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If you can help me make 
the question clearer, I 
think the answer is going 
to be much easier to find.
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I want to understand the generic behaviour of very 
abstract models of interacting non-linear feedback 
circuits, modelled as Dynamical Systems; analysing 
possible equilibria, and possible types of homeostasis.  
 
These could be considered as models for brains, genetic 
regulatory networks, ecosystems or indeed planetary 
climate systems --  
 
BUT I want to start at the naive and simplistic end of 
the spectrum, with minimalist models and minimal 
assumptions.  

This could be done Analytically, by armchair 
reasoning, e.g. using MaxEnt ideas. Or it could be 
done Computationally, by generating in simulations 
millions of different examples from an ensemble of 
possibilities, parameterised at random, and observing 
the range of behaviours displayed. Any (near-) 
universal behaviours are generic and hence of interest.  
 
I am focussing on the computational approach, partly 
inspired by Kauffman’s similar approach to Random 
Boolean Networks. 
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I want my simplistic models to be capable of being 
interpreted as organisms, or ecosystems, or planetary 
climate systems, or …?  
What common characteristics do these have? 
 
They are internally complex, with (relatively) limited 
external interactions: materially, either closed or with 
well-definable inputs/outputs; energetically open to 
some energy source(s) and sink(s).  

We have a Dynamical System, with a (large) finite 
number of relevant internal variables Ai, and a 
smaller number of external variables Pj and a set of 
general non-linear equations: 
         dAi/dt = Fi(Ai,Pj),      dPj/dt = Gj(Ai,Pj),    
where we assume we know very little about the non-
linear functions -- but there are some constraints. 
 
We assume noise, any unstable equilibria do not last. 
 
Inspirations: standard ecosystem models, 
Daisyworld-type models 
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The variables correspond to physical entities (e.g. 
species numbers, temperatures, pH…), so they 
cannot shoot off to + / - infinity; bounded variables, 
conservation laws. The functions relate to physical 
laws, and will be continuous.  
 
A random network of interconnected variables. 
 
Pragmatically, we should start with linear functions 
and the simple end of non-linear functions:-  
o Monotonic (e.g. sigmoidal) positive slope 
o Ditto negative slope ,   and 
o ‘Ambiguous’ hat-shaped functions   +/- 

Cf. viability functions in e.g. Daisyworld 
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Influenced by 
René Thomas’ 
work on 
Biological 
Feedback 
Circuits 

Influenced by 
Manfred Clynes 
on Rein Control 

Mistaken starting 
point of Robert May, 
et al, work on 
ecosystems stability 
and complexity 
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Many people think it inherently improbable that we 
should see stable equilibria, as opposed to unstable ones, 
in a randomly connected network. This intuition is 
wrong! 
 
There may be plenty of unstable equilibria -- but 
necessarily they will be fleeting and transient. The stable 
ones are the ones that hang around, so we shall see them!
 
Most of the time, we shall observe lots of negative 
feedbacks. This is natural -- indeed it is a form of 
Natural Selection of stable equilibria. 

Effects take place at many different timescales. With 
any one specific temporal perspective, the much-slower 
changes are as-good-as-fixed, the much-faster changes 
are just-noise. 
 
As we alter our temporal perspective, our interpretation 
of what is happening will change. 
 
Punctuated equilibria. Metastable global states in 
negative feedback, rapid transients in positive feedback 
to a new metastable state.
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What is the generic behaviour of such randomly 
connected networks of non-linear feedback circuits? 
 
What affects robustness? What might make the jumps 
between metastable states less frequent, or less 
catastrophic? 

It looks to me as if the methodology of  
o simulating computationally the behaviour of a very 

large ensemble of randomly parameterised 
networks (drawn from some distribution)  

o and then looking at the generic behaviour observed 
as (near-)universal across the ensemble 

is doing something rather similar to MaxEnt methods, 
but computationally rather than analytically. 

But how can MEPP, the Maximum Entropy 
Production Principle, fit into this picture? 
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One interpretation of the MEP principle, and MaxEnt, 
approach is that it can be a powerful (but risky) 
heuristic for positing general constraints on such 
systems, despite (or indeed in virtue of) our lack of 
knowledge of the details. 
 
To what extent is MEP specifically Thermodynamics?
 
Dewar's approach suggests, following Jaynes, an 
information-theoretic rather than solely 
thermodynamic basis to these ideas. 

So my question is: I think I am already using 
MaxEnt, but what form of new constraints could I put 
in this generic model to reflect MEPP ? 
 
Do I have to think in terms of Thermodynamics and 
energy sources, or …? 
 
Help ! 
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As indicated in a note attached to the poster as it was 
posted, the main conceptual question was answered to 
the author’s satisfaction, in fact during Roderick 
Dewar’s presentation. 
 
Briefly:- one can take MaxEnt as a sound principle of 
inferential reasoning, indeed of common sense, to the 
effect that models used for predicting have a context of 

(A) Relevant Factors that you know 
(B) Factors you know to be Irrelevant 
(C) And possibly Relevant Factors you do NOT know

The modeller hopes that (C) is an empty set, and 
MaxEnt pursues the consequences of this in a rigorous 
fashion. If predictions correspond with experimental 
data, this supports the hypothesis that (C) was empty. 
 
The entropy in this inferential version of MaxEnt is 
informational entropy, and can be applied in any 
domain. It so happens that Thermodynamics is one 
domain often ideally suited to such reasoning. The 
MEP Principle is the outcome of applying the same 
inferential-reasoning MaxEnt principle to trajectories 
in time and space. 
 
But though this inferential-reasoning MaxEnt  
principle can work well with thermodynamics, it is 
equally applicable to other domains that have no direct 
thermodynamic connotations.  


