the fittest, 1.0 units to the median, and 0.0 units to 
the least fit member, similarly scaling pro rata for intermediate rankings; this is linear 
rank selection. The probability of being a parent is now proportional to these rank-
derived numbers, rather than to the original fitness scores. 
    There are in practice some complications. If as is common practice P is an even 
number, the median lies between two individuals. The explicit programming of this 
technique requires some sorting of the population according to rank, which adds 
further complexity. Fortunately there is a convenient trick that generates a similar 
outcome in a much simpler fashion. 
    If two members of the population are chosen at random, their fitnesses compared, 
and the Winner selected, then the probability of the Winner being any specific 
member of the population exactly matches the reproductive units allocated under 
linear rank selection. This is easiest to visualize if one considers P such tournaments, 
in succession using the same population each time. Two individuals are chosen at 
random each time, so that each individual can expect to participate in two such 
tournaments. The top-ranker will win both its tournaments, for 2.0 reproductive units; 
a median-ranker can expect to win one, lose one, for 1.0 units; and the bottom-ranker 
will lose both its tournaments, for 0.0 units. A minor difference between the two 
methods will be more variance in the tournament case, around the same mean values.  
    Tournament selection can be extended to tournaments of different sizes, for 
instance choosing the fittest member from a randomly selected threesome. This is an 
example of non-linear rank selection. From both pragmatic and aesthetic 
perspectives, Tournament Selection with the basic minimum viable tournament size 
of two has considerable attractions for the design of a minimalist GA. 

2.4   Who to Breed, Who to Die?  

Selection can be implemented in two very different ways; either is fine, as long as the 
end result is to bias the choice of those who contribute to future generations in favour 
of the fitter ones. The usual method in GAs is to focus the selection on who is to 
become a parent, whilst making an unbiased, unselective choice of who is to die. In 
the standard Generational GA, every member of the preceding generation is 
eliminated without any favouritism, so as to make way for the fresh generation 
reproduced from selected parents. In a Steady State GA, once a single new individual 
has been bred from selected parents, some other individual has to be removed so as to 
maintain a constant population size; this individual is often chosen at random, again 
unbiased.  
    Some people, however, will implement a method of biasing the choice of who is 
removed towards the less fit. It should be appreciated that this is a second form of 
selective pressure, that will compound with the selective pressure for fit parents and 



potentially make the combined selective pressure stronger than is wise. In fact, one 
can generate the same degree of selective pressure by biasing the culling choice 
towards the less fit (whilst selecting parents at random) as one gets by the 
conventional method of biasing the parental choice towards the more fit (whilst 
culling at random). 
    This leads to an unconventional, but effective, method of implementing 
Tournament Selection. For each birth/death cycle, generate one new offspring with 
random parentage; with a standard sexual GA, this means picking both parents at 
random, but it can similarly work with an asexual GA through picking a single parent 
at random. A single individual must be culled to be replaced by the new individual; 
by picking two at random, and culling the Loser, or least fit of the two, we have the 
requisite selection pressure. One can argue that this may be closer to many forms of 
natural selection in the wild than the former method. 
    Going further, we can consider a yet more unconventional method, that combines 
the random undirected parent-picking with the directed selection of who is to be 
culled. Pick two individuals at random to be parents, and generate a new offspring 
from them; then use the same two individuals for the tournament to select who is 
culled -- in other words the weaker parent is replaced by the offspring.  
    It turns out that this is easy to implement, is effective. This is the underlying 
intuition behind the Microbial GA, so called because we can interpret what is 
happening here in a different way -- Evolution without Death! 

2.5   Microbial Sex  

Microbes such as bacteria do not undergo sexual reproduction, but reproduce by 
binary fission. But they have a further method for exchanging genetic material, 
bacterial conjugation. Chunks of DNA, plasmids, can be transferred from one 
bacterium to the next when they are in direct contact with each other. In the 
conventional picture of a family tree, with offspring listed below parents on the page, 
we talk of vertical transmission of genes ‘down the page’; but what is going on here is 
horizontal gene transfer ‘across the page’. As long as there is some selection going 
on, such that the ‘fitter’ bacteria are more likely to be passing on (copies of) such 
plasmids than they are to be receiving them, then this is a viable way for evolution to 
proceed. 

    We can reinterpret the Tournament described above, so as to somewhat resemble 
bacterial conjugation. If the two individuals picked at random to be parents are called 
A and B, whilst the offspring is called C, then we have described what happens as C 
replacing the weaker one of the parents, say B; B disappears and is replaced by C. If 
C is the product of sexual recombination between A and B, however, then ~50% of 
C’s genetic material (give or take the odd mutation) is from A, ~50% from B.  So 
what has happened is indistinguishable from B remaining in the population, but with 
~50% of its original genetic material replaced by material copied and passed over 
from A. We can consider this as a rather excessive case of horizontal gene transfer 
from A (the fitter) to B (the weaker).  



3   The Microbal GA 

We now have the basis for a radical, minimalist revision of the normal form of a GA, 
although functionally, in terms of Heredity, Variation and Selection, it is performing 
just the same job as the standard version. 
 

 
Fig. 1. The genotypes of the population are represented as a pool of strings. One single cycle of 
the Microbial GA is represented by the operations PICK (two at random), COMPARE (their 
fitnesses to determine Winner = W, Loser = L), RECOMBINE (where some proportion of 
Winner’s genetic material ‘infects’ the Loser), and MUTATE (the revised version of Loser).  

    This is illustrated in Fig. 1. Here the recombination is described in terms of 
‘infecting’ the Loser with genetic material from the Winner, and we can note that this 
rate of infection can vary. In bacterial conjugation it will typically be rather a low 
percentage that is replaced or supplemented; to reproduce the typical effects of sexual 
reproduction, as indicated in the previous section, this rate should be ~50%. But in 
principle we may want, for different effects, to choose any value between 0% and 
100%. In practice, for normal usage and for comparability with a standard GA, the 
50% rate is recommended. The simplest way of doing this, equivalent to Uniform 
Recombination, is with 50% probability independently at each locus to copy from 
Winner to Loser, otherwise leaving the Loser unchanged at that locus. 

From a programming perspective, this cycle is very easy to implement efficiently. 
For each such tournament cycle, the Winner genotype can remain unchanged within 
the genotype-array, and the Loser genotype can be modified (by ‘infection’ and 
mutation) in situ. We can note that this cycle gives a version of ‘elitism’ for free: 
since the current fittest member of the population will win any tournament that it 
participates in, it will thus remain unchanged in the population -- until eventually 
overtaken by some new individual even fitter. Further, it allows us to implement an 
effective version of geographical clustering for a trivial amount of extra code. 



3.1   Trivial Geography 

It is sometimes considered undesirable to have a panmictic population, since after 
many rounds of generations (or, in a Steady State GA, generation-equivalents) the 
population becomes rather genetically uniform. It is thus fairly common for 
evolutionary computation schemes to introduce some version of geographical 
distribution. If the population is considered to be distributed over some virtual space, 
typically two-dimensional, and any operations of parental choice, reproduction, 
placing of offspring with the associated culling are all done in a local context, then 
this allows more diversity to be maintained across sub-populations. Spector and Klein 
[3] note that a one-dimensional geography, where the population is considered to be 
on a (virtual) ring, can be as effective as the 2-D version, and demonstrate the 
effectiveness in some example domains. If we consider our array that contains the 
genotypes to be wrap-around, then we can implement this version by, for each 
tournament cycle: choose the first member A of the tournament at random from the 
whole population; then select the next member B at random from a deme, or sub-
population that starts immediately after A in the array-order. The deme size D, <= P, 
is a parameter that decides just how local each tournament is. 

 

 
Fig. 2. The genotypes of the population are represented as geographically distributed on a ring, 
numbered from 0 to P-1. For a tournament, A is picked at random from the whole population; 
then B is picked at random from the deme (here of size D=5) immediately following A.  

3.2   Program Code 

The core part of the code for a Microbial GA is here given in pseudo-code based on 
C. We shall assume that there is a population size P of binary genotypes length N, 
stored in an array of the form gene[P][N], that has been suitably initialized at 
random for the start of the GA; we have a function eval(i), that returns some real 



value for the ith member of the population. This code represents a single tournament, 
that is repeated as many times as is considered necessary. We assume a pseudo-
random number function rnd() that returns a real number in the range [0.0,1.0). 
REC is the recombination or ‘infection’ rate (suggested value 0.5), and MUT is the (per 
locus) mutation rate. D is the deme size.  

This minimal GA routine incorporates Rank Selection, (variable rates of) 
Recombination and Mutation, (variable size) Demes, and Elitism, in just a few lines:- 

void microbial_tournament(void) {  
  int A,B,W,L,i; 
  A=P*rnd();                       // Choose A randomly 
  B=(A+1+D*rnd())%P;               // B from Deme, %P..   
  if (eval(A)>eval(B)) {W=A; L=B;} // ..for wrap-around 
  else {W=B; L=A;}                 // W=Winner L=Loser 
  for (i=0;i<N;i++) {              // walk down N genes 
    if (rnd()<REC)                 // RECombn rate 
      gene[L][i]=gene[W][i];       // Copy from Winner  
    if (rnd()<MUT)                 // MUTation rate   
      gene[L][i]^=1;               // Flip a bit   
  }  
}  

4   Discussion 

The original version (without demes) of this minimal Microbial GA has been widely 
used and taught at Sussex for over a decade [1], but only previously discussed in 
published form briefly in [2], in the context of Evolutionary Robotics. Another 
application in that field has been the Embodied Evolution of [4].  It is here presented 
in full for the first time with added Trivial Geography [3] providing demes. 
    We do not claim that it is more effective than the standard GA; indeed its 
underlying functionality is basically the same. It lends itself well to distributed, 
asynchronous applications. The minimalism makes it easy to teach and to implement. 
The re-interpretation in terms of bacterial conjugation opens up new perspectives and 
possibilities, including that of varying the rates of recombination or ‘infection’. 
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