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This paper extends previous work on evolving learning without synaptic plasticity from dis-
crete tasks to continuous tasks. Continuous-time recurrent neural networks without synaptic
plasticity are artificially evolved on an associative learning task. The task consists in associat-
ing paired stimuli: temperature and food. The temperature to be associated can be either drawn
from a discrete set or allowed to range over a continuum of values. We address two questions:
can the learning without synaptic plasticity approach be extended to continuous tasks? And if
so, how does learning without synaptic plasticity work in the evolved circuits? Analysis of the
most successful circuits to learn discrete stimuli reveal finite state machine (FSM) like internal
dynamics. However, when the task is modified to require learning stimuli on the full continuum
range, it is not possible to extract a FSM from the internal dynamics. In this case, a continuous
state machine is extracted instead.
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1 Introduction
Learning is one of the most fundamental aspects of adap-
tive behavior for living organisms. Although there is no one
agreed definition, it generally refers to changes in the behav-
ior of the organism, such that its performance on some task
improves with experience.

Almost all studies of the mechanisms underlying learn-
ing and memory have focused on the activity dependence
of synaptic efficacy (see, for example, Kandel, 2000). In
fact, synaptic plasticity is conventionally thought to be both
necessary and sufficient to account for learning and memory.
This is reflected in most models of learning (Abbott & Nel-
son, 2000). Ultimately, this has helped cement a perspective
on learning where the behavior-producing and the learning
mechanisms are neatly separated into neural activity and its
synaptic modulation, respectively.

This traditional perspective has become less useful in the
face of more recent theoretical and experimental work in neu-
roscience. First, it is now well accepted that neuronal activity
itself modifies not only synaptic efficacy but also the intrinsic
membrane properties of neurons, and changes in these prop-

erties also serve to modify the circuit’s dynamics (Marder et
al., 1996). This includes long-term potentiation of intrinsic
excitability (Cudmore & Turrigiano, 2004). Second, stud-
ies have uncovered bewildering diversity in the timescales
of activation and inactivation of neurons (Llinas, 1988), in
postsynaptic signaling properties (Toledo-Rodriguez et al.,
2005), as well as dendritic signaling (Hausser et al., 2000).
Finally, long time delays before potentiation or depression
reach stable levels have been discovered. This means that
such slow processes cannot quantitatively account for fast
memory formation. Therefore, other cellular, synaptic, or
network mechanisms must fill in the gap between spike tim-
ing events occurring over very fast time scales (Bi & Rubin,
2005). As a result, the understanding of the mechanisms un-
derlying learning is changing towards a dynamical process
occurring over multiple timescales.

In modeling work, learning behavior and plasticity has
also been traditionally associated with the modification of
a neural network’s parameters, especially involving changes
in the synaptic connections or weights of the neural net-
work during the lifetime of the individual (Churchland & Se-
jnowski, 1992). These assumptions have been carried into
the studies of learning in Evolutionary Robotics (ER) (Nolfi
& Floreano, 1999; Floreano & Urzelai, 2000, 2001, for ex-
ample). However, one of the main strengths of this ap-
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proach is to minimize building in preconceptions relevant
to the phenomena of interest; allowing artificial evolution
to ‘figure it out’ on its own instead. The concept of plas-
ticity is basically no more or less than change on different
timescales. Whereas in conventional feedforward neural net-
works it is traditionally fast changes of node-activations, and
slow changes of synaptic-plasticity, there is no need for the
differential timescales to be split up in that particular way.
In the work presented here the plasticity is non-synaptic: in
dynamical recurrent neural networks, activity occurring over
multiple timescales is practically inevitable.

A more integrated view of learning, as a dynamical pro-
cess occurring over multiple timescales, was first made
concrete in a set of ER experiments (Yamauchi & Beer,
1994a,b). Agents were evolved in tasks where learning the
relationship between a landmark and the goal improved the
agent’s performance in finding that goal. Agents were also
evolved to learn sequential decision-making. Continuous-
time recurrent neural networks (CTRNNs) without synaptic
plasticity were successfully evolved. Similar experiments
have been performed by others that have included actual
robots and comparisons between controllers with and with-
out synaptic plasticity (Tuci et al., 2002; Blynel & Floreano,
2003). More recently, an in-depth analysis of the internal dy-
namics of evolved CTRNNs without synaptic plasticity in an
associative learning task for discrete stimuli is given (Phat-
tanasri et al., 2007).

All of this work has focused on evolving agents that can
behave differently in a discrete number of different environ-
ments, in practice two. The learning, in this case, corre-
sponds to swapping between two different modes of inter-
action; depending on which environment the agent finds it-
self in (e.g. going towards the landmark in landmark-near
environments or going away from it in landmark-far ones).
A different, but arguably more common, form of learning
requires the ability to adapt to changes in the environment
ranging over a continuum of values. Temperature prefer-
ences in the C. elegans, song learning and parental imprint-
ing in birds, and face recognition in humans, are a few ex-
amples of such learning of continuous stimuli. Izquierdo &
Harvey (2006) report the first experiments on learning from
a continuous range using circuits without synaptic plasticity.
In that work, the analysis of evolved circuits illustrated how
the rich environmental regularities arising from the agent’s
situatedness provided a way to ‘offload’ the plasticity to the
agent-environment interaction.

The central contribution of this paper is the extension of
previous work on evolving learning without synaptic plastic-
ity from discrete tasks to continuous tasks, where the plastic-
ity arises from the neural network controller. As such, there
are two major questions it will address. First, can this ap-
proach be extended to continuous tasks? Second, if so, how
does learning without synaptic plasticity work in the evolved
circuits?

The particular associative learning task, neural models,
and evolutionary algorithm that we employ are described in
Section 2. Section 3 presents a ‘baseline’ for the continu-
ous work by reproducing the results in Phattanasri et al.

(2007) with a different training paradigm and evolutionary
technique, but similar task and shaping protocol, and the
same neural network model. This section shows that a fi-
nite state machine can be extracted from the functioning of
the circuit’s internal dynamics. In Section 4, we demonstrate
that CTRNNs lacking synaptic plasticity can be successfully
evolved to exhibit associative learning for a continuous ver-
sion of the task. The dynamical operation of the best such cir-
cuit is then analyzed in detail in Section 5. Finally, Section 6
concludes with a discussion of the broader implications of
our results and directions for future work.

2 Methods
We use evolutionary techniques to synthesize dynamical sys-
tem circuits for an associative learning task abstracted from
one of several learning behaviors studied in the nematode
worm Caenorhabditis elegans. The behavior is known as
temperature preference1 (Hedgecock & Russell, 1975). It
consists in associating paired stimuli: temperature and food.
This paradigm was chosen to be the simplest possible sce-
nario requiring associative learning, yet sufficiently sophis-
ticated to allow for the ‘remembered stimulus’ to be either
discrete or continuous.

2.1 Temperature preference task
As we are interested in the broader set of possible mecha-
nisms that can give rise to such behavior, we do not want
to explicitly specify the task in terms of the internal mech-
anisms. This would carry built-in assumptions about the
mechanisms and architecture required to do so. We would
like to define the task at a ‘higher’ behavioral level, instead.

C. elegans can sense temperature at the tip of their head,
and (although less directly) they can also sense food (pri-
marily bacteria)2. In the thermal preference behavioral
paradigm, animals placed onto a thermal gradient will mi-
grate to the temperature that they had been previously cul-
tivated at. The behavior has been described as one of the
most complex in the C. elegans repertoire (Hobert, 2003).
They will only ‘remember’ their cultivation temperature if
that temperature was paired with the presence of ample food
supply. In contrast, if the previous cultivation temperature

1 Although the behavior has been observed by several oth-
ers (Mori & Ohshima, 1995, 1997; Mori, 1999; Ryu & Samuel,
2002; Zariwala et al., 2003; Mohri et al., 2005; Murakami et al.,
2005; Biron et al., 2006; Luo et al., 2006; Clark et al., 2006) since it
was first discovered by Hedgecock & Russell (1975), a more recent
study has challenged the validity of the phenomena due to possible
effects of body temperature on movement (Anderson et al., 2007).
As a result, temperature preference is currently a debated topic of
investigation in C. elegans.

2 The main thermosensory neuron is called AFD, another neuron
called ASH is known to be involved in sensing food. It is impor-
tant to note that the sensory function of neurons is often determined
using behavioral experiments on worms where the neuron has been
laser-ablated. See De Bono & Maricq (2005) for more detail.
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was paired with starvation (an aversive stimulus), animals
will avoid that temperature. They are also known to learn
new preferred temperatures: if starved in their current tem-
perature they will move until they find bacteria and remem-
ber that temperature for the future (Mohri et al., 2005). In
summary, the nematode worm modifies its behavior in rela-
tion to previous experience based on two distinct, yet paired,
sensory inputs. The behavior involves memory formation as
well as acute sensory input comparison to a reference value.
Although ablation studies have been performed to identify
the circuit of neurons responsible for the behavior (Mori &
Ohshima, 1995), the underlying mechanisms are still poorly
understood.

In our abstracted model, the task involves pairing the
agent’s food with a particular temperature (chosen at ran-
dom). After some time has passed, the agent is presented
with a temperature stimulus for testing. This can be similar
or different from the originally paired signal. A successful
agent is required to open its ‘mouth’ when it is the same stim-
ulus and close it otherwise. The agent is required to identify
the pairing signal for several consecutive tests separated by
random delays. Also, the agent can be paired with a different
temperature signal from the original at any point during its
lifetime. Successful agents are required to re-learn new as-
sociations and identify subsequent test signals based on their
last pairing.

2.2 Agent and structure of a trial
An agent is modeled as a circuit with two sensors and
one output (see Figure 1). The ‘thermal’ sensor (T) pro-
vides the local temperature in the agent’s environment. The
‘food/reward’ sensor (F/R) provides a binary signal corre-
sponding to the presence or absence of food. This sensor can
also act as a positive or negative reward signal, which can be
loosely interpreted as coming from a gut sensor that signals
the consequences of the agent’s previous action. The only
action available to the agent is to open or close its ‘mouth’
via a continuous effector output (M). Both temperature and
food signal inputs can be perceived by any of the nodes in
the network via a set of connections.

A single trial is structured into phases (see Figure 2).
There are two kinds of phases the circuit can be exposed
to: ‘pairing’ and ‘testing’. During pairing, first the circuit
is exposed to food and a particular temperature simultane-
ously. This lasts a fixed 20 units of time. Next, both the
food and the temperature signals are removed (signals return
to 0). The duration of the delay is random, lasting anywhere
between 16 and 24 units of time. During testing, the circuit
is first exposed to a particular temperature that may or may
not be the same as the one applied during the pairing phase,
but in the absence of the food signal. This lasts 10 units of
time. The temperature signal is then removed and the circuit
evaluated for another 10 units of time by observing the state
of the ‘mouth’. Ideally, it should be ‘open’ if the recent and
original pairing temperature are the same, and ‘closed’ if they
are not. Then a delay of random duration is applied, lasting
between 8 and 12 units of time. After this, the agent receives
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Figure 1. Circuit architecture. Example three-node fully-
connected network, including self-connections. The ‘thermal’ and
‘food/reward’ sensors are also fully connected with all nodes. The
strengths of all connections are evolved, but stay fixed within the
lifetime of the agent. One node is specified as the ‘mouth’ neuron.

either a positive or a negative reward. This is based on the
correctness of its previous action (mouth open or closed) in
relation to the recently experienced temperature and its en-
vironment, as determined by the original temperature. The
testing phase ends with another delay of random duration in
the same range as the previous one.

The training paradigm is given by the structure of a trial.
For any single trial, there must always be at least one pairing
and one testing phase, as illustrated in Figure 2. However,
trials can be comprised of more than one pairing and testing
phases. The pairing phase indicates the ‘environment’ the
agent is in. The particular temperature where food is found
defines an environment. In different environments food can
be found in different temperatures. Thus, multiple pairing
phases represent changes of environment. A circuit can also
be subject to several subsequent testing phases within a par-
ticular environment. This requires the circuit to remember
the paired temperature for longer. Thus, multiple testing
phases represent subsequent evaluations of the agent’s per-
formance within an environment. For brevity, a length-LK
trial corresponds to one with L different environments (i.e.
L−1 changes of environment) and up to K testing phases per
environment. During a trial, the state of the circuit is never
altered. Only at the start of a trial is the state of the circuit
‘reset’ (more detail in the next section).

The stimuli to be remembered can be drawn from a dis-
crete set or from a range on a continuum. Consider a situa-
tion where only n types of environment exist for a particular
agent. For the simplest n = 2 case, this would correspond to
a ‘world’ where food could be found in a particularly ‘cold’
temperature, t1, in some environments, and in a particularly
‘hot’ temperature, t2, in the second environment. A success-
ful agent would have to find out which of the two environ-
ments it finds itself in, and act accordingly. This is the dis-
crete case. For the continuous case, the number of possi-
ble environments is, in principle, infinite. Pairing tempera-
tures are chosen at random uniformly from the range [1, 2].
Test temperatures are chosen to be equal or different from
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Figure 2. Structure of an individual trial. A trial can consist of a combination of the following two phases: pairing and testing (vertical
gray line). Each of these phases is composed of distinct events (vertical dashed lines). During pairing, food and temperature signals are
applied simultaneously. This is followed by a variable random delay. During testing, first a temperature signal is applied. Second, the state
of the mouth is evaluated relative to the correct action (bold line). The error between the agent’s action and the desired response is shaded
in dark gray. Third, there is a variable random delay. Fourth, a reward signal is applied based on whether the previous action was correct
or not. Finally, there is another variable random delay before the next trial begins. Multiple pairing and testing phases can occur during a
single trial. The state of the network is never reset within a trial, only between different trials.

the last paired temperature with 50% chance. Test temper-
atures, when different, are also chosen at random uniformly
from the full range. A successful agent must remember the
particular temperature where food is found in each particular
environment. In practice, there will be some differences that
may be too small to detect given some precision. For this
reason, although pairing and testing temperatures are drawn
at random, the performance on test signals that are different
from the pairing temperature by less than 0.1 do not count
towards fitness.

The aim is to study the difference in the evolved internal
dynamics of agents evolved on stimuli drawn from a discrete
set (n = 2) versus a continuum.

2.3 Dynamical neural network
We use continuous-time recurrent neural networks
(CTRNNs) as a model of the agent’s internal dynamics.
These are continuous-time nonlinear dynamical systems
that can, in principle, approximate any dynamics with an
arbitrary precision, given enough components (Funahashi
& Nakamura, 1993). For this reason, our model does not
include any form of explicit synaptic plasticity mechanisms
(such as weight-changing or any other parameter-changing
rules). Each component in the network is governed by the
following state equation (Beer, 1995):

τiẏi = −yi +

N∑
j=i

w jiσ
(
y j + θ j

)
+ twiT (t) + f wiF(t) (1)

where y is the activation of each node; τ is its time constant;
w ji is the strength of the connection from the jth to the ith

node; θ is a bias term; σ(x) = 1/(1 + e−x) is the standard
logistic activation function; and N represents the number of
nodes in the network. All nodes can sense the external en-
vironment via a set of extra connection weights: twi is the
weight of the connection from the ‘thermal sensor’, T (t), to
node i; f wi is the weight of the connection from the ‘food
sensor’, F(t), to node i. The activation of all nodes is ‘reset’
to 0 at the beginning of each trial. Remember that each trial
comprises a sequence of pairing and testing phases. In simu-
lation, node activations are calculated forward through time
by straightforward time-slicing using Euler integration with
a time-step of 0.1. The network is fully connected.

2.4 Evolutionary algorithm
The parameters of each circuit (i.e. biases, time-constants,
inter-node and sensor-node weights for each node) are
evolved using a version of the Microbial genetic algo-
rithm (Harvey, 2001). There are N2 + 4N parameters in total.
These are encoded in a genotype as a vector of real numbers
over the range [0, 1]. Offspring of microbial tournaments
are generated as a mutation of the winner of the tournament
(i.e. no recombination). The mutation is implemented as a
random displacement on every gene drawn uniformly from a
Gaussian distribution with mean 0 and variance 0.01. Each
gene is forced to be in [0, 1]: when a mutation takes a gene
out of this range it is reflected back. The offspring replace
the loser of the tournament. Genes are mapped to network
parameters linearly between [-10, 10] for biases and inter-
node and sensory weights. Time constants are mapped expo-
nentially between [e0, e5]. The size of the population used
is 50. We define a generation as the time it takes to gen-
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erate 50 new individuals. The evolutionary algorithm uses
a ‘geographical’ method to allow different subpopulations
to evolve semi-independently in ‘demes’ within the popula-
tion. A minimal 1D wrap-around geography with demes of
size 10 was used: such that only individuals 10, or less than
10, positions away from each other could compete in tourna-
ments (Spector & Klein, 2005, for details). In principle, this
allows for genotypic diversity to be maintained for longer in
the population at almost no extra computational cost. Finally,
because the fitness is noisy (described below), agents are re-
evaluated every time they participate in a tournament.

2.5 Fitness evaluation
A successful circuit must maximize its consumption of ed-
ible food and minimize the consumption of inedible food,
regardless of the environment it is in. Each individual is eval-
uated over a set of R length-LK trial sequences. The fitness
of a circuit is given by one minus the average consumption
error over each testing phase:

F = 1 −
∑R

r=1
∑L

l=1
∑K

k=1 Erlk

RLK
(2)

where Erlk stands for the error of an agent’s action on the kth

test, as part of the lth environment, and on the rth trial repeti-
tion. The error is depicted in Figure 2 as the dark gray region
and it is calculated by integrating the difference between the
desired output and the agent’s action during the evaluation
phase:

Erlk =

∫ Trlk+20

Trlk+10
|Arlk − M(t)| ψ(Trlk + 10, t) dt (3)

where Trlk is the time the kth trial begins as part of the lth
environment and rth trial; Arlk is the correct motor output
given the temperature applied during the kth testing phase
and the pairing temperature corresponding to the lth envi-
ronment type, during the rth trial; M(t) is the agent’s ac-
tual motor output during the evaluation period; and ψ(t0, t) =
exp((−t−t0−5)2/5.12)/4.0034 is a Gaussian weighting func-
tion normalized so that Erlk runs between 0 and 1. Gaussian
weighting assigns maximum importance to the error of the
agent’s action at the center of the evaluation period, with
the importance smoothly falling off at earlier and later times.
This weighting function was implemented following Phat-
tanasri et al. (2007). There are two components that make
the fitness evaluation of a single trial noisy: (1) the random
values of the pairing and testing temperatures and (2) the ran-
dom duration of the delays.

2.6 Incremental evolution
An incremental shaping protocol was employed during evo-
lution. The strategy is straightforward. Evolution starts with
the most basic form of the task. As the population succeeds,
the level of difficulty of the task increases. This not only
saves important evolutionary computation time, but in some

situations it can also increase the chances of evolutionary
success (Phattanasri, 2002).

The shaping protocol includes four stages. During the first
stage, one pairing and one testing phase are applied. This is
the most basic form the task can take (L = 1, K = 1), and it
requires learning one association and remembering it for at
least one test. During the second stage, agents are still ex-
posed to only one environment (one pairing phase), but the
number of testing phases is increased to three (L = 1, K = 3).
The change from the first to the second stage serves to in-
crease the selection pressure on the agent’s memory. Dur-
ing the third stage, a change of environment is introduced
for the first time. A trial consists of a pairing phase, fol-
lowed by three testing phases, followed by another pairing
phase, and finally followed by another three testing phases
(L = 2, K = 3). This change of stage introduces new se-
lection pressure on the agent’s ability to re-learn and remain
plastic, while still retaining selection pressure on the agent’s
memory. The fourth and last stage consists of three environ-
ments, each with a variable number of testing phases (L = 3,
K = [0, 5]). A change of environment can occur directly
after another (i.e. two consecutive pairing phases). Trial se-
quences without a single testing phase do not count towards
fitness. Finally, given that the fitness evaluation of a sin-
gle trial is noisy, agents are assessed on 100 trials per fitness
evaluation.

There are some differences in the shaping protocols for the
discrete and continuous scenarios. Transitions between the
first three stages of the shaping protocol are triggered when-
ever the fitness of the best agent in the population exceeds a
certain threshold (95% for the discrete case and 90% for the
continuum case). The last stage is applied only after a cer-
tain number of generations and only for the most successful
populations. How many generations and which populations
are regarded as successful was also different for the discrete
and the continuous versions of the task. This was based on
two observations from preliminary experiments. First, popu-
lations evolving on the continuous task required more time to
achieve appropriate performance than the discrete case. Sec-
ond, while it was possible for successful circuits to achieve
near perfect fitness (99.9%) on the discrete task, the fitness of
circuits evolved for the continuous version of the task never
reached similar levels of performance. Thus, for the discrete
version, the last stage was applied after 10000 generations
only to those populations whose best fitness reached greater
than 99% at the third stage of the shaping protocol. For the
continuous version, the last stage was applied after 20000
generations and only to those populations whose best fitness
reached greater than 91% at the third stage of the shaping
protocol. Finally, the variance of the mutation was halved
during this last stage, to allow fine-tuning of the evolved pa-
rameters.

3 Learning Discrete Stimuli
Our first set of experiments examines the ability of CTRNNs
to solve the discrete version of the associative learning task.



6

10 100 1000 10000
Generation

0.6

0.7

0.8

0.9

1

Fi
tn
es
s

2→31→2 3→4

Figure 3. Plot of best fitness vs. generation for the best evolved
3-node circuit for the discrete learning task. The x-axis is plotted
with a log scale, as the first transitions occur early during the evo-
lutionary run. Transitions between stages of the incremental evo-
lutionary technique are marked with dashed lines and labeled ac-
cordingly. First two transitions occur when the best fitness exceeds
0.95, the last transition occurs after 104 generations. The fitness
drops sharply during the first two transitions, before the circuit can
generalize to sequences of arbitrary length.

The main purpose of this section is to form a ‘baseline’ for
the continuous work (Section 4) by reproducing the results
in Phattanasri et al. (2007) with a different training paradigm
and evolutionary technique, but similar task and shaping pro-
tocol, and the same neural network model. Another impor-
tant role of this section is to show how the dynamical analysis
leads to the finite state machine.

Evolutionary searches with 3- and 4-node circuits were
performed. Successful agents were reliably evolved using
such small circuits. For the most part, successful circuits
had evolved to a fitness of 99% after the first 3000 gener-
ations. After 104 generations, we found 4/20 evolutionary
runs using 3-node circuits and 12/20 using 4-node circuits
that achieved fitness greater than 99% at the third stage of
the shaping protocol. The most successful populations (those
that reached fitness greater than 99% at the third stage of the
shaping protocol) were further evolved on the last stage of
the shaping protocol for an additional 5000 generations. Fig-
ure 3 shows the fitness versus generation plot for the best
3-node population. The evolutionary runs from successful
populations are all relatively similar. Periods of fairly steady
fitness values are punctuated by sudden jumps to regions of
higher fitness. Also, the fitness tends to drop significantly
following changes to the difficulty of the task from the shap-
ing protocol (dashed lines). In the remainder of this section
we describe the performance and internal dynamics of the
best evolved three-node circuit in some detail (see Table 1 in
the Appendix for the evolved parameters of this circuit).

The best 3-node circuit attained a fitness of 99.99%. To
verify that this circuit had truly generalized to longer se-
quences, we tested it on 106 trials with 5 changes of envi-
ronment and up to 10 tests per environment during its life-
time. Pairing and testing temperatures were chosen at ran-

dom (from the two available). The time-step was made an or-
der of magnitude smaller (0.01) to avoid possible integration
errors. The circuit performed correctly on 98.36% of evalua-
tions for this set, demonstrating that it does indeed represent
a general solution to the discrete temperature preference task.

The behavior of this circuit on a typical sequence of tri-
als is shown in Figure 4. As there are only two possible
temperatures (1 and 2) that food can be associated with in
this version of the task, we will refer to them as environ-
ments A and B, respectively. During the sequence shown, the
environment-type switches from A to B and then back to A
again at the points indicated by the dashed vertical lines. We
can observe that the activity of nodes o1 and o3 are nearly
inverted during environment B, in relation to A. For example,
the ‘mouth’ node (M) is open (highly activated) throughout
most of the duration of environment A, closing only during
the presentation of the ‘wrong’ signal. Exactly the opposite
is the case throughout environment B. The same node is now
mostly closed, opening only during the presentation of the
wrong signal in this environment. For both environments,
the presentation of the different signal serves to change the
current state of the ‘mouth’, while the reward serves to re-
place the former state. Similarly, all other nodes are, in part,
keeping track of the environment the agent finds itself in.
Also important to note is that the timescale of activity of the
second node (o2) is relatively slower than that of nodes o1
and o3.

How does this circuit work? In order to visualize the
overall structure of this circuit’s operation we apply a sim-
ilar technique as that used in Phattanasri et al. (2007) by
‘strobing’ the state of the system at selected times during a
trial. In particular, we observe the state of the system at the
end of the pairing signal, the resting time, the testing signal
and the reward signal. Given that the evolved system has
a three dimensional state space we can visualize the entire
space directly. The ‘strobes’ fall into relatively distinct clus-
ters (Figure 5). Each of the clusters can be labeled according
to the previous environmental interaction that the circuit had
undergone. The labels A and B for the states represent one
of the two temperatures the circuit has been initially paired
with (i.e. the environment type). Clusters A1 and B1 denote
the state of the system after a pairing. Clusters A2 and B2
represent the state of the system after a random delay. Clus-
ter B2 is also the default starting state of the system. Clusters
A3 and B3 represent the state of the system after the presen-
tation of a test temperature. The presentation can be of one
of two temperatures; these are sub-labeled with a further A
or B, accordingly. For a successful circuit this means that
clusters A3A and B3B correspond to states where the mouth
is open, while clusters A3B and B3A correspond to closed-
mouth states. Finally, clusters A4 and B4 correspond to the
state of the system after a positive reward.

We can consider the dynamics of the circuit when decou-
pled from the environment. For each of the different combi-
nations of input we can determine the limit sets of the circuit.
Furthermore, we can compare the relation of the circuit’s
asymptotic behavior with the clusters. Although a number
of these clusters are centered on the equilibrium points in
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Figure 4. Activity of the best 3-node circuit on a typical trial sequence. From top to bottom the traces correspond to the temperature
signal (T), the food/reward signal (F/R), the mouth state (M) and the outputs of the remaining nodes (o2 and o3). Small rectangles mark
the time when the mouth state is evaluated and the state that the mouth should be during this time. Dashed lines mark transitions between
environments.

the distinct phase-portraits of this system, many are not (data
not shown). Also some of the clusters are not entirely con-
tiguous in state space. This highlights the importance of the
transients. Some of the non-contiguous clusters can be fur-
ther subdivided according to the system’s previous state. The
labels in parenthesis denote the particular cluster from which
the system departed to form those subclusters.

The strobed circuit dynamics from Figure 5 can be inter-
preted as implementing a finite state machine (FSM) with
input. The strobed states correspond to the FSM states. Al-
though not shown, transitions between strobed states corre-
spond to input-driven transitions of the FSM. The FSM ex-
tracted from this circuit is shown in Figure 6. States A1
through A4 and B1 through B4 represent the states of the
system described previously. There are 4 different types of
transitions that can occur. First, the application of one of two
possible temperatures T = 1 or T = 2, labeled ↓ and ↑, re-
spectively. Second, the application of a positive or negative
reward, labeled + or −, respectively. Third, a pairing that
involves the application of a temperature and food simulta-
neously, denoted as ↑+ or ↓+ depending on the temperature.
Finally, it is useful to treat the lack of stimuli as a transition
that the circuit is exposed to, because it directs the state of
the system to a relevant state in the machine. Thus, the last
transition that can occur is a delay, corresponding to the ab-
sence of stimuli and denoted by o. Transitions are shown as
arrows with labels in Figure 6. The start state is shown by
an arrow pointing at it from s. Although this is not a situ-

ation encountered during evolution, at the start of a trial, if
no pairing is applied, the system will move towards state B2.
Notice subclusters (e.g. A4(A3A) and A4(A3B)) are grouped
together. A more detailed FSM could be provided, but the
extra detail does not add to our understanding of the opera-
tion of the state machine, as all of the incoming and outgoing
transitions remain the same.

In our temperature preference task, an agent discovers
which of the two environments it is in when there is a pair-
ing. This means that the circuit doesn’t have to wait to get
a negative reward to learn. In fact, a successful circuit will
never have to experience a negative reward. This is the case
for the best evolved 3-node circuit. For this reason, we can
ignore the punishment transitions and states altogether from
our analysis. We can, however, artificially induce a nega-
tive reward. This makes sense only for this two-environment
task, where being maladapted in one environment means in-
evitably that the circuit is in the only other possible environ-
ment. Interestingly, application of a negative reward while
in environment A does switch the circuit’s behavior to what
it would be if it were in the opposite environment, however
this switch does not occur the other way around. Thus, neg-
ative reward drives the state of the system to B2’s basin of
attraction. This is linked to its role as the default initial state.

Before we move on to the continuum task, one question
that we can ask is how this circuit deals with stimuli in be-
tween the discrete. We can test the performance of this sys-
tem for the full range of possible combinations of pairing and
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Figure 5. Strobed circuit dynamics in the best 3-node circuit at selected times during a trial. See the main text for the meaning of the labels.

testing temperatures. Figure 7 shows the generalization per-
formance of the best evolved circuit across all combinations.
The vertical axis corresponds to the pairing temperature sig-
nal. The horizontal axis corresponds to the test temperature
signal. The shading represents how well the circuit performs:
lighter shades correspond to better performance. What the
circuit is expected to do changes depending on the pairing
signal. For test temperatures equal to the pairing temperature
the circuit is required to open its mouth. This corresponds to
the line on the diagonal of the figure. For any test tempera-
ture that is different from the pairing temperature the circuit
is required to close its mouth. This corresponds to all regions
not directly on diagonal. For the discrete version of the task,
the circuit is only evolved on the highest and lowest possi-
ble temperatures (denoted by circles in the figure). For this
reason it is not expected to generalize to signals in-between.
What we observe, instead, is an example of a binary cate-
gorization. When paired with ‘cold’ temperatures (below
1.6), the agent opens its mouth to all test temperatures be-
low 1.3. When paired with ‘hotter’ temperatures (above 1.6),
the agent opens its mouth to any test temperature above 1.3.
Temperatures fall into one of two broad categories: ‘cold’
or ‘hot’; with little or no generalization to temperatures in-
between.

Finally, it is important to mention that other success-
fully evolved 3-node circuits displayed overall similar prop-
erties to the one analyzed here. Namely: (1) equivalent
FSMs could be extracted from the evolved internal dynam-

ics; (2) strobed states would not necessarily correspond to
equilibrium points of the non-autonomous system with tran-
sients playing an equally important role; (3) categorization
into two behavioral groups was observed without generaliza-
tion within previously unseen environments; and (4) evolved
time-constants would consistently fall into at least two rel-
atively different time-scales: fastest possible (near 1.0) and
slower by an order of magnitude.

4 Learning Continuous Stimuli
Can the same ‘learning as dynamics’ approach used in our
previous section be extended to the continuous task? Our
second set of experiments examine the ability of CTRNNs to
solve the same associative learning task when the stimuli can
be anywhere along a continuum. The main motivation for
these experiments is to evaluate the similarities and differ-
ences between agents evolved for this task and the previous
version.

4.1 Evolutionary Performance
Evolutionary searches were performed using 3- to 6-node
circuits. We carried out 20 evolutionary runs with differ-
ent seeds per group. After 2x104 generations, we found
that none of the 20 evolutionary runs using 3- and 4-node
circuits reached the third stage with a fitness greater than
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Figure 6. Extracted finite state machine from best 3-node circuit.
Each state corresponds to a cluster of strobe states from Figure 5.
Transitions between states are induced by the application of some
combination of food, temperature or delays.
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Figure 7. Generalization performance for the best-evolved 3-node
circuit on the first testing phase after a pairing. The circles repre-
sent the situations this circuit was exposed to during evolution on
the discrete (n = 2) version of the temperature preference task.

91%, while 12/20 5-node and 13/20 6-node populations did.
The most successful populations (those that reached fitness
greater than 91% at the third stage of the shaping protocol)
were further evolved for 5000 generations on the fourth stage
of the shaping protocol, with the most successful 5-node pop-
ulation reaching a 96.85% best fitness. Figure 8 shows the
best fitness versus generation plot for this population. Al-
though success is achieved early on the first stages of the
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Figure 8. Plot of best fitness vs. generation for the best evolved 5-
node circuit for the continuous learning task. Labeling conventions
are the same as in Figure 3. The x-axis is plotted with a log scale,
as the first transitions occur early during the evolutionary run. The
first two transitions occur when the best fitness exceeds 0.90, and
the last transition occurs after 2x104 generations. Similar to the
discrete case, the fitness drops after the first two transitions, before
the circuit can generalize to longer sequences.

task, it takes many more generations to achieve sufficiently
high scoring individuals. This was similar for most other
successful evolutionary runs. Also, similar to evolution on
the discrete version of the task, the fitnesses of the best indi-
viduals in the population drop after the difficulty of the task
is increased.In the remainder of this section we describe the
performance and internal dynamics of the best evolved five-
node circuit in some detail (see Table 2 in the Appendix for
the evolved parameters of this circuit).

4.2 Learning and Memory Performance
How well can this circuit learn and remember on trials in-
volving more changes of environment and more tests than
it was evolved for? To answer this question we tested it on
106 trials with 5 changes of environment and up to 10 tests
per environment during its lifetime. Pairing and testing tem-
peratures were chosen at random from the full range, and
the time-step was an order of magnitude smaller (0.01). The
circuit performs correctly on 95.77% of the trials on this set
of experiments, indicating that it does indeed represent a suf-
ficiently general solution to the associative learning task for
stimuli that can range over a continuum of values.

The behavior of this circuit on a typical sequence of trials
is shown in Figure 9. During this sequence, the environment
type switches from A to B, and then to an in-between envi-
ronment C (temp=1.5) at the points indicated by the dashed
vertical lines. From Figure 7 we know that switching to an
in-between environment (such as C) for the 3-node network
discussed previously would have led to poor performance.
In contrast, as depicted in Figure 9, the 5-node circuit does
manage to remember the in-between signal correctly. One
thing to note is the range of time-scales of activity displayed
by the components in the circuit: o1, o3 and o5 are fast act-
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Figure 9. Activity of the best 5-node circuit on a typical trial sequence. From top to bottom the traces correspond to the temperature signal
(T), the food/reward signal (F/R), the mouth state (M) and the outputs of the remaining nodes (o2 to o5). Labeling conventions are the same
as in Figure 4.

ing with time-constants in the range between [1.06, 1.76],
o2 is somewhat slower than those (τ=16.9) and o4 is much
slower acting than all others (τ=73.9). Although this bears
some resemblance with the different time-scales evolved for
the smaller circuit, the differences between these ranges are
much larger.

How well does this circuit generalize to signals in-
between the border cases? To answer this we can study the
learning map for the best-evolved 5-node circuit on the com-
plete range of pairing and test temperatures. Remember from
the circuit evolved for the discrete task (Figure 7) that two
types of behavior dominate its performance, since any signal
below a certain threshold is treated as ‘cold’ and anything
above is treated as ‘hot’. In Figure 10A we show the learn-
ing map for the first test after a pairing systematically cov-
ering the full-spectrum of combinations. The dominance of
the white shade reflects the good generalization performance.
The shades of black around the white diagonal line depict the
precision of the system’s evolved memory. Any testing tem-
perature that is different from the pairing temperature by less
than some variable amount is regarded as the same. Although
one way to see this is as a ‘lack of precision’, it is more inter-
esting to treat it as a behavioral generalization: treating tem-
peratures similar to the paired temperature as correct. This is
also a direct reflection on the evolutionary conditions, avoid-

ing too similar signals when different. The dashed diagonal
lines in the figure depict the range within which there was
no selection pressure (except for when the pairing and test
temperatures are exactly the same).

The first test is performed directly after the circuit has ex-
perienced the to-be-remembered temperature (i.e. the last
paired temperature). How does the memory decay over mul-
tiple tests? Figure 10B shows the remembering performance
for the second test after a random delay. Although there is
some degradation in the memory of the original signal, as
can be seen by the shades of gray around the diagonal line, it
is still mostly appropriate. Figure 10C shows the remember-
ing performance on the 10th test signal. As can be seen, the
performance continues to degrade slowly as more and more
tests and random delays are applied consecutively after the
original pairing.

How fast does memory decay over many more presenta-
tions? How does memory depend on the circuit’s experi-
ence? Why does it decay, and can it be preserved for longer?
In Figure 10D we show the circuit’s ‘forgetting curve’: the
remembering performance as a function of the number of test
phases experienced. Shaded in gray we show the number of
trials the circuit was evolved for. The solid line represents
the remembering performance when pairing and testing tem-
peratures are chosen at random. As is expected, the memory
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Figure 10. Remembering performance of the best 5-node circuit. Generalization map on the first [A], second [B] and tenth [C] test signal.
Labeling conventions are the same as in Figure 5. [D] A measure of the circuit’s performance on the ith test: when the signals for all of the
previous tests where randomly chosen to be equal or different than the pairing signal with 50% chance (solid line), when the previous test
signals are always the same as the pairing signal (dashed line), and when the previous test signals are random but always different from the
pairing signal (dotted line). Each point corresponds to the average over 105 random runs. The points marked with diamonds correspond to
the performance maps shown for parts [A], [B] and [C], respectively. The gray shaded region corresponds to the range of conditions the
circuits were evolved in.

of the originally paired temperature decays with the number
of tests. But does how fast it decays depend on what the
temperatures of the tests are? The dotted line represents the
remembering performance when all of the testing tempera-
tures are random but different from the paired temperature.
As can be seen, the remembering performance falls much
more dramatically, in a classical exponential decay curve.
This corresponds well with the literature in experimental psy-
chology, where memory retention is known to decay expo-
nentially as a function of time, in the absence of revision of
the learned material (Ebbinghaus, 1885). This memory de-
cay also suggests that not re-experiencing the original tem-
perature decreases the chances of remembering it correctly.
Thus, we should expect good remembering performance if
every one of the testing temperatures are the same as the
one to-be-remembered. The dashed line shows the perfor-
mance when all previous test signals are equal to the original
pairing signal. Indeed, the continued presentation of the to-
be-remembered signal strengthens the circuit’s memory of it,

while long absences result in the degradation of the original
memory.

Does this circuit remain sufficiently plastic to re-learn new
associations between temperatures and food throughout its
lifetime? Or does the plasticity decay after some time or
usage? We can test the agent’s ability to learn new tem-
peratures by changing the environment multiple times. In
Figure 11 we observe the long-term performance for several
different re-learning environments. We again observe satis-
factory performance. It is as if re-learning resets the state of
the circuit entirely. This shows that the agent remains fully
plastic outside of the ranges that it was evolved for (i.e. only
two changes of environment). In fact, the circuit shows no
sign of losing its plasticity with time.

Finally, we can ask about the robustness of the perfor-
mance in relation to the time delays between tests. Although
transients play a role in the dynamics, ideally memory should
be more permanent. In other words, it is important to know
how stable the memory of the evolved circuits is. Figure 12
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Figure 11. Learning performance of the best 5-node circuit. A
measure of the circuit’s performance for many changes of environ-
ments: on the first (solid line), second (dashed line) and third (dot-
ted line) test after the i-th change of environment. Each point corre-
sponds to the average over 105 random runs. The gray shaded region
corresponds to the range of conditions the circuits were evolved in.

shows the robustness of the circuit’s learning performance
as a function of the length of the time delays. The circuit
manages to be quite robust to time-delays shorter and longer
than the range that it was evolved for. Although this was not
selected for during evolution, it is a relevant feature of this
circuit.

In summary, evolutionary runs for the continuous task
were successful only with circuits of size 5 and larger3. The
behavior and performance of the most successful and small-
est circuit was studied. The circuit manages to learn and
generalize over the full range of signals on the continuum
that it was evolved for. Interestingly, it can remember paired
temperatures for longer than it was evolved for, as long as
it continues to experience that temperature during tests. The
circuit can also remain plastic enough to re-learn new as-
sociations within its lifetime. Furthermore, we observed no
degradation in the circuit’s plasticity over time. Finally, the
circuit’s memory was relatively robust to longer time delays
than those experienced by its ancestors.

5 The Dynamics of Continuous
Learning

How does this circuit work? How do the evolved circuit’s
mechanisms differ from those evolved for the discrete ver-
sion of the task? Can a finite state machine be extracted to
capture the workings of the dynamics of the best-evolved cir-
cuit? In order to answer these questions, we have to visualize
the overall structure of this circuit’s operation, and for this we
will use a similar approach to that developed for the discrete
version. We ‘strobe’ the state of the system at selected times
during a trial. The main difficulty that arises in this case is
that the internal state of the evolved system is composed of
more components. Therefore, part of the work in analyz-
ing the internal dynamics of this evolved circuit will involve:
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Figure 12. Robustness of the best 5-node circuit to changes in the
time delay before the first (solid line), second (dashed line) and third
(dotted line) testing phase. Each point corresponds to the average
over 105 random runs. The gray shaded region corresponds to the
range of conditions the circuits were evolved in.

(a) looking at several different 3 dimensional slices of this 5
dimensional space, (b) building up our intuitions about the
structure of the manifolds of activity, and (c) choosing the
variables and perspectives that provide the most useful in-
sights. In the figures to follow we look at some of these 3-
dimensional slices of the space of activations of the evolved
circuit. In particular, we look at slices from the two slowest
nodes, y2 and y4, and the fastest one, y5.

In Figure 13, we visualize the state of the system when
strobed on the full range of stimuli. We observe that each
of the states that correspond to the same activity form a
‘stretched out’ cluster. Each of the clusters represents the
state of the system after a pairing, a rest, a test or a pos-
itive or negative reward (labeled Q1 through Q5, respec-
tively). Interestingly, each different state remains relatively
well connected and separately clustered. We can also observe
that each of the clusters forms a one-dimensional ‘tube-like’
structure, except for cluster Q3 that forms something that
looks more like a two-dimensional ‘wing’ structure. We will
come back to this point later in the analysis.

An extended behavioral sequence such as the one shown
in Figure 9 can then be understood as a set of trajectories
between these strobe clusters (see Figure 14). A question of
interest is: do these stretched out clusters and the trajectories
between them have any further internal structure to them?
We can visualize the trajectories in relation to the environ-
ment the circuit is in. In Figure 14, trajectories are coded
in shades of gray according to their original paired temper-
ature: lighter shades corresponding to hotter temperatures.
What can be observed is that the transitions have a relatively
structured pattern. The trajectories are arranged from top to
bottom according to their paired temperature: with ‘hotter’

3 We do not investigate in this paper whether the ability to gener-
alize is related to the size of the network. The task studied requires
that successful circuits generalize, but it also requires: (1) that they
remember the original signal on subsequent tests, and (2) that they
remain sufficiently plastic to re-learn during their lifetime.
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Figure 13. Internal dynamics of the best evolved 5-node circuit. Strobes while tested on the continuum of signals after a pairing (Q1), a
rest (Q2), a test (Q3), or a positive (Q4) or negative reward (Q5). The Q3 strobed region can be further subdivided according to the relation
between the pairing and testing temperature. The pairing temperature can be ‘hotter’ (i), the same (ii), or ‘colder’ (iii) than the original.

ones at the top and ‘colder’ ones towards the bottom. Most
importantly, this pattern is maintained as the state of the sys-
tem flows between each of the different clusters. This corre-
sponds to the ‘memory’ of the environment.

A crucial aspect to the learning behavior under study is
the circuit’s ability to make different decisions depending on
its experience. One question of interest is, how does the
decision arise internally? To answer this, it will be useful
to take a closer look at the transitions between the resting
state (Q2) and the testing state (Q3) (plots E, F and G in
Figure 14). During the resting state the agent can be tested
with the same temperature as it was paired with originally,
or it can be tested with a different temperature. In the latter
case, the temperature can be either ‘colder’ than the origi-
nal or ‘hotter’. Figure 14 shows the state of the system as
it transitions from its resting state to being tested on any of
the possible signals. The state of the system moves to the
middle part of the cluster Q3(ii) for signals that are similar to
the original (Figure 14F). What this means is that the original
temperature is known from the level of the Q2 cluster, where
the system is operating. When the temperature is different
than the original, the state of the system falls away from
the middle into one of the two outer ‘wings’ of the struc-
ture. Falling to the top left ‘wing’ Q3(iii) when the testing
temperature is ‘colder’ than the original pairing temperature

(Figure 14E) and to the bottom right ‘wing’ Q3(i) when it is
‘hotter’ (Figure 14G).

As we have seen, the circuit discovers the environment
it is in through the simultaneous pairing of food and tem-
perature. Yet, unlike the discrete scenario (in particular for
n = 2), receiving a negative reward is not enough to modify
the state of the agent such that it ‘finds out’ which tempera-
ture is the right one. Furthermore, a successful circuit could
simply never receive negative reward during its lifetime. This
is not, however, the case for the circuit under analysis. From
Figure 14C, we know that some signals end up near the bor-
der between the ‘wings’ and the middle part of the Q3 cluster,
which then receive a negative reward moving the state of the
system to Q5. From Figure 10A, we know that these corre-
spond to test signals that are very similar (but different) from
the paired temperature. The negative reward, however, does
not ‘correct’ these borderline cases. We examined this by
artificially inducing a negative reward after the agent opens
its mouth when tested on the paired temperature (for which it
usually receives a positive reward). When tested again using
the same temperature the agent would still open its mouth.
Thus, the negative reward cannot override the original pair-
ing memory in this circuit. Similarly, we examined whether
the positive reward could trigger the circuit to relearn a new
association. We artificially induced a positive reward after
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Figure 14. Transitions between each of the states superimposed over the strobed states. Each transition is shaded in gray according to the
original pairing temperature, with lighter shades representing hotter temperatures and darker shades colder temperatures. [A] Transitions
between pairing and resting. [B] Transitions while positive reward is applied. [C] Transitions while negative reward is applied. Notice that
negative reward occurs naturally only when the test temperature is different but too similar to the pairing temperature. The circuit makes the
mistake of classifying these as the same, despite the small difference. Thus, the transitions depart from Q3(ii) mostly. [D] Transitions during
resting after a positive or negative reward. The bottom three figures depict the transitions between the resting state Q2 and the presentation
of test temperatures over the whole continuous range: [E] shows the transitions when the test temperature is lower (‘colder’) than the pairing
temperature; [F] when the test temperature is the same as the pairing temperature; and [G] when the test temperature is higher (‘hotter’) than
the original pairing temperature. As can be seen by the predominance of lighter-shaded transitions in [E], when the original pairing is of a
‘hotter’ (lighter gray trajectories) temperature, the number of test temperatures that are classified as ‘colder’ is greater than when the original
pairing is of a ‘colder’ (darker gray) temperature. The inverse is true for [G], where there is a predominance of darker-shaded transitions.

the agent closes its mouth when tested on a different signal
to the paired temperature (for which it usually receives a neg-
ative reward). When tested again using this new temperature
(which provided a positive reward despite not being the orig-
inal paired temperature), the response of the circuit was still
to close its mouth. Thus, the circuit only learns new associ-
ations through the simultaneous pairing of food and temper-
ature; not through the reward signal. The most likely reason
for this is that no changes of environment were experienced
of the latter form during evolution.

A key question that we would like to ask, then, is whether
we can extract an FSM from its internal dynamics, such that
it explains the learning behavior? Given that the network
has to remember a continuous signal, a ‘machine’ is required
that will allow for a continuum of states to represent the envi-
ronment. No finite state machine can represent such internal
mechanisms. A richer structure is needed: a machine that
includes for each of the discrete states an inner (relatively

independent) continuous state. We are calling this set of ma-
chines, continuous state machines (CSM). One way to think
of these is as a continuous manifold of finite state machines.
Accordingly, we can think of a FSM as a CSM with only
one inner ‘level’. Figure 15 shows two of the FSMs, on top
of each other with a transition from one to the next. The
dynamics are just like an FSM but with stretched-out regions
for each state. We can think of each of the states as contain-
ing a real-value register. This inner state is continuous and is
instantiated as the level within the extended strobe clusters.

At the behavioral level, the CSM denotes two seemingly
distinct processes operating at two different scales. While
the discrete states resemble states of an FSM, the continuous
regions inside each of the discrete states resemble something
more like an infinite tape. We can illustrate this idea using an
example sequence trial in our evolved circuit. In Figure 16,
we show the trajectory of the state of three of the nodes dur-
ing an example sequence trial where the agent is first paired
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Figure 15. A ‘continuous’ state machine embedded in the best 5-
node circuit. The states are labeled according to the strobed states
from the previous figures. The shade of gray for each state repre-
sents the real-valued register. Where the agent’s state ‘lands’ inside
the Q3 region is determined by the pairing temperature (tp) along
the horizontal axis and the testing temperature (tt) along the vertical
axis: when the test temperature is ‘hotter’ than the original pairing
temperature (tt > tp) the state falls into the Q3(i) region; when they
are the same (tt = tp) it falls into the Q3(ii) region; finally, when
the test temperature is ‘colder’ than the original pairing temperature
tt < tp it falls into the Q3(iii) region.

and tested with temperature X (1.3), then paired with and
tested with a different temperature Y (1.7), and vice-versa,
several times. The trajectory is placed within the context of
the ‘strobed’ states (in gray). This illustrates the notion of
the system’s operation at different levels within the manifold
of FSMs (X and Y), as well as the transitions between these
(X → Y and Y → X) corresponding to re-learning new asso-
ciations. It is important to point out that this evolved circuit
requires ongoing interaction with an environment in order
to maintain a given operational level within the manifold of
FSMs. This can be observed best from the forgetting curve
shown in Figure 10D. Without this ongoing interaction, the
state will eventually decay to some fixed level.

Finally, we would like to know how the state machine is
related to the circuit’s evolved components. The best 5-node
circuits taken from the five best evolutionary runs (using dif-
ferent seeds) show a distinct distribution of time-constant pa-
rameters: the majority of the components are as fast-acting
as is allowed but a few are much slower. Is there a functional
relation between the discrete states and the fast nodes, and
between the continuous internal state and the slow nodes?
We can answer this for the case of the best-evolved circuit.
Although the full circuit is responsible (and necessary) for
the learning phenomena, we can test the correlation between
the paired temperature and the state of the system, at differ-
ent times during a trial and for every component in the cir-
cuit. We do this using Pearson’s product-moment correlation

Figure 16. Example sequence trial of a continuous state machine
as a manifold of finite state machines. An example finite state ma-
chine (level 1) is shown at the bottom of the figure and another one
(level 2) is shown at the top of the figure. The continuity arises from
the transitions between any two finite state machines. The example
shows transitions from FSMs X (temp=1.3) and Y (temp=1.7).

coefficient (Moore, 2006):

r(p, y) =

∑2
t=1(pt − p̄)(yt − ȳ)√∑2

t=1(pt − p̄)2
√∑2

t=1(yt − ȳ)2
(4)

where pt is the original paired temperature and yt is the state
of one of the nodes at a particular stage during the trial (i.e.
Q1 through Q5) in an environment t; p̄ and ȳ are the averages
of p and y, respectively. Temperatures, t, in the full range
[1, 2] (incremented in steps of 0.01), were used to record the
state of each of the nodes during each of the different stages.

As can be seen from Figure 17, all of the nodes are highly
correlated with the remembered temperature (either posi-
tively or negatively) at most of the stages of a sequence trial.
However, while the correlation among the fast set of com-
ponents (gray) varies within a trial, the correlation of the
slow components (black) remains remarkably stable. This
suggests that the role they play in the maintenance of the
‘memory trace’ is stronger than the faster subset of nodes.

In summary, to understand how the most successful and
smallest circuit works we strobed the state of the system at
selected times during a trial. We observed separate clus-
ters that stretched out with a relatively structured inner di-
mension. The different clusters corresponded to the different
events in the trial (i.e. pairing, rests, tests, rewards). Interest-
ingly, the attractors of the circuit did not always correspond
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Figure 17. Pearson’s correlation coefficient between the activation
state of each node in the circuit and the paired temperature (corre-
sponding to the to-be-remembered signal) at different times during
a trial. The fast-acting nodes are shown in gray and the slow-acting
nodes are shown in black.

to the clusters. The inner dimension, on the other hand, cor-
responded to the to-be-remembered signal. As the trial pro-
ceeds, the state of the system transitions from cluster to clus-
ter, while maintaining the structure of the inner dimension.
The decision process was shown to involve a more com-
plex two-dimensional-like cluster, where a relational catego-
rization process was observed: with ‘hotter’, ‘similar’, and
‘colder’ test temperatures neatly separated. We described the
evolved learning mechanism in terms of a continuous man-
ifold of finite state machines. Finally, although all of the
components in the network are involved in the generation of
the learning behavior, we observed a stronger maintenance
of the correlation between the to-be-remembered signal in
the slower acting components of the network compared to
the faster ones.

6 General Discussion
In this work we have extended previous work on evolving
learning without synaptic plasticity from discrete (in practice
2-choice) tasks to continuous tasks. We address two main
questions.

First, can this approach be extended to continuous tasks?
We show that continuous-time recurrent neural networks
without synaptic plasticity are successfully evolved on an as-
sociative learning task abstracted from a temperature prefer-
ence behavior observed in Caenorhabditis elegans. The be-
havioral task studied in this paper is, of course, not exclusive
to C. elegans. Broadly, it involves learning an environmental
feature that can range over a continuum of values and re-
membering it for later as a preference. It also involves the
ability to change this preference when appropriate. This is a
rather common ability amongst living organisms, including
humans.

Second, how does learning without synaptic plasticity
work in the evolved circuits? In this work we have shown
how the evolved internal dynamics differ in an associa-
tive learning task when the stimuli to-be-associated is on

a continuum as opposed to a discrete set. The analysis of
evolved agents for associative learning, where the stimuli to-
be-remembered are discrete signals, display finite state ma-
chine like internal mechanisms. This agrees with recent re-
sults presented in Phattanasri et al. (2007). A different and
richer type of state machine is found when analyzing agents
evolved to remember and discriminate between signals from
a continuum. Because of the ability of the evolved circuit to
use a continuous state inside a set of finite states, we have
come to consider it as a different class of automata that we
call a continuous state machine.

It has been known for some time that artificial neural net-
works have the capacity to act as finite state machines (Mc-
Culloch & Pitts, 1943; Minsky, 1967). In particular, the re-
lation between recurrent neural networks and automata has
been treated by several authors (Cleeremans et al., 1989;
Servan-Schreiber et al., 1991; Pollack, 1991; Giles et al.,
1992; Casey, 1996). None of this work has discussed the
notion of a manifold of finite state machines or a continuous
state machine, nor have they been observed to arise in neu-
ral networks. A relation between FSMs and the state space
representation of continuous control theory has been indi-
cated in Elgerd (1967). A related notion has been developed
in the context of grammar recognition using recurrent net-
works in Servan-Schreiber et al. (1991) called graded state
machines. The notion of continuous state and graded state
machines is different in two important ways. First, the infi-
nite and graded states of a CSM are clustered around discrete
and separate finite states. Second, there is a relevant relation-
ship between the continuous dimension across the separate
clusters of finite states. Only an intuitive notion of continu-
ous state machines has been provided in this work. Develop-
ing a formal account in the context of automata theory may
be of interest in the future.

What is the role of transients over multiple timescales?
First of all, it is important to note that the strobed points are
not, in general, attractors of the evolved circuit. Rather, the
system is always being pulled from one attractor to the next
by the changing sensory input. Thus the evolutionary algo-
rithm has shaped the transient dynamics of the circuits to
solve the task at hand, not its attractor structure. It is also im-
portant to note that the best 5-node circuits taken from the 5
best evolutionary runs (using different seeds) all consistently
showed at least two different time-scales in their evolved in-
ternal components. Although the majority of neural com-
ponents evolved to be as fast-acting as possible (with time-
constants near 1.0), for each circuit at least one (but in some
cases two) of the neural components evolved to be much
slower-acting (by at least an order of magnitude). This points
to the importance of developing the tools and language to
understand dynamical systems with components interacting
over multiple timescales4.

4 Classical examples of multiple timescale systems (e.g. weakly-
coupled and relaxation oscillations) are covered in most intro-
ductory dynamical systems textbooks (see, for example, Strogatz,
1994). For an example of multiple timescale techniques to analyze
bursting in neurons see Izhikevich (2000). For applied dynamical
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Learning has typically been associated with lifetime
synaptic change. Here we contribute to the literature demon-
strating that learning can occur in the absence of this type of
change (Yamauchi & Beer, 1994a,b; Tuci et al., 2002; Phat-
tanasri et al., 2007; Izquierdo & Harvey, 2007). But can cir-
cuits with fixed weights really learn? To be clear, the evo-
lutionary algorithm does change the weights of the network
over generations. But the learning behavior that we study in
this paper occurs over a much shorter timescale: the lifetime
of the agent. As a consequence, evolution does not oper-
ate during the temperature preference learning phenomena.
Thus, the weights of the network (as well as all other param-
eters) remain fixed. But, doesn’t that mean that the “learn-
ing” is just fixed memorization behavior tuned as a conse-
quence of weight changes during evolution? No, it is not.
The network must react differently to stimuli from the envi-
ronment depending on events that occur during its lifetime.
In our particular example, evolution cannot ‘know’ a priori
whether the network will have to open or close its mouth for
cold or hot temperatures. This the network must learn during
its lifetime.

There are in fact multiple ways in which a CTRNN with
fixed weights can exhibit learning behavior. During the life-
time of a network, the activation of some CTRNN nodes
may change very slowly compared to other nodes in the net-
work. A network of slow nodes and fast nodes might be
understood to resemble a network of slow weights and fast
nodes. The slow nodes might change in a way that modulates
behavior, and responds to feedback in much the same way
as weight changes are brought about by traditional “learn-
ing rules”. These nodes just don’t happen to be labeled
as ‘weights’. It would perhaps be possible to identify the
nodes with slower time-parameters and arbitrarily label them
‘synaptic-weight-equivalent nodes’. However, ‘nodes acting
as synaptic weights’ is only one possibility. A CTRNN can
exhibit dynamics on a range of timescales even if the time
constants of all the nodes are fixed at unity, due to the inter-
actions between the nodes. Notwithstanding this possibility,
for the associative learning task studied here, artificial evo-
lution exploited predominately the ability to use components
with inherently different timescales of activity. Thus, while
memory could have arisen from, for example, reverberatory
dynamics (Lau & Bi, 2005), here it was the dynamics of
the slower-acting components that instantiated the ‘memory
trace’. This is evidenced by the maintenance of a high corre-
lation between their levels of activity and the continuous sig-
nal to-be-remembered. This demonstrates that continuous-
time recurrent neural networks with fixed weights can pro-
duce genuine learning behaviors that go beyond switching
between two modes of interaction.

The circuits evolved for the continuous version of this
task required constant interaction with their environment to
maintain their temperature memory. This highlights the sit-
uated nature of the learning task. Would it be ‘better’ if
the circuits could maintain their memory indefinitely and in
the absence of environmental interaction? Traditionally in
robotics, ‘memory mechanisms’ are designed to remember
everything indefinitely, regardless of how old or new, main

or secondary the information is. This is not necessarily the
case for living organisms. What accounts for appropriate
memorization behavior when an agent needs to interact with
its environment is likely to be very different than the mem-
ory required by information processors. Issues of context
and time-sensitivity become relevant. For living organisms,
remembering recent experiences is usually more important
than older ones. For example, you would like to remember
where you parked your car this morning, not necessarily all
of the locations on previous days! Similarly, remembering
highly recalled memories is also more important than recall-
ing less frequently needed ones. For example, you would
like to remember the names of people you interact with on
a daily basis at work better than those of whom you haven’t
seen in a really long time. In fact, several studies have found
consistency in forgetting curves across tasks, measurement
metrics and even species (Wixted & Ebbesen, 1991). These
studies suggest that memory declines as a power function of
time. This is the first example known to the authors where
similar forgetting curves are observed in artificially evolved
circuits for learning behavior. It is important to note that this
is not a limitation of the evolved circuit, but a consequence
of its situated nature.

Continuous-time recurrent neural networks without
synaptic plasticity have now been demonstrated to be capa-
ble of associative learning on both discrete and continuous
stimulus spaces. How much further can this approach be
taken? The most obvious next step could be to study second
and higher-order conditioning, where the initially associated
stimulus can consequently be used to learn about some new
stimulus. Another useful next step would be to study the
blocking effect, a phenomenon observed whereby condition-
ing to a stimulus is blocked if the stimulus has been rein-
forced in compound with a previously conditioned stimulus.
Both phenomena are discussed in most textbooks on learn-
ing. Finally, it is important to note that one of the major
differences between our task and the behavior performed by
the nematodes is the agent’s embodiment. In the case of the
worm, it influences the sensory stimuli that it receives next
by moving up or down the thermal gradient. In our task, the
situation is more akin to traditional psychology experiments,
where the experimenter immobilizes the subject (e.g. glues
the worm to a petri dish) while applying different stimuli to
it and studying its responses in a highly structured manner.
One important direction of future work will be to analyse
evolved circuits using more ecological learning scenarios.
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7 Appendix: Evolved Parameters

Table 1
Best 3-node circuit for the discrete version of the temperature
preference task

y1 y2 y3
y1 9.7529 1.1023 -9.1226
y2 -5.2143 2.2904 -1.7911
y3 -9.7031 -9.2973 5.5012
T -2.6291 -8.7298 -7.7723
F 0.4719 4.0520 -9.9976
θ 2.9464 6.4924 7.3431
τ 1.2145 27.8472 1.0256

Table 2
Best 5-node circuit for the continuum version of the temper-
ature preference task

y1 y2 y3 y4 y5
y1 9.6712 1.8562 4.3859 -0.6227 -0.7912
y2 -5.1801 -2.4098 -3.5321 8.8119 -9.9244
y3 -6.5417 9.3668 1.3050 9.7333 -5.9810
y4 7.0174 5.7888 -9.9125 -4.5742 -8.5561
y5 8.3435 -9.2429 2.8769 -4.9563 5.2326
T -2.8401 5.5182 5.5025 -1.3114 9.3223
F -7.6829 -1.5416 4.2153 3.9677 7.6002
θ -4.8178 -4.4765 -9.9440 -0.7085 -5.2138
τ 1.7630 16.9439 1.5663 73.9571 1.0663


