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Abstract

Most standard genetic and evolutionary algorithms (GAs) are
unable to evolve cooperative solutions to problems where
there is a division of labour among genetically different com-
ponent parts. This is because standard GAs evaluate and se-
lect all individuals on the same task which leads to genetic
convergence within the population. The goal of evolution-
ary niching methods is to enforce diversity in the population
so that this genetic convergence is avoided. One drawback
with some of these niching methods is that they require a pri-
ori knowledge or assumptions about the specific fitness land-
scape in order to work. Another issue is that many of these
niching methods are not set-up to work on cooperative tasks
where fitness is only relevant at the group level. In this paper
we present the Group GA which is a group based evolutionary
algorithm that can evolve cooperative solutions to problems
using emergent niching with minimal a priori assumptions.
We demonstrate this novel GA on an immune system match-
ing task and explain why we think this type of GA has the
potential to effectively solve a wide range of problems that
would benefit from being solved cooperatively.

Introduction

In biology, speciation and niching can be broadly described
as the evolutionary process by which a single type of bi-
ological organism differentiates into multiple “specialised”
organisms, that for instance, take advantage of different re-
sources available in a given environment. In some cases
niching produces competing species, but niching can also
occur within a single species to produce different special-
ists that work together to solve a given task. An example of
this are bacterial colonies, where within any single colony
there are groups of different bacteria doing different jobs,
all of which are contributing to the collective well being of
the colony. In this case the fitness of the colony depends on
the collective symbiotic functionality rather than the fitness
of any individual bacteria.

Most standard artificial evolutionary and genetic algo-
rithms (GAs) tend to take a very individual centric view of
evolution, where the fittest individuals are selected to pro-
duce the next generation of individuals. These types of GAs
work well on problems with a single global fitness peak,

where each individual can solve the task on its own; but they
are unable to find multiple solutions to multi-peaked prob-
lems or solve problems cooperatively, where there is a divi-
sion of labour between population members which requires
different genotypes. For a GA to be able to find cooperative
solutions to problems, it must have the following character-
istics: (1) It must be able to maintain diversity within the
population so that niches can form and (2) it must allow for
fitness to be evaluated at the group level.

Evolutionary niching methods solve problem (1) by en-
forcing diversity in standard GAs so that a single population
can be split up into n different niches. One of the issues with
some of the more common niching methods is that they re-
quire a priori knowledge about the specific fitness landscape
to work; in particular whether n is 2 or 5 or some different
number. Most of these evolutionary niching methods use
either direct or indirect methods to determine the appropri-
ate number of niches. Direct methods include cooperative
coevolution where the number of species is set before evo-
lution begins. Indirect methods include fitness sharing and
crowding which rely on a pre-set niching (similarity) radius
or some sort of similarity calculation in order to get the pop-
ulation to niche. The other problem with these niching meth-
ods is that they are tailored for tasks where each individual
in the population can solve the task on its own, not for tasks
that are best solved symbiotically where fitness can only be
calculated at a group level.

In this paper we present a novel genetic algorithm, the
Group GA, which niches based on the evaluation of groups
of individuals and therefore can be used to solve tasks that
require individuals working together doing different jobs.
The Group GA has the added benefit of accomplishing this
niching with minimal a priori knowledge of the fitness land-
scape and is able to niche without knowing the optimal num-
ber of niches or how the different jobs should be shared out.
So unlike the more common niching methods it does not re-
quire the number of niches to be set ahead of time nor does
it require setting any indirect niching parameter such as a
similarity or niching radius.

We demonstrate the emergent niching ability of the Group



GA on an artificial immune system matching task. The goal
of this task is to evolve a population of antibodies (protecting
agents) to match a set of antigens (harmful invaders). There-
fore to solve this task the population of antibodies needs to
niche so that it contains different individuals that match dif-
ferent antigens. One reason this task was chosen is because
the number of peaks in the fitness landscape can be changed
by changing the number of antigens that the population of
antibodies needs to match. The other reason for choosing
this task is that it makes it very easy to determine when nich-
ing has occurred.

In the next section we will briefly review some of the
common niching methods as well as a few related evolution-
ary algorithms that can solve problems symbiotically, where
there is a division of labour required. Following our liter-
ature review we describe the artificial immune system task
and the Group GA in detail. We will then show how the
Group GA can be used to evolve a population of antibod-
ies to match a set of four antigens, as well as how it can be
used to evolve a population of antibodies that adapts to the
addition and removal of antigens during evolution. Finally,
we compare the Group GA to other evolutionary methods
and discuss the types of tasks we feel the Group GA is best
suited to solve.

Literature Review

We start by reviewing the most common niching methods in
artificial evolution. The purpose of these niching methods
is to stop the population from genetically converging dur-
ing evolution as happens when using a conventional GA. All
of these niching methods below can be classified as explicit
niching methods because they either require the number of
niches to be set a priori or require an indirect method of
enforcing diversity in the population.

We will also briefly discuss SANE and the Binomics GA
which are two GAs that are set-up to allow implicit niching
to evolve symbiotic solutions to problems. Unlike the ex-
plicit niching methods, these algorithms attempt to evolve
a diverse, niched population emergently using group evalu-
ation. They also differ from the genetically based niching
methods in that these GAs do not require that each individ-
ual in the population can solve the task on its own.

Genetically Based Niching Methods

In this section we briefly describe the common genetically
based niching methods. These niching methods function
based on the assumption that each individual in the popu-
lation has its own fitness. For a more in depth summary see
Dick (2005) and Mahfoud (1995).

Fitness Sharing and Clearing Fitness sharing (Goldberg
and Richardson, 1987) is a niching method that relies on
some distance metric or similarity measure (either genotypic

or phenotypic) between individuals. By using suitable meth-
ods to adjust the fitness of any individual according to how
many other similar individuals are within some predeter-
mined niche (similarity) radius, there is a tendency for the
population to spread out over multiple peaks or niches in
the fitness landscape; thus diversity is maintained. Clearing
(Petrowski, 1996) is very similar to fitness sharing but, in-
stead of degrading the fitness of individuals within the same
similarity radius or subpopulation, it removes the least-fit
individuals within the similarity radius from the population.
Horn et al. (1994) show that in Learning Classifier System
models where fitness is shared amongst cooperating individ-
uals implicit niching can occur.

Crowding Crowding was first introduced by De Jong
(1975) as a method of removing similar individuals from a
population, with the goal of trying to maintain diversity dur-
ing evolution. Deterministic Crowding (Mahfoud, 1995) is
a specific type of crowding that mates two in the population
and then replaces the parent that is most similar to the off-
spring if the offspring is fitter. It is similar to fitness sharing
because there needs to be some similarity calculation done
between individual, but unlike fitness sharing there is no re-
quirement to pre-specify a similarity radius.

Demes and Spatially Structured GAs

An alternative to genetically based niching methods are spa-
tially structured GAs; for a good review see Dick (2005).
In these types of GAs, the population is structured within
some local geographical distribution (demes) that constrains
which members of the population are allowed to be selected
or be recombined with one another. By structuring the pop-
ulation into demes more genetic diversity can be maintained
across sub-populations.

Cooperative Coevolution Cooperative coevolution was
first introduced by Potter and De Jong (1994) as a method
for function optimisation. In cooperative coevolution the
population is pre-divided into different subpopulations, so it
can be thought of as a type of spatially structured GA. Each
subpopulation represents a subcomponent required to solve
the overall task, which means that there needs to be some
a priori knowledge of the problem so that the appropriate
number of subpopulations is chosen. Each subpopulation is
evolved separately using a standard GA, but the fitness of
the individual members of each subpopulation is based on
the performance of the cooperative solutions. In cooperative
coevolution speciation is not emergent because the number
of subpopulations needs to be determined before evolution
begins. For this reason, this class of algorithms has been
shown to work well on problems where there is an obvious
way of dividing up the population, such as job shop planning
and scheduling tasks (Husbands and Mill, 1991; Husbands,
1993; Mcllhagga et al., 1996).



Symbiotic GAs

SANE (Moriarty and Miikkulainen, 1995, 1996), the Bi-
nomics GA (Harvey and Tomko, 2010) and simulated
ecosystem evolution (Williams and Lenton, 2007) are three
examples of GAs that cause implicit niching in the popula-
tion and attempt to evolve symbiotic solutions to problems.
In SANE and the Binomics GA, groups of individuals are
evaluated together and then the individuals that are part of
the fittest groups are selected to pass on their genes to the
next generation. This differs from most standard GAs where
individuals are evaluated and then the fittest individuals are
selected. These algorithms are relevant to our discussion
of speciation/niching because any time a problem is solved
symbiotically then implicit niching must be occurring dur-
ing evolution.

SANE and the Binomics GA have been successfully ap-
plied to the evolution of artificial neural networks (ANNs).
In both these algorithms the individuals in the population are
partial networks that are combined to form fully specified
ANNSs which are then evaluated. The fitness score of each
individual partial network is based on the fitness of the full
ANNS that each individual partial network participated in.
This means that over time, the individual partial networks
that were part of the fittest ANNs will be selected for, while
the partial networks that were part of the least fit ANNs will
be modified using mutation and recombined with other par-
tial networks. The goal of this method of evolution is to
evolve a population of partial networks that symbiotically
work together to form high fitness fully specified ANNs.

The Artificial Immune System Task

We have chosen an artificial immune system matching task
to demonstrate the emergent niching abilities of the Group
GA. In this section we will describe the details of this task
and then in the next section we will describe the Group GA.
This task which has previously been used by Forrest et al.
(1993) and Potter and De Jong (2000) was chosen because
it can be solved cooperatively and clearly illustrates how the
Group GA can lead to emergent niching and how it can adapt
to a changing fitness landscape, neither of which is possible
with a conventional GA. Forrest et al. (1993) used the task
to study adaptation in the immune system and Potter and De
Jong (2000) solved different variations of this task using co-
operative coevolution. We will compare the results of these
two papers to the Group GA results later in the paper.

The goal of this task is to evolve a population of antibod-
ies to protect the body from a set of antigens. Very simply
speaking, antigens can be thought of as bacteria, viruses or
other pathogens and the antibodies can be thought of as the
body-guards who mark these antigens for removal. Anti-
bodies in natural immune systems need to be adaptive so
that they can combat new and different antigens that enter
the body. Therefore this task tries to mimic this challenge
of natural immune systems on a very basic level by attempt-

ing to evolve a population of artificial antibodies to match a
variable set of antigens.

In this task both the antibodies and antigens are modeled
as bit strings. How well an antibody combats a specific anti-
gen is calculated as the number of bit matches between anti-
body and antigen. For example a [1 0 1 1] antibody matches
a[00 1 0] antigen at location two and three and therefore the
antibody’s fitness is equal to two when matched to this anti-
gen. For our purposes the higher the match (fitness) score
the better.

Assuming that the length of the antibodies and antigens is
the same, when there is more than one antigen in the antigen
set the task can be thought of as symbiotic, because it is
impossible for a single antibody to match an entire set of
antigens on its own. In this case, the population of antibodies
needs to evolve in such a way so that it contains specialists to
combat each different antigen. Obviously the more antigens
there are, the more difficult the task becomes, because the
antibody population needs to evolve and maintain a larger
number of specialists.

The Group GA

The Group GA is a novel evolutionary algorithm presented
in this paper for the first time. It is based on the Micro-
bial GA (Harvey, 2011) which is a steady-state GA that uses
tournament based selection. The Microbial GA is similar to
the more familiar GAs, but is minimalist in the sense that it
strips away as much as possible, whilst still maintaining the
essential components of natural selection which are heredity,
variation and selection.

We will first describe the Group GA in general terms and
then describe it in terms of the artificial immune system task
we present in this paper. What differentiates the Group GA
from more conventional GAs is that groups of population
members, of some fixed size that is a parameter of the GA
(rather than individual population members as in conven-
tional GAs) are evaluated and then selected based on the
overall fitness of the group. In other words, the driver of fit-
ness based selection is the relative fitness of an entire group
of population members that work together as a unit to solve
some task. A single cycle (tournament) of the Group GA
can be broken-up into the five following steps:

1. Randomly choose two possibly intersecting groups of
population members from the population without regards
to fitness.

2. Calculate and assign a fitness score to each group of pop-

ulation members based on the groups’ performance on a
given task. Fitness is assigned on the group level only;
there need not be any way to define or calculate an indi-
vidual’s contribution to the group’s fitness score.

3. All members of the group with the lower fitness score are

removed from the population and replaced with mutated



copies of the members of the fitter group.

4. The members of the fitter group are put back in the popu-
lation unchanged.

5. This process is repeated until some pre-defined stopping
condition is met.

When we apply the Group GA to the immune system task,
the fitness of a group of antibodies is calculated as the av-
erage of the best match scores achieved against all the anti-
gens in the set. In other words, to evaluate a group of anti-
bodies, all the antibodies in the group are matched against
every antigen in the set and the average of the highest match
scores against each antigen is the group fitness. This means
that to get a perfect fitness score there has to be at least one
antibody that matches each antigen perfectly in the group.

A single cycle (tournament) of the Group GA can be
broken-up into the five following steps when applied to the
immune system task described in the previous section (see
figure 1).

1. Randomly choose two groups of antibodies from the pop-
ulation without regard for fitness

2. Calculate the match scores between all the antigens in the
set and each of the antibodies in each group

3. Each group as a whole is assigned a fitness score which is
calculated as described above.

4. The group with the lower fitness score is replaced with
mutated copies of the antibodies of the more fit group

5. Both groups of antibodies are put back into the population
and this process is repeated

We have set up this simulation in such a way that groups
of antibodies are randomly chosen from the population and
then assigned a fitness based on the ability of this group to
match the different antigens in the antigen set. We under-
stand that because an individual antibody can always be as-
signed its own fitness, some of the genetically based niching
methods we reviewed earlier would be able to solve this task
without any type of group evaluation. The reason we have
used this task to demonstrate the Group GA is because as we
will see in the next section it clearly shows how the Group
GA causes emergent niching using group evaluation.

The Group GA can be applied more generally to tasks
where individual fitness is meaningless because the Group
GA randomly selects two groups of population members and
uses them to construct two higher level entities that are eval-
vated and assigned a fitness score. The less fit group of pop-
ulation members is killed off and replaced with a mutated
copy of the fitter group. These two groups are then put back
into the population and this cycle is repeated. It is important
to reiterate that in the Group GA it is the fitness of the group
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Figure 1: The Group GA as applied to a immune system task
with 2, 4-bit antigens

of population members that drives evolution, which is dif-
ferent from most conventional GAs where it is the fitnesses
of the individual population members that matters. How fit-
ness is calculated depends on what type of problem is being
solved, but regardless it is only the group fitness that matters
when determining the tournament winner and loser.

Evolving Antibodies using the Group GA

In this section we will show how, using the Group GA, a
randomly initialised population of antibodies can be evolved
to match a set of antigens. In the first experiment we will
evolve a population of antibodies to match a fixed set of four
different antigens. This is equivalent to the Group GA solv-
ing a four-peaked fitness landscape. Then in the second ex-
periment we will evolve a population of antibodies to match
a variable set of antigens, where antigens are added and re-
moved during evolution. This second experiment simulates
a task where the number of fitness peaks changes during evo-
lution.

In these experiments the antigen and antibodies were 64-
bit binary strings. The antibody population size was 100 and
the number of antibodies per group was 10. The mutation
rate was set to 0.1/64, meaning that at each allele there was
a probability of 1/640 of flipping that bit.

Figure 2 shows the antibody population after being
evolved for 20,000 tournaments on a four antigen task. The
four antigens used in this experiment were: [...0 0 0 O...],
[.1111..],[1000...],and[...1 01 0 ...], where these 4-
bit patterns are repeated 16 times to make the four full 64-bit
antigens. These specific antigens were chosen to try to make
the task as difficult as possible. The lower part of figure 2
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Figure 2: The antibody population after evolution on a 4
antigen task.

(as with the similar plots in later figures) displays each bi-
nary genotype in the population horizontally above the next
genotype, with white and black representing 0 and 1 alleles
respectively. Figure 2 clearly shows how the antibody pop-
ulation has niched during evolution to contains antibodies
that perfectly match all four antigens in the set.

Figure 3 is a fitness versus time plot for a single typi-
cal run of the four antigen task. The black line shows the
group fitness of the tournament winning group of antibodies
at each tournament, calculated as described above and the
gray line shows the number of antigens covered perfectly
by at least one antibody at each tournament. The number
of perfect antigens matched perfectly by at least one anti-
body can range from zero to the total number of antigens
in the set. We believe that this is an important measure of
performance for this task because if you think of the goal
of the antibodies in terms of protecting a body from inva-
sion, then it is important that the population contains at least
one antibody to match each antigen. In this figure you can
see that throughout evolution the group fitness drops signifi-
cantly for a tournament or two without decreasing the fitness
of the population (number of perfect antibody types). This is
because antibody groups are randomly chosen from the pop-
ulation so there is always a chance that a very unfit group is
chosen.

Figure 4 shows how the antibody population adapts when
antigens are added and removed during evolution. In this
experiment, the antigen set initially contained only two anti-
gens [...0 0 00..] and [...1 1 1 1...]. At tournament 20K
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Figure 3: A plot of group fitness (black line) and number
of antigens covered perfectly by at least one antibody (gray
line) in the population over time for a single typical run of
the 4 antigen task.

a third antigen [...1 0 1 0...] was added and evolution was
resumed. At tournament 40K evolution was paused again
and the [...1 1 1 1...] antigen was removed from the set be-
fore evolution was restarted. This figure clearly shows that
when the antibody population is evolved using the Group
GA the population can adapt to changes in the antigen set,
adding and removing different types of antibodies as appro-
priate. Figure 5 shows the fitness versus time plot for this
a single typical run of this task, where antigens are added
and removed during evolution. As this figure shows, when
an antigen is added, the fitness of the population drops be-
fore quickly recovering as the population adapts to match
this new invader .

Comparison to Other Methods

To get a feel for how well the Group GA is able to solve
on this task we compared it to both the Microbial GA (Har-
vey, 2011) and the Binomics GA (Harvey and Tomko, 2010)
on the 4 antigen task described above. Using the Microbial
GA to solve this task is equivalent to solving it using any
standard GA where the fittest individual antibodies are se-
lected. As expected, when we ran the Microbial GA for 100
runs, each run the antibody population converged to match
a single antigen in the antigen set, failing to match the other
three.

A more interesting comparison is between the Group GA
and the Binomics GA. We chose to compare the Binomics
GA as opposed to a genetic based niching method such as
fitness sharing or crowding because like the Group GA, the

'There are potential similarities between the adaptive mecha-
nism of the Group GA and clonal selection that need to be investi-
gated further.
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Figure 5: A plot of group fitness (black line) and number
of antigens covered perfectly by at least one antibody (gray
line) in the population over time for a single typical run of
the task where antigens are added and removed during evo-
lution.

Binomics GA was developed to solve cooperative tasks us-
ing emergent niching where group fitness is the driver for
selection. As applied to this immune system task, the Bi-
nomics GA works as follows:

1. Randomly choose two antibodies from the population and
compare their stored fitnesses.

2. The antibody with the lower fitness is genetically changed
using mutation and recombination.

3. This modified antibody is combined with a group of ran-
domly chosen antibodies from the population.

4. All the antigens are matched against all the antibodies in
the group.

5. The fitness of this group of antibodies is equal to the mean
maximum match score in the group.

6. All antibodies in the group have their current fitness up-
dated using some sort of time smoothing that takes into
account both their historical and newly calculated fitness.

7. All individuals are put back in the population and this cy-
cle is repeated.

The difference between the Group GA and the Binomics
GA is that in the Group GA, groups of antibodies are be-
ing both evaluated and selected, while in the Binomics GA
groups of antibodies are being evaluated, but it is individual
antibodies that are being selected based on this group fitness.

Using the same parameters as in the previous experi-
ments, we compared the performance of the Group GA and

the Binomics GA on the 4 antigen task over 10 runs. We de-
cided to compare the performance of these two algorithms
based on the number of evaluations it took to evolve a pop-
ulation that contained antibodies that perfectly matched all
antigens in the set. Evolution was stopped at 1600 K evalua-
tions if by that point the population did not contain 4 perfect
antibodies. Over 10 runs the Group GA took a median num-
ber of 278 K evaluations, while the Binomics GA was unable
to solve the task within the maximum number of evaluations
allowed in any of the 10 runs. It should be mentioned that if
the Binomics GA was allowed to run for more evaluations,
it was able to niche to match the four different antigens, but
nowhere near as efficiently as the Group GA. In the next
section we will discuss why we think the Group GA outper-
forms the Binomics GA to this extent.

Discussion

In this paper we have presented a novel evolutionary algo-
rithm that can cooperatively solve problems using emergent
niching, where fitness is evaluated at the group level. We
demonstrated this by using the Group GA to solve a multi-
peaked artificial immune system matching task. Our results
show that by evolving a population of antibodies using the
Group GA, the population niches to match multiple anti-
gens. We have also shown that when antigens are added
and removed during evolution, the Group GA allows the an-
tibody population to adapt to this change matching new anti-
gens that are presented.

In the previous section we compared the performance of
the Group GA to the Microbial GA and the Binomics GA.
Unsurprisingly, the Microbial GA, where individual anti-
bodies are evaluated and selected was unable to solve the
multi-antigen task and ended up converging to match a sin-
gle antigen every run. The Binomics GA, where groups of
antibodies are evaluated and individual antibodies are se-
lected, fared much better and was able to niche to match
the different antigens, but took a lot longer as compared to
the Group GA. We believe that the reason why the Group
GA outperforms the Binomics GA methods on this task is
related to the difference between what is being evaluated
and what is being selected. Studying the subtle differences
between evaluation and selection and how varying what is
evaluated and selected affects artificial evolution is not part
of the scope of this paper, but will be one of the focuses of
our future research.

The two key characteristics of the Group GA that differen-
tiate it from the niching methods described in the literature
review are: (1) Niching is accomplished emergently without
having to know the appropriate number of niches ahead of
time or pre-setting any parameter such as a niche radius and
(2) fitness is evaluated at a group level which means that the
Group GA can be used to solve symbiotic task where fitness
is meaningless at the individual level.

For example, this same immune system task was solved
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Figure 4: This figure shows how the antibody population adapts during evolution when 64 bit antigens are added and removed

(T=10 K corresponds to tournament 10,000).

by Potter and De Jong (2000) using cooperative coevolu-
tion where the population was subdivided into n different
species before evolution wass started. This method was
successful at evolving a population of antibodies to match
different antigens as long as the number of different anti-
gens was known a priori and the number of antigens re-
mained constant throughout evolution. To overcome these
limitations of cooperative coevolution, Potter and De Jong
(2000) applied an evolutionary stagnation measure to deter-
mine when a new sub-population should be added. This al-
lows antibody species to be added and removed during evo-
lution in response to new antigens, but as Potter and De Jong
(2000) state, the level of stagnation at which species should
be added or destroyed is task dependent.

This task was also solved by Forrest et al. (1993) using a
GA with a best-match fitness scoring scheme. In their algo-
rithm, an antigen is chosen at random and matched against a
group of antibodies from the population. Only the antibody
in the group with the highest match score gets its fitness in-
creased by its match score, the fitness of all other antibodies
remains unchanged. This fitness evaluation step is repeated
many times and then the population is evolved using a stan-
dard GA. Like the Group GA, this method allows the anti-
body population to niche to match a set of antigens without
needing to know a priori how many antigens are present.
The major difference between this method and the Group
GA is that this best match method requires that the fitness

of individual population members can be evaluated on their
own. This is possible for this task because each individual
antigen can be evaluated on its own by matching it against a
single antigen, but tasks where fitness can only be evaluated
at the collective, group level will not be able to be solved
using this best-match method. In general, the genetically
based niching methods described earlier will struggle with
this type of symbiotic task where individual fitness is mean-
ingless. An example of this type of task is the evolution of
artificial neural networks (ANN) task where the population
is made up of partial sub-networks which have no fitness
except when they are combined with other sub-networks to
form a fully specified networks. Both SANE and the Bi-
nomics GA discussed earlier have been used to solve ANN
tasks in this way.

For the reasons given above we believe that the Group GA
has the potential to be a useful algorithm that can use emer-
gent niching to solve problems where the optimial division
of labour is unknown. Going forward, we plan on testing
the Group GA on a wide variety of tasks which may benefit
from being solved cooperatively in order to find out when
it performs well and under what circumstances it performs
poorly. We also plan on studying the effect of varying the
group size parameter on this immune system task as well as
other tasks. Testing the Group GA on an ANN task may be
a logical next step, as neural networks can be viewed as a
group of neurons symbiotically working together to solve a



problem. We think that the Group GA could be the catalyst
for the development of a new class of GAs that specialise in
solving tasks cooperatively where there is limited a priori
knowledge of the fitness landscape.
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