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Abstract. Artificial agents controlled by dynamic recurrent node net-
works with fixed weights are evolved to search for food and associate
it with one of two different temperatures depending on experience. The
task requires either instrumental or classical conditioned responses to be
learned. The paper extends previous work in this area by requiring that
a situated agent be capable of re-learning during its lifetime. We anal-
yse the best-evolved agent’s behaviour and explain in some depth how it
arises from the dynamics of the coupled agent-environment system.

1 Introduction

Learning is a behaviour. In fact, it is a change of behaviour over time. Living
organisms show a variety of behaviours that are modulated by environmental
conditions and previous experience. A major goal of the artificial life sciences is to
elucidate the dynamical bases of such experience-dependent adaptive behaviour.

Associative learning is a particularly adaptive form of such experience modu-
lated behaviour, as it requires responses to be paired with a particular stimulus.
Organisms at several levels of ‘complexity’ provide evidence for this, including
many extraordinarily simple ones. In the small nematode worm C. elegans, evi-
dence for the formation of associations between temperatures and food has been
known for quite some time [5]. However, the mechanisms required for the storage
and resetting of this memory are still largely unknown.

In the animal learning theory there is the idea of the strengthening of a
‘connection’ between a stimulus and a response. This has been directly trans-
lated to the strengthening of physical connections between neurons. While this
is a good description at the level of the agent’s interaction with the environ-
ment (behavioural description), there need not be a direct correspondence of
connection-forming processes in the internal behaviour-producing mechanisms
of the agent. We believe there is a more fundamental principle underlying learn-
ing behaviour at the level of an organism’s internal mechanisms that has to do
with dynamics on multiple timescales.

The aim of this work is to: (1) successfully evolve the smallest possible inte-
grated dynamical system controller with fixed weights in a situated1 agent on an

1 By situated we mean an agent that is embedded in a world; and thus its ongoing
sensori stimuli is dynamically determined by its own actions.
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associative learning task requiring re-learning, (2) perform a behavioural analysis
of the best evolved agent; and (3) study the coupled agent-environment dynam-
ics of a successful controller and attempt to understand it as implementing a
finite state machine (FSM), so as to compare with similar work [6].

2 Related Work

A number of researchers have used genetic algorithms to evolve, for tasks requir-
ing associative learning, dynamical neural controllers without in-built synaptic
plasticity mechanisms. Yamauchi and Beer [8] were the first to explore this idea
using a one-dimensional navigation task with a goal and a landmark. Attempts
to evolve an ‘integrated’ network failed, so a modular approach was taken.

Blynel and Floreano [2] evolve controllers on a relatively similar task and
environment. In their version, because the light is fixed to one side of the arena
and the goal is the only thing that changes, it is possible for the agent to employ
a reactive turn left or right strategy, as opposed to approaching or avoiding the
light; making it unnecessary to form an association between light and goal.

Attempts to remedy those initial difficulties were successfully overcome by
Tuci et al. [7] in a two-dimensional version of the same task. As the emphasis of
that work was on the evolutionary process, no further analysis of the behaviour
or internal dynamics was performed.

Fernando in [3] explores the same associative learning task in a slightly more
complicated T-maze environment. Despite not being able to evolve an agent that
solves the task completely, an analysis of the best performing agent in terms of
animal learning theory is attempted.

Such work demonstrates that multitimescale dynamics can exhibit learning-
like behaviour without synaptic plasticity mechanisms. However, none of the
previous work deals with re-learning during the lifetime of the agent: the agent’s
internal state is reset when tested on a different environment. Also, the internal
mechanisms of the best-evolved agents have not been explored in much depth or
at all in some cases.

Phattanarasri et al. [6] study in-depth the dynamics of an evolved circuit
for an associative learning task very similar to the one being presented here.
The main difference with this work is that their experiments take place in a
non-situated agent. Of particular interest is their analysis of the evolved internal
mechanisms, which can be understood to implement a FSM.

3 Methodology

We use evolution to synthesize continuous-time recurrent neural networks that
display associative learning behaviour when situated. The task is loosely ab-
stracted from the temperature preference behaviour observed in the nematode
worm C. elegans [5]. In particular, we would like an agent that is capable of
associating temperature with food in two different types of environment, and
re-learning: modify its temperature preference during its lifetime when required.
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Fig. 1. [A] Example trial. 1D projection of environment with thermal gradient (shades
of grey). ‘Nutritious food’ denoted by white bars; ‘poisonous’ with black. [B] Agent
architecture with 4 fully inter-connected nodes, a food and a temperature sensor, and
two wheels controlled by arbitrarily chosen nodes. Parameters of the best evolved circuit
are also depicted. Nodes are shaded according to their bias. Excitatory connections
(black) and inhibitory (grey), with the width of the line proportional to the strength.
Time-constants represented by size, with larger circles representing slower nodes.

We use a 2D arena with a thermal gradient along one of its dimensions
containing two types of food: ‘nutritious’ and ‘poisonous’. Each type of food can
be found only in regions in a particular temperature range: ‘hot’ between [9,10];
‘cold’ between [-10,-9]. Which region the nutritious food can be found in depends
on the type of environment: ⊤-env, nutritious food in the hot region; and ⊥-env,
in the cold region. For each of the different environment types, the poisonous
food can be found in the opposite region to the nutritious food. There are no
walls and the thermal gradient extends in all directions.

An example trial of the task is depicted in Figure 1A. The task involves
placing an agent at random in the central region (between [-2,2]) of the arena
(including random orientation) in one of the two environment types, requiring it
to find and stay on the food as efficiently as possible. The first challenge involves
exploring the whole of the arena in search for food. After a random amount of
time (between [80,100] units), the agent is physically displaced back towards the
central region of the arena and given a random orientation again. A successful
agent should navigate up or down the thermal gradient depending on whether
it had found food in the hot or cold region in the previous trial, respectively.
This requires that it learn and remember in which of two environment types it
finds itself. Less frequently, the displacement involves changing the environment
type as well. This requires that the agent remain sufficiently plastic to change
its temperature preference online. Although it is this learning and re-learning
phenomena that are central to our paper, there is also a more basic sensory-
motor challenge involved in navigating up and down the thermal gradient which
will not be explored.

Agents are modelled as circular bodies of radius 1 with two diametrically
opposed motors and two sensors. Agents can move forwards and turn. The mass
of the body is sufficiently small so that the motor’s output is the tangential
velocity at the point where the motor is located. The agent can sense the local
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temperature in the environment as well as the food. The food, however, cannot be
perceived unless the agent is directly upon it. The food sensor is: 1 for nutritious
food, -1 for poisonous food, and 0 when no food is present. The temperature
sensor can have any real value.

For the internal dynamics of the agent, we use a continuous-time recurrent
neural network (CTRNN) with the following state equation [1]:

τiẏi = −yi +

N
∑

j=1

wjiσ (yj + θj) + siT (x) + giF (x; e) (1)

where y is the activation of each node; τ is the time constant; wji is the strength
of the connection from the jth to the ith node; θ is a bias term; σ(z) = 1/(1+e−z)
is the standard logistic activation function; T (x) is the thermal sensor, a function
of the agent’s position along one of the dimensions of the physical space, x; si

is the strength of the connection from the thermal sensor; F (x; e) is the food
sensor, also a function of x but parameterized by the type of environment, e;
gi is the strength of the connection from the food sensor; and N represents the
number of nodes in the network. In simulation, node activations are calculated
forward through time by straightforward time-slicing using Euler integration
with a time-step of 0.1. The network is fully connected (see Figure 1B). There
are no additional weight changing or any other parameter changing rules.

The connection weights, biases, and time-constants in Equation 1 are encoded
in a genotype as a vector of real numbers and evolved using the microbial genetic
algorithm [4]. The size of the population used was 50. We define a generation as
the time it takes to generate 50 new individuals.

The fitness of a circuit is obtained by minimising the relative distance away
from the food at the beginning of each test (a), and maximising the time spent
sensing food towards the end of the same phase (b), according to

a =

∫ 50

t=0

(

20 − d

20

)

dt , b =

∫ 80

t=30

Fdt (2)

where F is the agent’s sensor for food and d is the absolute distance between
the source of food and the position of the agent capped at 20. Both components
are normalised to run between 0 and 1. The two components are clearly linked:
the first provides emphasis on heading in the direction towards where the food
should be at the start of the trial; the second emphasizes staying directly on top
of the food once found.

A fitness trial consists of the evaluation of an agent’s performance for the
number of times it is displaced in the same environment type, p, and for the
number of changes of environment type, k, all without reinitialising the agent’s
state. No evaluation takes place at the start of a trial, nor immediately after a
change of environment type. This is repeated 50 times for each individual and the
fitness taken from the multiplication of their averages, f = ā · b̄. Each repetition
involves the re-initialisation of the agent’s internal state.

Following [6], a set of evolutionary stages of increasing complexity are em-
ployed. The changes are in the starting orientation of the agent, ϕ, after each



The Dynamics of Associative Learning in an Evolved Situated Agent 5

start of trial or displacement; in the number of times an agent is tested (i.e.
displaced), k; and the number of changes of environment type, p; as follows:

Stage 1 2 3 4 5
ϕ {0, π} [0,2π) [0,2π) [0,2π) [0,2π)
k 1 1 1 2 5
p 1 1 5 [1,5] [1,5]

Transitions occur when the best fitness exceeds 0.8 consistently (i.e. for 5 con-
secutive generations). At the last stage, the orientation is chosen at random from
the full range, the environment type changes 5 times during the agent’s lifetime,
and the changes occur between the first and the fifth displacement at random.

4 Results

4.1 Evolutionary performance

We attempted evolving 3, 4, and 5-node circuits for this task using 15 evolu-
tionary runs with different seeds for 10000 generations each. The proportion of
evolutionary runs that reached the different stages are depicted in Figure 2A.
While no 3-node populations reached the last stage, several 4 and 5-node popu-
lations did. In fact, the majority of 5-node runs were highly successful, but we
will focus our attention on the smallest successful circuit obtained. The interest
in evolving the smallest circuit that solves the task is primarily to make the
analysis most amenable to the mathematics of dynamical systems theory.

An example evolutionary trajectory for the population that produced the
best 4-node agent is shown in Figure 2B. As can be seen, the fitness drops
sharply after every transition except the last: once the circuit is able to generalize
to all learning scenarios. It is the best agent of this evolutionary run that will
be analysed in some depth in the rest of this paper.
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Fig. 2. Evolutionary performance. [A] Proportion of populations that terminated at a
certain evolutionary stage for different size circuits. [B] Fitness vs. generation for the
best evolved 4-node population (best in black and average in grey). Transitions between
stages (dashed lines) occur when the best fitness consistently exceeds the horizontal
grey line and are labelled accordingly.
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4.2 Behavioural analysis

The performance of the best circuit was further tested using 104 evaluation trials,
each with 10 changes of environment type, between [1,10] displacements, noise
in the sensors and motors drawn from a Gaussian distribution (σ=0.05), and a
time-step an order of magnitude smaller (0.01). As we are interested in how well
the agent finds the nutritious food in the face of changing environments, only the
b component of fitness is considered. The best 4-node circuit obtained 98.81%
success rate on this test, meaning that it generalises well on a broad range of
situations. Since the slope of the thermal gradient remains constant throughout
evolution, the agent could use the distance instead of the temperature as the
relevant factor to remember. We used the same test while varying the slope of
the gradient between ±20% with the success rate dropping by only a minor
fraction (98.48% success), meaning the agent relies on the temperature and not
the distance the food is away from the centre.

Figure 3 shows the behaviour of this agent on a typical sequence trial with 2
changes of environment type. At the beginning of the trial, the agent navigates
down the thermal gradient but switches to navigating up before reaching the
usual region where food could have been located. This is part of the search
strategy, as it does not yet know in what type of environment it finds itself.
When displaced for the first and second times after reaching the food, however, it
navigates more directly up the thermal gradient. Subsequently the environment
type is changed, unaware the agent navigates up the thermal gradient as for
previous trials, with the difference that negative reinforcement is encountered
(but only very briefly2). The agent navigates past this food region and eventually
changes behaviour to navigate in the opposite direction of the gradient, until
reaching the nutritious food on the cold region. On subsequent trials, the agent
will navigate directly down the gradient, showing that it remembers where the
food was last found in the other type of environments as well. A similar pattern
is observed in the second change of environment type. This demonstrates the
agent’s ability to learn and remember its past behaviour, as well as the flexibility
to remain plastic to ongoing changes in the environment type.

We note that all 4 nodes are active at one point or another during the se-
quence trial; with most of the activity occurring during the navigation phase.
Particularly interesting is the activity of node o3, which seems to be the only
one keeping track of which environment type it finds itself in. This is also the
node with the largest time constant in the circuit; all other nodes are as fast
acting as allowed (see Figure 1B).

Before any experience, does the agent navigate up or down the thermal gra-
dient? and what does this depend on? We studied the long-term behaviour of the
agent when initialised in an environment with nutritious food on both cold and
hot regions. As can be seen in Figure 4A, what the agent does depends mainly
on its starting position: visiting the furthest region first. How does experience
affect this pattern? After learning has occurred, the agent will preferably head

2 Absence of poisonous food in the environment does not affect the learning behaviour
in this agent. The reason is that the negative reinforcement is redundant in this task.
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Fig. 3. Activity of the best 4-node circuit on a typical trial sequence. From top to
bottom the traces correspond to the food signal (F), the temperature signal (T), and
the outputs of the neurons (oi). The last two neurons control the right (rm) and left (lm)
motors. The dark grey horizontal bars in the temperature trace depict where nutritious
food is to be found for that trial (⊤ or ⊥). Dotted vertical lines mark different trials
(where the agent is displaced). Dashed lines mark transitions between environments.

towards hot or cold regions, even with nutritious food on both, depending on
where food was found in the previous trial (see Figures 4B and 4C, respectively).
This shows how behaviour is appropriately modulated according to previous ex-
periences regardless of initial position and orientation.

4.3 Dynamics of the coupled agent-environment system

We next turn to the dynamics underlying the behavioural phenomena described
in the previous section. The primary interest is in understanding how this agent’s
dynamics is structured so that where food was encountered in the past affects
which direction of the thermal gradient it will navigate towards. From the equa-
tions describing the coupled agent-environment system we can make some gen-
eral observations. First, the agent is a nonautonomous dynamical system with
two inputs, T and F . Second, although T varies continuously as a function of
x, discontinuities are introduced into the dynamics by the food sensor because
F (x; e) is a discontinuous function of x, making the agent a hybrid dynami-
cal system. Given these two factors, the best way to study its operation is to
characterize its autonomous dynamics for all possible combinations and then ex-
amine the transient dynamics induced by the agent-environment interaction. If
we take into consideration only the range of temperatures where the agent was
observed to navigate around, then there are five possible bifurcation diagrams to
consider: P±15 (temperature between [-15,15] with no reinforcement), P↓+ (cold

temp. and positive reinf.), P↑+ (hot temp. and positive reinf.), P↓− (cold temp.
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Fig. 4. Points in the map represent the average position (over 20 repetitions) of the
agent after 100 units of time with nutritious food on both hot (white) and cold (black)
regions while varying its starting position (p) and orientation (ϕ). Points in-between
are in shades of grey. Grey dashed lines mark the conditions for which the agent was
evolved. Different maps show the agent’s behaviour with different past experiences:
[A] Before any experience. [B] After ⊤-environment. [C] After ⊥-environment.

and negative reinf.), and P↑− (hot temp. and negative reinf.). Three-dimensional
projections of the stable solutions of the first three of these are shown in Fig-
ure 5A, coded in shades of grey as a function of the temperature and labelled
accordingly. The portraits corresponding to the negative reinforcements can be
left out of the analysis because they do not affect the performance of the agent’s
learning behaviour. As can be seen, for mid-temperatures (P±9) the long-term
behaviour of the system is bistable. As the temperature increases or decreases
outside of this range, only one attractor is left in opposite ends of the original
for cold and hot. Similarly, for P↓+ the dynamics are bistable and for P↑+ there
is only one stable state.

How do these bifurcation diagrams combine to produce the learning be-
haviour? We can study the transient trajectories in the internal state of the
agent as it interacts with its environment. In Figure 5B we show a set of trajec-
tories from behaviours crucial for the task using the same projection as in the
previous plot. Can we interpret the transitions in the internal state of the agent
as implementing a FSM? We were unable to do so. The difficulty arises from the
agent’s dependence on the temperature sensing as an ongoing and continuous
perturbation. We hypothesize that it is the discretisation and non-situatedness
of the task in [6] that facilitates their FSM interpretation. Only when we consider
a different form of state machine that allows for ongoing sensori-motor interac-
tions can we summarize the coupled agent-environment system in relation to
the agent’s internal dynamics. We will call this an ‘interactive state machine’
(see Figure 5C). Although similar, strictly speaking the diagram is not a FSM
because some of the states include ongoing interactions with the environment. In
it, the finite states the system can be in are denoted by circles labelled: ↑+ or ↓+,
for when nutritious food is found in the hot and cold regions, respectively. The
graded ellipses represent the ‘interactive states’: where the agent’s state moves
it in relation to the environment, and the change of temperature changes the
dynamics of the agent in turn. There are two of these: ↑ and ↓, for what results



The Dynamics of Associative Learning in an Evolved Situated Agent 9

o4

o1+o2

o3

↓o

↑

↓+

↑+
+

+

¬+

¬+

↑

↓!"(  ,  )

↑!"(  ,  )

!"(  ,  )

!"(  ,  )

↑+ o↑ ↓

+

+

↓!"(  ,  )↑!"(  ,  )!"(  ,  ) !"(  ,  )

¬+

¬+

↓+ʼ

↓+
↑ ↓

o4

o3

o1+o2

↓+

↑+

↓+ʼ

P

P

P-9

P9

P0

P0
P15

P9

P-15

P-9

P

A B C

Fig. 5. Agent-environment coupled dynamics. [A] Equilibrium points of the nonau-
tonomous system depending on temperature (shade of grey) and positive reinforce-
ment. [B] 3D projection of the trajectories in internal space state for a typical set of
behaviours. See main text for the labels. [C] Diagram of the coupled dynamics.

in navigation up or down the gradient, respectively. We denote the starting in-
ternal state as o. Physical displacements events are depicted with thick arrows.
We can characterise the basins of attraction of the bistable dynamics in P±9

as a function of the agent’s position and orientation from Figure 4A as (p, ϕ)z ,
where z represents the long-term behaviour (↑ or ↓). The black arrows denote
the encountering of nutritious food, +. The thin arrows connecting the ellipses
denote the transition from one stable state in P±15 to the other in the internal
dynamics. This occurs when the agent reaches colder or hotter temperatures.
The diagram up to this point is sufficient to fully characterise the observed be-
havioural phenomena. There is an additional finite state that is never reached
during regular associative learning which we denote as ↓+’.

4.4 Predictions from the dynamics

The study of the dynamics suggest a number of predictions which we could con-
firm using behavioural studies. Although a full study of the predictions would
require further space, two of them are mentioned briefly. First, as a result from
the bistability of P↓+, we could predict and confirm that even after experiencing
environments with food in the cold regions, if exposed to hot temperatures and
food simultaneously for sufficiently long, the agent could be re-conditioned to
navigate up the thermal gradient. This was not the case in the opposite sce-
nario, where the agent required doing the down-the-thermal-gradient navigation
behaviour to remember. We can describe the agent as employing a mixture of
classical (pairing two signals) and operant (pairing an action with a reinforce-
ment) conditioning. Second, and as a consequence of the geometry of P±15, we
could predict and confirm that in the total absence of any kind of food, the
coupled system falls into a limit cycle, that involves the agent switching between
going up and down the gradient modalities. Although this was not a scenario
the agent was evolved for, it could be interpreted as a higher level ‘searching for
food’ behaviour that emerges from the lower level behaviours selected for.
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5 Concluding Remarks

We successfully evolved situated agents with fixed weight dynamical neural con-
trollers on an associative learning task requiring re-learning. The observed phe-
nomena can be described as the ability to perform two different behaviours
and appropriately switch between them when necessary using feedback from the
interactions with the environment. The question of whether such experience-
dependent behaviour is actually ‘learning’ is discussed in more depth in [6]. The
dynamics of the coupled agent-environment is explored in some depth. Attempts
to generate a FSM are unsuccessful but a form of ‘interactive state machine’ is
provided instead. From the dynamics, two predictions are explored.

This work raises a number of issues we believe deserve to be further studied.
First, in the case of a situated agent, how useful is the conventional distinction
drawn between operant and classical conditioning? Our work suggests that the
distinction arises from the discretisation of the task or the minimisation of the
coupling between agent and environment. Second, in such ‘representationally-
hungry’ tasks, correlations between the activity of internal components and that
which the agent has to remember are trivial to spot. Could they be interpreted
as symbols the agent can manipulate to perform computations? Further work
unravelling what is meant by ‘internal representations’ from minimal model sys-
tems such as the one presented here should be of interest. Finally, an important
next step will be to extend this work to an agent that can associate any temper-
ature along a continuum with food, as is the case in the phenomena observed in
C. elegans from which this task was abstracted.
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