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Abstract 
Gaia Theory makes controversial systems-level claims about 
how environmental factors on a planet tend to be regulated 
towards conditions favourable to biota. Daisyworld models  
show how such phenomena may arise, but their subtleties are 
often misunderstood. Here the core concept of Gaian regulation 
is shown in an ultra-minimalist model, and defined in terms of 
fragile hysteresis loops. Insights thus gained explain many 
fallacies and misunderstandings held by critics and advocates 
alike. Gaia Theory and Darwinian evolution are shown to be 
complementary not antagonistic. General results are proved for 
the inevitability of Gaian regulation at steady state in systems 
of arbitrary size and complexity under very broad conditions. 

Introduction 
Gaia Theory makes controversial claims about system-level 
properties of interactions between biota and environment in a 
bounded world. In some sense, it is claimed, environmental 
factors tend to be regulated favourably to the biota – but in 
what sense, and why? What is being regulated? Is something 
(what?) being optimised? Is it compatible with evolution? 
Does it depend on a lucky (or deliberate) choice of bio-
environmental interactions? We build on Daisyworld (DW: 
Lovelock, 1983; Watson and Lovelock, 1983), a simple 
Artificial Life model, to answer these questions. The 
unfamiliar Gaian circular logic is easy to misinterpret, by 
critics and advocates alike; confusion has bred mistrust on 
both sides, not least on the relationship between Gaia Theory 
and evolution. We aim  to clarify how such confusion arose. 
 The strategy of this paper is to first present the core of this 
circular logic (Fig. 1) in the context of the simplest model 
possible: a 2-variable, 1-parameter toy, abstract mathematical 
model. Gaian regulation (GR), defined in terms of Viability-
Zones in Perturbation Space, will be demonstrated. This 
corresponds to a specific form of hysteresis loop, a zone of 
‘fragile’ bistability. The circular causation B⇄E upsets many 
prior expectations, and is used to illustrate  common fallacies 
and misunderstandings. Thus it may act as an intuition pump 
when considering the real world of biology and environment, 
or synthetic worlds of man-made systems. 
 The second part of the paper generalises from this 2-
variable model to n-variables and interactions of any 
complexity, subject only to very broad conditions. GR, thus 
defined, extends to arbitrary systems of any size: this is 
‘inevitable Gaian regulation’, perturbations are automatically 
countered so as to widen, not lessen, the viability range. 
  It is shown that this viability-based GR is indeed in accord 
with the core of the original DW of W&L, though even there 
it is necessary to distinguish the core from added complexity 
that  is not  essential  to GR. Clarification of the  core  concept 

Figure 1. Circular causation: perturbations P regulate the 
stable steady states of the B⇄E circuit. B is viable (>0) for 
some range of P values. It will be proven that if the circuit is 
broken by a hypothetical neutral ‘switch’ pictured at left, B is 
viable for a decreased range of P (or at best, the same range). 
I.e. the unbroken circuit typically increases B-viability.  

both makes possible the very general theorem proved here and 
indicates where translation to the real world may be fruitful. 
The results pertain to equilibria and not to transient responses.   

Principles and Anecdotes. Most studies of DW (Wood, 2008) 
make extensions to the core so as to show new phenomena or 
to fit the model better to real data. This paper has the opposite 
motivation: in dismissing any such extensions as ‘merely 
anecdotal’ insofar as they are not generalisable, it aims to find 
universal principles. Even the original DW has much removed 
here. This may mean that GR as defined here is narrower than 
others assume; but by clarifying a line between the universal 
and the specific it may help illuminate in other DW studies 
just what is core (and generalisable) and what may not be. 

The minimal 2-variable model 
DW is an Alife-style model first presented by Lovelock in 
1982 (published as Lovelock, 1983). The best-known early 
citation is here referred to as W&L (Watson and Lovelock, 
1983).  The minimal version here, based on Harvey (2004), 
radically simplifies the original DW of W&L. We start with a 
single ‘bio-variable’ B, and a single  ‘enviro-variable’ E. They 
take values within finite ranges that we choose to scale as 
[0.0,1.0]. Together they form a dynamical system, where each 
affects the rate of change of the other via functions H( ) and  
Z( ), parameterised by P as described further below: 

(1) 

(2) 



Figure 2. Example nullclines (a) B=HP(E) and (b) E=Z(B). 
Directions of dB/dt and dE/dt are indicated by arrows. 

µ and ν (that we shall typically set to 1) moderate the rates of 
change of B and E towards the ‘nullcline’ endstates of 
B=HP(E) and E=Z(B). If and when both endstates are reached 
simultaneously, in the absence of noise further change would 
cease; we shall be considering the system in the presence of 
noise that will shift the system from unstable to stable 
equilibria. Such equilibria points can be seen graphically as 
where the nullclines intersect; the form of these nullclines is 
crucial to the model, determining which equilibria are stable 
and which unstable.     
 We choose HP(E)=H(E+P) as a parameterised ‘hat-shaped’ 
function that is zero outside some constrained ‘E-viability-
zone’ within which it rises to a peak (Fig. 2a); parameter P 
shifts the hat left or right.  Here we show a piecewise linear 
‘witches hat’; most of the results that concern us are 
insensitive to the precise form of the hat. With the peak value 
R of the hat at E=E', and viability ‘radius’ r, we have: 

(3) 

We choose for illustration (Fig. 2b) Z(B) as, in the region 
where it affects matters, a linear relationship based on (Q + 
sB); where Q is a fixed default value for E when B=0, and s is 
the gradient of slope (positive or negative). However this 
linear form is truncated below and above at E = 0 and 1. This 
results in a ‘zigmoid’ or piecewise-linear sigmoid: 
 

(4) 

We may flip Fig. 2b, and overlay on 2a so that the B-E axes 
now coincide, as shown in Fig. 3, Z(B) now shown dashed. 
These nullclines intersect at steady states, stable or unstable. 

Figure 3. As the hat-function HP(E) shifts left and right with 
different P values, there are between 1 and 3 steady states. 
H0(E) has 3, circled; examination of the arrows representing 
dB/dt, dE/dt, indicate they are stable/unstable/stable. 

Figure 4. Values of B for the stable steady states of the BE 
system as P varies. Note that the axes are now B against P. 

When parameter P=0, examination of the signs of dB/dt and 
dE/dt (Fig. 3, for H0(P)), shows that the rightmost of 3 steady 
states is stable; likewise the leftmost is stable. The steady state 
between these on the nullcline is necessarily unstable. Hence 
if we assume there is noise in the system such that it leaves 
the unstable one, after transients the only (stable) steady states 
to be seen are as shown: one with B zero, one with B positive.    
 We plot these stable steady states in Fig. 4, as P is varied. 
For P1<P<P2 there are 2 possible values for B, providing a 
hysteresis loop: as P is increased from low values, the lower 
part of the loop will be followed, jumping up at P2; as P 
decreases from high values, the upper part of the loop is 
followed until a jump down at P1 (corresponding to where the 
nullclines are tangent to each other). We define Viability Zone 
VZfull (in Fig. 4 from P1 to P3) as the region of P-space for 
which there is at least one stable steady state with B>0; i.e. 
here we consider the upper limb of the hysteresis loop.  

The Neutral Comparison 
The hat-function shown in Fig. 4 represents the values taken 
by B for the (single) steady state of a ‘neutral’ version of the 
system; here we follow W&L. This is what would happen if 
all the effects of B on E were nullified, i.e. if Z(B) was 
replaced by Z(0) as indicated by a hypothetical neutral 
‘switch’ in Fig. 1, thus breaking the B⇄E circuit. This results 
in a viability zone VZneutral, where B>0, between P2 and P3. 
This width is 2r, the same as the basic width of H(P+E), see 
eqn 3; but here it is P that is varying rather than E. We may 
note that VZneutral corresponds exactly to VZfull except that it is 
based on the lower (B=0) limb of the hysteresis loop rather 
than the upper limb.    
 In this example, we can see that VZfull covers the zone   
VZneutral and extends further. VZfull  = VZneutral  + VZGR, where 
the latter ‘Gaia-Regulated’ VZ corresponds exactly to the 
hysteresis region P1<P<P2. We use the existence of such a 
non-empty VZGR as the basis for defining Gaian Regulation. 

Gaian Regulation 
We define GR as occurring whenever there is a zone of 
Perturbation-space within which a biotic variable B can be 
viable (B>0), despite a neutral version of B (where its effects 
are nullified) being non-viable (B=0); in other words, where 
there is this ‘fragile’ form of bistability with both upper and 
lower (zero) limbs of a hysteresis loop. We have demonstrated 



this in the simple example above, where the functions and 
parameters were chosen so as to highlight this.  We chose a 
narrow hat-function (small r in eqn 3), and a high value for s, 
the slope of the zigmoid (eqn 4); such choices tends to make 
VZGR more prominent for illustrative purposes. We note that 
this definition broadly corresponds to the implied definition in 
W&L, where B refers to daisies. E to temperature and P to 
Solar Luminosity. W&L recognised the hysteresis from the 
start; their Figure 1a clearly shows what is here called VZneutral 
for a ‘neutral daisy’ (that has the same albedo as the ground, 
i.e. its effects are nullified). Elsewhere in W&L’s Figure 1 
they show what is called here VZfull for various combinations 
of daisies, expanding the viability range beyond VZneutral. 
 Sceptics will of course suspect that these simple examples 
are cherrypicked to show the phenomenon of GR, and that 
different examples may show some reverse anti-Gaian effect. 
In the second part of the paper we show otherwise; within a 
very broad range of dynamical systems of any size, we show 
that for any arbitrary variable B, VZneutral ⊆  VZfull. In other 
words if the effects of B on its environment are such as to 
influence its own Viability Zone in any direction, this 
influence can only be in a positive direction, expanding the 
range of viability and thus displaying GR. Not lucky Gaia 
(Kirchner, 2002), but inevitable Gaia. 

Various Fallacies and Confusions 
Before we get there, we can use the present very simple 
model, loosely equivalent to black daisies in W&L’s DW, to 
illustrate some commonly held fallacies about Gaia Theory. 

The Misattributed-Feedback Fallacy. This is the all-too-
easy error of calling, for instance, the effect of E on B a 
‘negative feedback’ rather than a ‘negative effect’ (or positive, 
as the case may be). Feedback, -ve or +ve, is a property of a 
complete feedback circuit (-fc or +fc) of effects A → B → 
C… → A and so cannot be attributed to any single effect A → 
B. This mistake is made time and again, even in W&L where 
‘changing the direction of effects’ is confused with ‘changing 
the direction of feedbacks’. The present author has erred 
likewise (e.g. in Harvey, 2004). Although it is strictly true that 
changing the direction of a single effect in a feedback circuit  
will – if nothing else changes – reverse the sign of that circuit, 
in the current context there is always a consequent further 
change to counteract this. This sloppiness in language hence 
leads directly to … 

Figure 5. (a) Corresponds to Fig. 3, with -fc at K; this relates 
to ‘black daisies’ with a +ve effect. (b) If the slope is reversed 
(‘white daisies’),  K becomes Kʹ  (+fc) but also L becomes Lʹ 
(-fc). The stable steady state does not ‘disappear’ but rather 
‘shifts elsewhere’. 

The Missing-the-point Equilibrium Fallacy (aka Lucky 
Gaia). Confusing effects with feedbacks misleads the unwary 
into believing that since, e.g., a +ve effect is associated with 
+fc in one part of phase space, it will be associated with +fc in 
other parts of phase space. In Fig. 5 we have a counter-
example: B has a +ve effect on E that contributes to a +fc at 
unstable equilibrium L, yet to a -fc at stable equilibrium K.    
 As indicated in Fig. 5, although swapping the sign of an 
effect does turn -fc into +fc, it simultaneously turns any 
neighouring +fc into a new -fc. So state of the dynamical 
system, in the presence of any noise, will automatically shift 
through phase space towards another point. The ‘Lucky Gaia’ 
criticism takes it as a matter of luck (dependent on directions 
of +ve or -ve effects) whether a specific steady state is stable 
or unstable; but one such point becoming ‘unlucky’ means the 
next one will become ‘lucky’. 

The Optimising Gaia Fallacy. It should be clear from the 
simple example that nothing there can be identified as being 
‘optimised’. Under Gaian regulation, the peak value of B 
(seen at P=P1 in Fig. 4) is the same as it was without GR. 
Further, in the simple example shown, this peak value is right 
at the tipping-point where regulation is about to be lost. 
Within VZneutral the value of B is mostly decreased. The 
Viability Zone is typically increased under GR, but that does 
not translate to its being optimised – optimised with respect to 
what? Suggestions to the contrary, such as:  

We have since defined Gaia as a complex entity 
involving the Earth's biosphere, atmosphere, oceans, and 
soil; the totality constituting a feedback or cybernetic 
system which seeks an optimal physical and chemical 
environment for life on this planet. (Lovelock, 1979) 

are better replaced by formulations such as: 

The Gaia hypothesis ... the atmosphere, the oceans, the 
climate and the crust of the Earth are regulated at a state 
comfortable for life… (Lovelock, 1979) [stresses added] 

and habitable is more appropriate still (Kirchner, 2003). 

The Setpoint Fallacy. One probable motive for the 
Optimising Fallacy is that conventional Regulators use a 
predetermined setpoint, with -ve feedback bringing a 
perturbed system back to that point. This immediately 
provides something to be optimised – ‘distance from setpoint’. 
But GR is interestingly different from this, and has no fixed 
setpoint (c.f. ‘rein control’ below); as Perturbing Parameter P 
changes, so do the positions of equilibria in phase space.  

The Beneficial/Harmful Confusion. At a stable steady state, 
as at K in Fig. 5, the -fc is beneficial in this sense: a change in 
the external Perturbation P will be compensated for by the 
feedback circuit tending to reduce the effect of that change. 
This is no more or less than the Le Chatelier Principle (Le 
Châtelier and Boudouard, 1898), well known and accepted in 
chemistry and economics. Nevertheless, around steady state  
K the effect that B has on E (+ve in this example), is actually 
harmful to B, in that an increase in E leads to a consequent 
decrease in B. The +ve effect of B on E (in this example 
‘black daisies’; the argument takes the same course with a -ve 
effect with ‘white daisies’) can be considered to be 
simultaneously (a) apparently ‘G-beneficial’ in promoting GR 



by forming part of the -fc that allows this stable state with 
nonzero B to exist and (b) L-harmful, i.e. locally harmful to 
small variations in the B-effect on E. This is not the 
contradiction it first seems to be, since the G-beneficial 
describes the feedback rather than the effect (see Misattributed 
Feedback Fallacy). Nevertheless this has led to much 
confusion. E.g. the subtleties of  beneficial/harmful in a Gaian 
context are not noticed in these quotations from a critic of 
Gaia theory: 

Coupling between the biosphere and the physical 
environment can potentially give rise to either negative 
(stabilizing) feedback, or positive (destabilizing) 
feedback, and the consequences of this feedback can 
potentially be either beneficial or detrimental for any 
given group of organisms. (Kirchner, 2002) 

Which brings us to Daisyworld. The Daisyworld model 
assumes that traits that benefit the environment also give 
an individual a reproductive advantage over its 
neighbors. (Kirchner, 2002) 

The Evolution and Gaia Fallacies. This same confusion is 
also displayed by advocates of Gaia theory, as for example: 

In Daisyworld, natural selection is directly linked to 
environmental effects such that what is selected for at the 
individual level is beneficial to the global environment.  
(Lenton and Lovelock, 2001) 

Natural selection refers to Darwinian evolution, and this 
statement is, as a general principle, entirely wrong. Darwinists 
know how easy it is to show counter-examples; this feeds their 
distrust of Gaia Theory. Later in the same paper a possible 
cause for this confusion is suggested where “what is selected 
for at the individual level is also beneficial at the global level” 
is offered as a rephrasing of “organisms alter their immediate 
(local) environment and the global environment in the same 
way”. There is a sense of ‘selection’ in which black daisies 
within DW may be said to be ‘selected’ under GR when the 
sun is ‘too cold’, and white daisies ‘selected’ when it is ‘too 
hot’; different organisms flourish in different environments. 
But emphatically this is not natural selection in any 
Darwinian sense, of variant organisms being preferentially 
selected in the same environment. As a general principle we 
may observe the opposite: what is G-beneficial to the global 
environment will be naturally selected against if Darwinian 
evolution occurs within the timescales of our model.  
 Above we noted that the effect of B on E was locally L-
harmful. Any positive variation in this effect – for instance a 
mutation that caused a black daisy to have a slightly stronger 
tendency to absorb heat from the sun, thereby locally 
increasing temperature E – would actually (around a stable 
equilibrium such as K) decrease the amount of B. Such 
variations are broadly equivalent to changing the slope s in 
eqn 4. Hence, if the consequences were felt by the mutant B 
more than by its neighbours, that mutation would be selected 
against. Such selection pressure on albedo-changing mutations 
in black daisies tends (in the absence of constraints) to drive 
them towards neutral; likewise in white daisies. So evolution 
on such biotic effects (B → E) can, under plausible 

circumstances, be expected to decrease and ultimately 
eliminate (the need for) GR.   
 Many critics of Gaia Theory assume that GR must have 
arisen through evolution, since it appears to be in some sense 
adaptive and hence seems to need some explanation for its 
origins. The previous Kirchner (2002) quote, discussing 
‘reproductive advantage’, buys into this idea, and of course 
Dawkins’ many criticisms of Gaia (Dawkins, 1982) address 
the same issue. In fact evolution is neither required for the 
display of GR – the present simple model makes no reference 
to evolution – nor, since as we argue that it does not depend 
on luck, does it require an evolutionary explanation for its 
origins. We return to further discussion of evolution below.  

The Stability-Unlikely Fallacy. It is fallaciously believed by 
many that as a dynamical system becomes more complex, it is 
increasingly unlikely to have any stable steady states at all 
(May, 1972). The errors in May’s analysis, as applied to 
nonlinear systems, have been pointed out elsewhere (Harvey, 
2011); one error relates directly to the Missing-the-Point 
Fallacy. We demonstrate the contrary in the next section, in 
particular the inevitably of stable equilibria in our systems. 

Two Reins and More 
The minimal example used so far to display core GR has had 
just one type of biota B. This may puzzle people who think 
that DW relies on there being (at least) two daisies, black and 
white; though from the start W&L observed such regulation 
with a single type of daisy (e.g. see their Figure 1b).   
 Black daisies can G-regulate temperature when otherwise it 
would be too cold; it needs white daisies, or their equivalent, 
to G-regulate when it is too hot. Though a single 
environmental variable is being regulated, it needs two 
separate pathways for regulation in both directions. This 
matches exactly with Clynes’ (1969) observations of ‘rein 
control’ (or ‘unidirectional rate sensitivity’) in biological 
homeostasis. Each rein of a horse can only pull in one 
direction, not push; hence for control in both directions two 
separate reins are needed. When doing so, the circumstances 
under which they may tend to cancel each other out, rather 
than complement each other, are discussed in Harvey (2004).   
 Saunders et al. (1998) were the first to relate rein control to 
DW. However they were largely focussed on circumstances 
where zero steady-state error may be achieved – that 
necessarily implies error with respect to some setpoint. To that 
end they added a version of integral control (that employs a 
signal related to time integral of error) to produce what they 
call ‘Integral Rein Control’. To clarify, the original Clynes 
(1969) version of rein control, as used here and in Harvey 
(2004), is just plain rein control with no ‘integral’ element. As 
such, it has no need for the concept of a setpoint or of error.   
 The concept of rein control explains why two bio-variables 
are needed to control an enviro-variable in two directions. 
Further, it explains why, with many bio-variables but a single 
enviro-variable (McDonald-Gibson et al., 2008), at the core 
there is a dynamic equilibrium between those bio-variables 
that are ‘pulling one way’ and those ‘pulling the other way’.    
 Extending to several enviro-variables is interesting and 
challenging (Dyke and Weaver, 2013); a start has been made 
there on analysing phase-portraits of two- and three-enviro-



variable systems. But here we now prove a theorem valid for 
arbitrary numbers of variables in a very general model.  

Gaian Regulation Theorem 
The minimal model presented above is a simple example of 
the general case, and so may be useful in guiding 
interpretation. We consider m bio-variables (bvars), 
B=(b1,..,bm); n enviro-variables (evars), E=(e1,..,en); and a set 
of n parameters, or external perturbations, associated with the 
n evars, P=(p1,..,pn). B and E form a coupled dynamical 
system, parameterised by P. As before, we shall be examining 
the stable steady states of this system for different P, and in 
particular which regions of P-space allow one or more bvars 
from B to be viable. All variables are finite and bounded. This 
means we can rescale each variable in B and E to lie within 
the range [0.0,1.0] at all times. 
   For many purposes bvars and evars will be treated 
identically from a mathematical perspective. There are just 
two differences. Firstly only E is directly influenced by 
exogenous influence from P; indirect influence on the bvars is 
only via the evars. Secondly, for the term ‘viable’ to make any 
sense when describing bvars, there must be a contrast with 
‘non-viable’ (i.e. stable steady state zero); for each bvar there 
must be both viable (>0) and non-viable (=0) regions. 
 It will be useful to introduce the notation B-i to refer to all 
the bvars excluding the ith; similarly E-j excludes the jth evar. 
Our dynamical system is then defined by m+n equations of 
this form, using any continuous functions hi() and fj() at all 
that obey the bounding constraints below: 

for i=1 to m (5) 

for j=1 to n (6) 

The µ and ν moderate the rates of change, and we shall 
typically set these to 1. The gj(P) specify differently weighted 
subsets of P; any weighting is permissible. In turn these 
generate m+n nullclines of the form: 

for i=1 to m (7) 

for j=1 to n (8) 

Bounding Constraints. The important constraints that we put 
on each hi() and fj() are that they must be continuous and lying 
within the range [0.0,1.0]. On translation to the real world, 
this reflects the fact that we only consider variables that are 
bounded below and above (e.g. for a species, it is bounded 
below at zero and above somewhere before the biomass 
exceeds the mass of the planet); and we may rescale all 
variables to lie within [0.0,1.0]. The consequence is that, 
although such functions may be defined for arguments outside 
that interval, they can only return values within it. Hence all 
the nullclines so defined intersect each other within the unit 
hypercube (defined so as to include its boundary). It follows 
that, from any starting position in phase space within the unit 
hypercube, there can be no trajectory leading out of it. When 
counting steady states, we need only search within this; no 
variables will ‘shoot off to infinity’. 

Counting Steady States 
For this preliminary stage, we just consider the m+n 
nullclines, with no need to distinguish between bvars and 
evars; we emphasise the generality of this result this by 
relabelling both here as X=(x1, x2, …xm+n). We shall prove by 
induction Hypothesis 1 that:  regardless of the number of 
variables, there are 2q-1 steady states, for some q ≥ 1, of 
which q are stable and q-1 unstable. We start by proving the 
result holds for 2 variables, and then show that the result still 
holds as we add one extra variable; by iterating we can reach 
any number of variables.  

Figure 6. (a) The N-S nullcline must cross the W-E nullcline at 
least once; (b) if more, an odd number, provided (c) tangents  
are treated as a coincident pair of intersections. 

Fig. 6 shows the 2 variable case (x1, x2); we consider each 
nullcline as starting and ending outside the unit box. They 
cannot intersect outside the box (because they are enclosed by 
the box boundaries), and the only intersections we need to 
count are within the box (including its boundaries). The 
nullcline heading north from the south edge of the box starts 
below the west-east nullcline and finishes, outside the north 
edge, above the west-east nullcline. Since each crossing 
toggles between above and below, there must be 2q-1 steady 
states,  where the nullclines intersect, for some q ≥ 1. In Fig. 
6a, the arrows around the circled intersection indicate the 
directions of dx1/dt and dx2/dt associated with the nullclines, 
demonstrating this steady state is stable.   
 In Fig. 6b, the circled intersection is clearly locally similar 
to that in 6a, hence will also be stable. A similar argument 
shows that the intersection in 6b furthest from that circled 
must also be stable; the central intersection can only be an 
unstable steady state. Since intersections must always 
alternate between stable and unstable along any nullcline, in 
the general 2-variable case we must indeed have 2q-1 steady 
states, for some q ≥ 1, of which q are stable and q-1 unstable. 
This is our hypothesis satisfied for just 2 variables. We note 
that since the nullclines are continuous functions of their 
variables and parameters, any smooth shift in these will result 
in a smooth movement through phase space of these steady 
states; except that where (Fig. 6c) tangents are created or lost, 
pairs of steady states (stable + unstable) appear or disappear; 
tangent intersections are counted double (Fig. 6c). In 
bifurcation theory this counts as a pitchfork bifurcation. 
 How do we extend Hypothesis 1 to 3 variables, where we 
are looking at 2-D nullclines intersecting in a 3-D unit cube? 
We note that if we consider a planar slice across the ‘bottom’ 
of the cube, where the new third variable x3=0, the desired 
property holds true in x1-x2 space: there will be 2q-1 points on 
that plane representing steady states. As we move the planar 
slice ‘upwards’, i.e. smoothly increasing x3, these points 
indicating steady states will likewise shift smoothly, with 
possibly pairs of new points being created (and then 



separating) or coming together (and then vanishing). The 
result will be the intersection of the x1-nulline and x2-nullcline 
in the form of a set of lines (minimum 1) that span the gap 
between the x3=0 ‘bottom’ plane and the x3=1 ‘top’ plane. The 
steady states of the 3-variable system will be those points 
where this set of lines cross the x3-nullcline, that lies 
somewhere between the top and bottom of the cube.  
 If such lines cross the x3-nullcline just once, we necessarily 
have the required 2q-1 intersections; if, via any folds in such 
lines and/or in the x3-nullcline, any such line crosses more 
than once, it must add an even number of crossings. Hence the 
required 2q-1 intersections still applies. We note that, through 
reasoning similar to that applied in the 2-D case, any such 
intersection  that is adjacent to the corner of the unit cube is 
necessarily stable. Likewise, successive steady states alternate 
between stable and unstable. Hence we can extrapolate from 
the 2-D case to the 3-D case, where Hypothesis 1 still holds: 
there are 2q3-1 steady states, for some q3 ≥ 1, of which q3 are 
stable and q3-1 unstable.  
 Though it is more difficult to visualise in higher 
dimensions, we can make exactly the same arguments in 
progressing from 3 variables to 4 variables, and thus iterate 
further to any arbitrary number of variables. Since in 
considering n-dim space we already have the result for (n-1)-
dim space, we are each time considering a number of threads 
(2q(n-1)-1) starting outside the ‘bottom’ (n-1)-hyperplane of the 
n-hypercube, and progressing continuously until exiting at the 
‘top’. These threads correspond to intersections of (n-1) 
nullclines (that are hyperplanes) and must at some stage pass 
through, on their way from bottom to top, the intervening nth 
nullcline-hyperplane. The only way any continuous thread 
may terminate as one travels up, other than exiting at the top, 
is for  the equivalent of tangent collisions to be made or 
broken. As we have already seen, these add (or subtract) pairs 
of intersections that separate (or come together). Thus any one 
thread is ultimately continuous from bottom to top and crosses 
the intervening nullcline an odd number of times, minimum 
once. The pattern of the Hypothesis is carried over to the next 
dimension, now with 2qn-1 steady states, qn of these stable. 
 This preliminary stage means we can guarantee the 
existence of stable steady states, typically along with unstable 
ones, regardless of the complexity of our system; the 
bounding box is in its entirety a basin of attraction for stable 
steady states. We need this result to continue our proof.  

Comparing Viability Zones. We extend the VZ definitions 
from this minimal context to the more general domain.  
 We select any arbitrary bvar bi to be considered as the focus 
of interest, and define the VZs associated with it. Each of 
these zones will be a zone in P space or a subset of P space. 
 For each possible value of P we can find in principle all the 
steady states of the full set of equations; we have proved 
above that such steady states exist within the unit hypercube. 
If (for a specific value of P) there is any stable steady state 
with xi >0 then by definition this specific value of P is within 
VZfull. We next generate VZneutral by doing a  similar exercise 
but with xi ‘neutralised’; within all the other n-1 equations,  xi 
is replaced by zero, thus having no effects, +ve or -ve, on any 
of the other variables. As with the minimal 2-variable case, we 
have VZneutral and VZfull each defined as zones within 
Parameter space P. Can we prove anything about their 
relationship? Surprisingly, yes – and easily.  

Reductio ad Absurdum Proof of Theorem 
The Hypothesis 2 that we now wish to prove is VZneutral ⊆ 
VZfull.  Suppose this was false. Then there is at least one point 
in P space that lies within VZneutral but outside VZfull. We 
consider such a parameter set.  
 Since it is outside VZfull, it follows that there all stable 
steady states of the system require xi to be nonviable, i.e. xi=0. 
But this is exactly the condition we impose when we 
neutralise xi so as to define VZneutral; hence we have shown 
that this point in P space must lie outside VZneutral. Assuming 
the Hypothesis to be false has produced a contradiction. QED. 
 A less rigorous, but perhaps more comprehensible, 
explanation would be: if this point in parameter space 
produces a non-viable xi in the full (un-neutralised) system, 
then it will definitely behave the same way in the neutralised 
version (where xi is constrained to be zero). We have proved   
VZneutral ⊆ VZfull.   
 This means that the relationship between these VZs may be 
equality, if xi  has no effects on its own VZ; this will certainly 
be the case if VZneutral covers all of parameter space. But if it 
has any effect at all on its VZ, this can only be to increase its 
size. This means we can define a ‘Gaia Regulated’ VZGR, such 
that VZfull  = VZneutral  + VZGR. We note again, as above, that 
ideal conditions for VZGR to be significant in size include 
VZneutral being small and constrained; e.g. if xi refers to some 
complex organism with tight constraints on its viability. 

Corollaries. The original minimal DW example had the 
various VZs as continuous intervals in the space of a single 
parameter. This generalised version has no such constraints; 
not only can any number of variables be included in the 
viability conditions, but also disjoint VZs are equally valid.   
 Because the result VZneutral ⊆  VZfull., for any variable xi is 
derived from such a general system, we need not assume that  
xi necessarily refers to a single biotic (or indeed 
environmental) variable. It could for instance apply to a 
variable defined as ‘black AND white daisies’, likewise ‘black 
OR white daisies’, using logical AND and OR. Indeed the 
Gaian Regulation Theorem will apply to any entity, including 
a complete ecosystem, that (a) conforms to any version of 
equations (5) and (6), (b) can be assessed for viability as some 
exogenous parameter set influencing the environment varies, 
(c) has some effect on that same environment, thus (d) 
forming feedback circuits with stable steady states.  

Why does the Theorem Work? 
The theorem is very general in application. It is instructive to 
see just which minimal but necessary constraints provide the 
interesting results.  
 Firstly, the form of all the equations used, both for bio-
variables (eqn 5) and enviro-variables (eqn 6), is such as to be 
naturally interpretable in terms of continuous nullclines (eqns 
7 and 8). This follows the precedent set by most previous 
analyses. We consider the steady states of such systems. 
 Secondly, there is an implicit division of timescales into 3 
ranges. Explicitly, the only ones expressed in the equations are  
µ and ν which provide the timescale within which the system 
finds its way to stable steady states. Implicitly, there is the  
faster timescale of small ‘thermal’ noise that we assume will 
dislodge the system from any unstable steady state; and the 



slower timescale of any changes in the exogenous parameters 
P. We assume such parameters stay fixed long enough for 
stable steady states to be reached. We return to this below.   
 Thirdly, finite bounds are put on the nullclines, and we 
choose to rescale the variables such that nullclines lie within 
[0.0,1.0]. This immediately means that they can only intersect 
within the unit hypercube, and guarantees us stable equilibria 
(that the system has time to reach), as well as any unstable 
ones. As shown above, we can relate numbers of stable states 
to unstable ones, and observe that they alternate along 
nullclines. This is the trick that was missed in previous studies 
of similar complex systems that considered only linear ones 
(Gardner and Ashby, 1970), concluding that instability 
became inevitable as numbers of variables increased; and in  
studies that claimed inaccurately to extend such linear results 
to the nonlinear case (May, 1972). Errors in the latter studies 
have been previously pointed out (Harvey, 2011); it is a 
classic example of the Missing-the-Point Fallacy.   
 Fourthly, the concept of viability, states of affairs where a 
bio-variable can be nonzero, is central. This comes directly 
from the cybernetic era that provided a context for the origins 
of DW. Ashby (1952) introduced the similar idea of ‘essential 
variables’ to his analysis of homeostasis and homeostats; as an 
aside, his Chapter 20 on ‘Stability’ provides the explicit 
motivation for Gardner and Ashby (1970) – but misses out 
what nonlinearity brings to the stability table. The key aspect 
of viability here is its potential fragility, where it may be 
found and lost. As we saw earlier (Fig. 4), VZGR relates to 
zones of hysteresis where B may have either +ve or zero 
values. The hysteresis can be interpreted as a symptom of 
fragility, it may be a ‘struggle’ to recover from a loss of 
viability. The boundaries to viability are crucial to GR.  
 Fifthly, GR is defined in terms of zones of Parameter-space 
and not zones of enviro-variable space. The original DW 
model was clear about this; for instance W&L, in their Figure 
1, illustrate viability as their parameter of Solar Insolation 
varies.  
 Sixthly, also explicit in W&L (e.g. their Figure 1a), is the 
comparison made with a ‘neutral’ version (in their case a 
neutral colour of daisy) that generates VZneutral. Basically,  
VZfull identifies the P-zone where B is viable including any 
hysteresis loop (i.e. counting the upper, viable part of such a 
loop), whereas VZneutral identifies the same but excluding any 
hysteresis loop (by in effect counting the bottom, zero-valued 
part). VZGR is defined as the difference, the ‘fragile zone’ of 
the hysteresis loop. This allows the remarkably simple yet 
powerful Reductio ad Absurdum proof used above. Indeed 
with this insight it becomes clearer why there is nothing that 
could count as the inverse of VZGR, there is no possibility of 
‘anti-Gaian-regulation’ as assumed by lucky-Gaia proponents. 

Tipping Points. The boundaries of VZGR are associated with 
discontinuous jumps in the hysteresis loop, as seen at P1 and 
P2 in Fig. 4.; one will be experienced as P decreases, the other 
as P increases. Whereas the P2 boundary is shared between  
VZGR and VZneutral, the other P1 boundary derives from where 
the enviro-variable nullcline (here a zigmoid) is tangent to the 
bio-nullcline (here a hat function). Given the use of a witches 
hat, it so happens that this coincides with the peak value of 
bio-variable B. More generally, any form of hat may be used, 
and as seen in Fig. 7, the tangent associated with the tipping 
point need not be anywhere near the peak. 

Figure 7. (a) P1 is associated with the tangent (circled) at the 
peak of a witches hat. More generally, (b) and (c), such 
tangents need not be at the peak of the hat. 

Gaia and Evolution 
The basic DW model contains no element of Darwinian 
evolution, yet displays GR; so GR does not require evolution 
for its ongoing operation. Further, given the fallacious 
reasoning behind ‘lucky Gaia’, GR is not some improbable 
phenomenon that needs adaptive explanations like evolution 
to explain its origins. It arises naturally and inevitably 
whenever there is some ‘fragile’ system with the appropriate 
kind of hysteresis loop. In so far as natural evolution generates 
living systems that are indeed fragile in that sense, viable only 
within some ecological niche, it generates the raw material for 
GR – which then arises by definition, rather than through 
some further mystery that needs explaining.  

Evolving the effects of B on E. We have seen above (in 
discussion of the Beneficial/Harmful Confusion, the Evolution 
and Gaia Fallacies) that there is an opposition between 
evolution and GR in this sense: when a biotic trait has an 
environmental effect that contributes to a GR feedback circuit, 
it is L-harmful and selection would tend (in the absence of 
constraints) to reduce or eliminate it. A simple interpretation 
of this is: it is in an organism’s interests to evolve so as to 
decrease its fragility within its ecological niche, and in so 
doing so it inevitably reduces the scope (and need) for GR.  

Evolving the effects of E on B. We may also consider the 
possibility of evolution evolving biota so as to alter their 
susceptibility to environmental conditions. It can readily be 
shown (Robertson and Robinson, 1998) that if daisies in DW 
have unconstrained capacity to evolve so that their optimal 
growth temperatures (the ‘peak’ of the hat-function) match the 
prevailing temperature, then likewise this will reduce the 
scope for GR and ultimately eliminate it. A response (Lenton 
and Lovelock, 2000) broadly agrees, whilst asserting that in 
real systems where physical constraints set bounds to the 
limits of such adaptation, GR can take over when Darwinian 
evolution runs up against such constraints. Again we see GR 
and Darwinian evolution as complementary not antagonistic.  

Incorporating Evolution inside this model. It is of course 
possible to incorporate the dynamics of evolution directly 
within this model, provided the ‘terms and conditions’ (t&cs) 
are respected. This typically requires the evolutionary 
dynamics to run to steady state before any parameter P is 
changed. Traits that are evolvable will typically (a) not be 
directly affected by parameters and (b) be viable or non-viable 
at steady state; hence they fit the requirements to be labelled 
as bvars. If eqns 5 and 6 can be tailored to reflect the 
evolutionary dynamics, then the GR Theorem will apply to 
such traits just as with any other bvar.  



A Vicious Circle in Gaia/Evolution debates. DW was 
invented without reference to evolution (there was no need). 
Darwinians misunderstood, assumed GR could only be 
evolved yet it was susceptible to ‘cheats’; hence they declared 
it impossible. DW modellers knew this was not so, and 
created DW extensions to demonstrate this. Unfortunately 
they took ‘anecdotal’ specific examples and elevated them 
into general principles without justification. Darwinians easily 
found ‘anecdotal’ counter-examples to these general 
principles, and asserted the opposite. The cycle of 
misunderstanding and suspicion continued. 
 For example, some studies combining evolution and DW 
(e.g. Lenton, 1998) mix the timescales by having parameters 
changing simultaneously with the evolutionary dynamics. The 
results are valid for those specific choices, but are in this 
context ‘anecdotal’ since we have no principles to decide how 
far we can generalise them. The GR Theorem presented here 
will not extend to such results, but is fully generalisable 
within its own carefully stated constraints, its t&cs. 

Discussion 
This paper is deliberately fact-free, it is mathematics rather 
than science. The analysis has focused on abstract models that 
come with t&cs. Any real world lessons depend whether real 
phenomena do indeed match the t&cs, and this is outside the 
scope of this paper. Nevertheless, it is hoped that some of the 
ideas and intuitions here may be useful tools for scientists. 
The broad generality of the results make it tempting to try and 
fit this model-template to the world; however we may warn 
that one of the most challenging t&cs to observe may be the 
strict separation of timescales. The results here depend on the 
parameters P being maintained fixed long enough for the 
B⇄E dynamics to reach steady state.  

Going out on a limb. An appropriate metaphor for the fragile 
nature of GR is that of going out on a limb – on the top limb 
of a hysteresis loop, from the safe tree trunk of VZneutral. The 
mathematical results here should be safe, but we may 
speculate what future directions may be promising. One such 
is  going beyond steady state phenomena to metastable states. 
 Slower timescale changes may alter, even eliminate the safe 
zone of VZneutral; to rephrase Wittgenstein and his ladder, 
throwing the tree trunk away after one has climbed up it. 
Where you are on a hysteresis loop depends on historical 
contingencies of how you got there, hence changes at multiple 
timescales may eliminate possibilities of going back to safety. 
Darwinian evolution of course introduces new timescales. 
 This may present a picture of Life – and on different scales  
e.g. tornadoes, and planetary viability for biota – as 
potentially fragile existence on a limb of multidimensional 
hysteresis loops with no going back. There are strong echoes 
here of an autopoietic definition of Life (Varela et al., 1974); 
this is unsurprising, since autopoiesis and DW have shared 
origins in many ideas from cybernetics. Such fragility is of 
course balanced against the powerful forces of Gaian 
regulation providing the supporting limbs; “Gaia is a tough 
bitch”, as Lynn Margulis commented. 

Conclusions. This study shows Gaian regulation merely in a 
model, not the real world. Nevertheless we can debunk many 

widely held fallacies; critics of Gaia Theory are not justified 
in their appeals to these specific misunderstandings. GR is not 
‘lucky’, it is inevitable (subject to the t&cs). The relationship 
between GR and Darwinian evolution is more subtle and 
complex than it is often misrepresented to be; their different 
roles may be seen as more complementary than antagonistic. 
Bounded physical variables imply the existence of stable 
steady states, and hence inevitable GR. However this GR is 
not ‘optimising’, not even really a ‘comfortable’ Gaia; perhaps 
best called ‘habitable’ Gaia, it fits nearest to what Kirchner 
(2003) calls ‘biological feedback at the limits of habitability’.  
 The main mathematical lesson is that the curious circular 
logic of Gaia is full of surprises and challenges our intuitions. 

References  
Ashby, W. R. (1952). Design for a brain. Chapman and Hall. 
Clynes, M. (1969). Cybernetic implications of rein control in perceptual 

and conceptual organization. Ann. NY Acad. Sci. 156:629-670 
Dawkins, R. (1982). The Extended Phenotype. W. H. Freeman, Oxford. 
Dyke, J. G. and Weaver, I. S. (2013). The emergence of environmental 

homeostasis in complex ecosystems. PLOS Computational Biology 
9(5):1-9. 

Gardner, M. R. and Ashby, W. R. (1970). Connectance of large dynamical 
(cybernetic) systems: critical values for stability. Nature, 228:784. 

Harvey, I. (2004). Homeostasis and rein control: from Daisyworld to 
active perception. In Pollack, J. et al., editors, Proc. 9th Intl. Conf. 
on Simulation and Synthesis of Living Systems, ALIFE9, pages 
309-314. MIT Press. 

Harvey, I. (2011). Opening stable doors: complexity and stability in 
nonlinear systems. In Lenaerts, T. et al., editors, Advances in 
Artificial Life, ECAL 2011, pages 805-812. MIT Press. 

Kirchner, J. W. (2002). The Gaia hypothesis: fact, theory and wishful 
thinking. Climatic Change 52:391-408. 

Kirchner, J. W. (2003). The Gaia hypothesis: conjectures and refutations. 
Climatic Change 58:21-45. 

Le Châtelier, H. and Boudouard O. (1898). Limits of Flammability of 
Gaseous Mixtures. Bulletin de la Société Chimique de France 
(Paris), 19:483-488. 

Lenton, T. M. (1998). Gaia and natural selection. Nature 394:439-447. 
Lenton, T. M. and Lovelock, J. E. (2000). Daisyworld is Darwinian:  

constraints on adaptation are important for planetary self-regulation. 
J. Theor. Biol. 206:109-114. 

Lenton, T. M. and Lovelock, J. E. (2001). Daisyworld revisited: 
quantifying biological effects on planetary self-regulation. Tellus 
53B:288-305. 

Lovelock, J. E. (1979). Gaia: a new look at life on Earth. Oxford 
University Press. 

Lovelock, J. E. (1983). Gaia as seen through the atmosphere. In 
Westbroek, P. and de Jong, E. W., eds, Biomineralization and 
biological metal accumulation, pages 15-25. D. Reidel Publishing 
Company, Dordrecht. 

May, R. M. (1972). Will a large complex system be stable? Nature, 
238:413-414. 

McDonald-Gibson, J., Dyke, J. G., Di Paolo, E. and Harvey, I. (2008). 
Environmental regulation can arise under minimal assumptions. J. 
Theor. Biol. 251(4):653-666. 

Robertson, D. and Robinson, J. (1998). Darwinian Daisyworld. J. Theor. 
Biol. 195:129-134. 

Saunders, P. T., Koeslag, J. H., and Wessels, J. A. (1998). Integral rein 
control in physiology. J. Theor. Biol. 194:163-173. 

Varela, F. J., Maturana, H, R., and Uribe, R. (1974). Autopoiesis: the 
organization of living systems, its characterization and a model. 
Biosystems 5:187–196. 

Watson, A. J. and Lovelock, J. E. (1983). Biological homeostasis of the 
global environment: the parable of Daisyworld. Tellus 35B:284-289. 

Wood, A. J., Ackland, G., Dyke, J., Williams, H. and Lenton, T. (2008). 
Daisyworld: a review. Reviews of Geophysics 46(1):RG1001.


