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Abstract. An overview is given of the role and relevance of Artificial
Neural Nets (ANNs) as control systems for autonomous agents. Though
ANNs can be used as computational input/output devices, cognition
requires not this but rather some method of implementing dynamical
systems. A wider class of ANNs incorporating temporal dynamics and
feedback 1s presented, as one way to achieve this. These are difficult
to design, and evolutionary approaches are a possible approach. Since
evolving complex robot controllers inevitably takes a long time, one can-
not afford to start afresh with each new problem, and an incremental
adaptation approach will be necessary in the long term. This means that
standard off-the-shelf optimising genetic algorithms are not appropriate
unless adjusted to their new role.

1 Evolutionary Robotics

The creation of adaptive autonomous agents suffers from fantasy targets set
for us by science fiction films; real achievements fall very far short of the ex-
pectations of the general public. Nobody really knows how to do it, there are
well-known flaws in classical approaches, and the field is wide open to innova-
tive ideas. Neural nets sound vaguely biological, genetic algorithms are flavour
of the month, so it is tempting just to combine some off-the-shelf versions of
these. Notwithstanding this rag-bag approach to evolutionary robotics, I argue
that there are some principled analyses to the question of ‘what is cognition —
for autonomous agents’; and ‘how can we design really complex artefacts; once
we have exhausted any short cuts’. This leads to the use of a particular class of
neural nets and a particular style of genetic algorithms.

I will argue that neural nets are in many cases used as a classical, computa-
tional form of agent or robot control system; and that genetic algorithms are in
many cases used as a classical form of optimisation technique. But the long term
future of Evolutionary Robotics lies in a much more radical agenda: that the
cognition we wish autonomous agents to have has nothing to do with compu-
tation (even with neural nets), and that evolution, even artificial evolution, can
be taken out of the narrow shortsighted framework of optimisation. I will refer
to examples where this approach has been used in practice; but in this short
paper the arguments will be limited to those of general principles which have
significant practical consequences.



2 Cognition and Computation

In the attempt to create adaptive autonomous agents in our own image, people
inevitably reveal their philosophical stance on what it is to be a cognitive being.
I shall assume that we can for engineering purposes treat agents as machines;
the type of machine held up as a paradigm has gone through fashions, usually
based on the prominent technology of the day. Whereas the mind or brain used
to be a type of hydraulic machinery, or a type of telephone exchange, for some
decades now the most pervasive, unexamined, metaphor has been the computer.

Artificial Neural Networks (ANNs) have in recent years been promoted as a
parallel form of computation, or of information processing. Many applications of
ANNSs are indeed just this; but the danger 1s that when they are proposed either
as a model of the mind or as a technique for producing adaptive autonomous
agents, the computational metaphor still lies unsaid in the background.

2.1 What are Computations?

Until the 1930s computers were human beings who carried out a predetermined
set of calculations on figures, for instance long division. After Alan Turing and
others demonstrated that machines could be designed to carry out manipula-
tions on symbols according to rules, the word ‘computer’ has changed its pri-
mary meaning to the machines. Technological and theoretical developments have
produced the amazing capabilities of these machines we see today, where such a
computer can defeat the best chess grandmaster.
Underlying all this is the simple idea of a computation:

— Take some input data, such as a set of numbers, or a chess position and the
history that led up to it, or the sensory inputs to a robot or animal.

— Carry out a specific algorithm on the input data, until the algorithm halts
(subject to the Halting Problem).

— Present the output data that resulted, e.g. the long division, the next chess
move, or the agents next motor movement.

There 1s no mention here of time. A slow computer and a fast one can perform
the same computation; the lengths of time taken for each program step are for
formal purposes irrelevant. Whereas von Neumann computers perform serially, a
notion of computation can be extended to parallel computations done in ANNs.

This attractive explanation conceals a fundamental assumption which I and
many others would challenge. The brain is not doing any computations at all
in the sense spelt out above. There is a regrettably tendency to use the word
‘computation’ to refer to the workings of any complex system, but this results
in the word losing any useful sense, and such silly claims as a thunderstorm,
or indeed the universe, is computing its next state. In denying that the brain
performs computations I am not challenging this vacuous use of the word, but
rather the sense that Alan Turing used when defining a universal computer: an
algorithm performed on input data to generate appropriate output data.



This challenge has significant practical consequences, including moving away
from feedforward atemporal networks, where input nodes are presented with
input data, and after a sequence of parallel processing through successive lay-
ers the output data emerges from the far end. Historically, even when ANNs
include feedback, the same computational perspective has often been applied;
for instance with Hopfield nets which are full of feedback loops, after an input
pattern is presented the network is allowed to settle down, sink into a basin of
attraction, which thus specifies the output of this ‘parallel computation’.

Yes these do indeed count as computations, in the sense spelt out above.
Such ANNs may be appropriate for some computational purposes. But these
are only a small subset of the ways in which ANNs may be used, and 1t is the
non-computational forms that are appropriate models of cognition.

3 Non-computational Cognition

Characterising cognition as computation reduces it to a series of snapshot deci-
sions: given my current sensory inputs, plus perhaps some trace of my previous
history, what should be my output action now? The alternative view taken here
is that cognition, for animals or machines, is something that can only be at-
tributed to the behaviour that arises from the conjunction of an organism and
the world that it inhabits. Hence it would be a category error to treat cognition
as something ‘done’ by the brain, or a part of the brain. The behaviour of an
organism arises from the dynamics of its interaction with its world, and from
our perspective as external observers we can best describe this as the interac-
tion between two dynamical systems (the agent and ‘the rest’), coupled together
through sensors and actuators. This is the ‘dynamical systems view of cognition’,
dating from the early cyberneticists and reemerging in recent years [1, 5, 9].

Why is an agent in such a coupled set of dynamical systems not an in-
put/output device, and hence not performing computations to generate appro-
priate outputs from snapshots of its sensory inputs? One could analyse the dy-
namical system that constitutes the agent — ‘brain and body’ — and correlate
every output with the snapshots, the inputs that generated them, but in gen-
eral this is still insufficient to give an understanding of how it will behave when
coupled with its environment. The changing actuator outputs from the agent
themselves influence the way in which the patterns of sensory inputs change,
and if this is on a similar or a faster timescale than the time it takes sensory
inputs to influence outputs, then the snapshot model breaks down.

4 Neural Nets as Dynamical Systems

A dynamical system can be specified by a number of variables which change
over time in a regulated fashion. We are here excluding field systems and only
considering those with a finite number of variables; the rate of change of any one
variable is governed by a function of some or all of the total set of variables. If we



Fig.1. A sketch of a dynamic system with 6 variables, influenced by two parameters
shown as inputs, and conceptualised as a dynamic recurrent neural net.

conceptualise each variable as a node, and draw directed lines from each node
onto those others whose rate of change it influences, then we have a diagram
looking very much like an ANN (Figure 1); the functions correspond loosely to
‘activation functions’. Two features to note about such ANNs are firstly, that in
general there may be any amount of feedback loops; and secondly that crucial
to their definition is their temporality, the time constants associated with their
rates of change.

It follows that dynamic recurrent ANNs (DRNNs) are one convenient way to
visualise dynamical systems, and this has been made use of by Beer [1, 2] and
in Sussex evolutionary robotics work [6]. Beer uses a set of differential equations
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where y; is the activation of the ith node and ¢;(¢§) = (1 + eBi=)=1 g
a sigmoidal function biased by a threshold term @;. Inputs to the system from
outside, I;, would be parameters if they were unchanging; however with an agent
in its environment these I; vary according to the way the system is coupled with
the rest of the world. A slightly different approach has been used in much of the
Sussex work, where discrete changes in activations at nodes take place at discrete
times, knockon effects are transmitted down interconnections taking a finite
time to influence later events. There is a close resemblance here with Brooks’
subsumption architecture [3] using Augmented Finite State Automata (AFSM).
These latter can be seen as nodes in a DRNN, where the temporal qualities are
provided by the timers within the AFSMs. Continuous time recurrent neural
networks can be shown to be a class of dynamical systems capable in principle
of replicating to an arbitrary degree of accuracy the dynamical behaviour of any
other dynamical system with a finite number of components [4].



So DRNNs can do everything that formal computational systems can do and
(crucially) much more; trivially, you cannot time the boiling of an egg with a
formal computational system. Many people embedded in the computationalist
frame of mind have difficulty in realising what a significant difference the deliber-
ate recognition of temporal attributes of cognitive agents makes, the modelling of
them as dynamical systems; perhaps a fair analogy would be to say that building
an agent out of formal computational systems 1s akin to building an aeroplane
with only knowledge of statics, no dynamics. DRNNs are however fiendishly
difficult to analyse and understand, which is why evolutionary methods have
often been used. DRNNs can of course have plastic behaviour at many different
timescales, and hence agents built out of them can display learning behaviour;
but if an evolutionary approach is used for the design of systems that behave
in desired ways, then ‘ability to learn in particular contexts’ is just another
constraint on the evaluation function, and need not be treated differently.

5 Artificial Evolution

Genetic algorithms (GAs), based on Darwinian ideas on natural evolution, are
often called on as an optimisation technique in a high-dimensional search space,
particularly where there is relatively little @ priori knowledge to guide the search.
I will suggest here that some problems should not be treated as optimisation
problems, and in the long term much robotics development will fall into a dif-
ferent framework. Crucial properties of an optimisation problem are:

1. It is one specific problem.
2. The search space of possible solutions is typically well-defined in terms of a
fixed number of parameters.

Now this is not in fact what goes on in natural evolution, where the ‘prob-
lems’ different organisms face were not predetermined at the origin of life on
earth. Natural evolution can be thought of as a method for adaptive incremental
improvement to organisms who are facing, over geological time, problems that
vary with the environment which significantly includes other varying organisms.
Engineers should only draw on principles from nature when they suit their pur-
poses, but there is a broad class of problems where we should be looking for the
adaptive-improving properties of evolution rather than optimisation properties.
The crucial question 1s:

— If we substitute for a solved problem a slight variation on it, does it make
sense to start a new search process from scratch, or should we be looking for
adaptive improvement?

The quest for adaptive autonomous agents is inherently an ill-defined one,
where we may set short-term goals but will continually want to move the goal-
posts as each goal is achieved. So the longterm future of evolutionary robotics is
in incremental evolution rather than GAs-as-optimisers. This requires a change



of emphasis in the use of GAs, which has been reflected in the development of
SAGA or Species Adaptation Genetic Algorithms [6]; this will be briefly sum-
marised here, to emphasise the use of of-the-shelf GAs may be inappropriate for
long term evolutionary robotics. The practical consequences of SAGA are that
one works with a genetically converged population, the degree of convergence
maintained by a balance between mutation and selection. Recombination is less
important; the notion of ‘premature convergence’ becomes an irrelevance. A GA
paradigm such as Genetic Programming may use a population of many hundred
thousand members evolving for less than 100 generations; in this alternative
paradigm a population which may be many orders of magnitude smaller evolves
for many thousands of generations, indeed in principle indefinitely.

6 Summary

The dynamical systems approach to understanding cognition requires a system
which no longer treats time as an afterthought, and dynamical systems can be
conceptualised as dynamic recurrent neural nets, DRNNs, which have signifi-
cantly different properties from many conventional ANNs. These are inherently
difficult to analyse and design, and evolutionary methods are one way to attack
such difficult problems. For problems such as evolutionary robotics, in the long
term GAs as optimisers will be ineffective. The different framework of GAs as
incremental adaptive improvers requires something other than standard off-the-
shelf algorithms.
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