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Abstract 

Life and cognition are inherently circular dynamical processes, and people have difficulty 
understanding circular causation. We give case studies illustrating some resulting confusions, and 
propose that the problems may lie in failing to properly distinguish between similar concepts used to 
describe both local and global features of a system. We analyse how explanations in terms of 
circular causation work and how they rely on principles of ‘Normal Settlement’.  Even though they 
typically will not explain the origins of phenomena (that is the province of linear causal 
explanation), circular explanations have predictive power for any persisting (i.e. stable or 
metastable) phenomena. 
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1.0 Where to Start?
Artificial Life owes much to Cybernetics. The influential 1940s/50s Macy conferences referred to 
cybernetics as “Circular Causal and Feedback Mechanisms in Biological and Social Systems.” 
McCulloch, conference chair, described [29] his quest as “what is a number, that a man may know it, 
and a man, that he may know a number?” Change ‘number’ to ‘thing’ and ‘man’ to ‘organism’ for the 
circular core of autopoiesis [37]: how can organism and its world co-define each other? Circular 
causation is central to understanding cognition, whether biological or artificial. 
 Linear causation and explanation is familiar. One starts with a firm foundation of agreed facts, and 
systematically builds up from there. However circular causation is like a Sudoku puzzle where no part 
of the whole is guaranteed until all the interlocking constraints can be simultaneously satisfied. It is not 
obvious where and how to start. 
 Here we show examples of typical traps people fall into when they attempt to understand circular 
causation. Though we aim ultimately at the circularity of full-blown cognition, we start with a minimal 
non-cognitive example of circular causation, DDWFTTW (‘Direct Down Wind Faster Than The Wind’). 
Despite its minimality, many find this challenging to understand. We use this, together with an even 
simpler example of a natural rock arch, to illustrate the basic concepts of circular causation. 
 Then we progress through a number of further examples extending into the cognitive domain. These 
are used to illustrate how explanations based on circular causation work, what principles they are based 
on, what limitations they have. We identify some patterns in the common errors made.  
 It is astonishing how little is taught about circular causation despite its centrality to so many important 
fields (especially biology, cognitive science and artificial life) and despite the abundance of confusion 
and fallacies arising from widespread unfamiliarity with the concept. Areas of study with the strongest 
track records for discussing circular causation would include Cybernetics [41] and autopoiesis, enaction 
[37, 38, 39]; but even these do not focus on the particular confusions and misunderstandings we address 
here. Hence this paper presents analytic studies with a didactic motivation; in my opinion there is a need 
for such education. It is extended from an ECAL conference paper [20] and the text and illustrations 
borrow freely from there. 

Figure 1: Can it go downwind faster than the wind? Yes.



1.1 DDWFTTW: Direct downwind faster than the wind?
Consider the machine of Figure 1, with but a single component moving part. A boat is constrained to run 
left or right along a canal. The single shaft shown is positioned in a sleeve and rotates freely according 
to the forces transmitted through the air/water propellors. From the density of air and water, propellor 
details, and drag resistance of the boat, in principle we can calculate what steady-state boat velocity 
results for a given wind velocity. Our minimal agent has but a single class of behaviour, steady motion, 
powered by the relative movement between wind and water. 
 Many readers may doubt that for any parameter settings the boat will move downwind faster than the 
wind. Youtube videos (usually showing land-based but equivalent versions: search for ‘DDWFTTW’) 
have many comments claiming to ‘prove’ the impossibility. We are told that the director of the Lawrence 
Berkeley National Laboratory refused to allow an external speaker to present a talk on this on the 
grounds that such a vehicle would violate the laws of physics . The reasoning usually starts in the most 1

obvious starting place by considering the wind driving the air-propellor (based on the velocity relative to 
the boat) and thereby driving the boat. If it accelerates up to 10kph, the relative wind velocity drops to 
zero, surely leaving no further force available to propel the boat to a higher speed? 
 This reasoning is wrong, despite the mechanism being so simple and the intuitions so compelling. The 
actual steady state solution has the shaft rotating in the opposite direction to that normally assumed. I.e., 
if the handedness of the air propellor was such that wind from the left would drive an unconstrained 
version clockwise, in fact its coupling with the water propellor results in it rotating anti-clockwise. A 
linear chain of reasoning starting from the water propellor likewise does not immediately generate this 
solution, since with an initially stationary boat there is nothing to drive that propellor. The linear 
reasoning does not fail from starting in the wrong place — there is no right place to start! Circular 
explanations only work in translation to linear reasoning when they include the full circuit of component 
processes jointly maintaining each other in steady state. 
 For a full analysis one has to calculate the torque on each propellor (at steady-state these torques sum 
to zero); and the linear forces on each propellor (that at steady-state sum to a total that equals the drag of 
the main hull). Formally, we have boat speed B and shaft rotation R governed by: 
dB/dt is an increasing function of (Thrustwater + Thrustair + Drag)                     (eqn 1) 
dR/dt is an increasing function of (Torquewater + Torqueair )             (eqn 2) 
when all the terms are themselves functions of B, R and propellor properties such as thrust coefficients, 
torque coefficients, advance ratios, efficiency, size, handedness. The details are too complex to explore 
here. But it can be shown [16] that a whole range of parameter choices allow this apparently paradoxical 
boat motion ‘downwind faster than the wind’ — just as different parameter choices will allow boat 
motion upwind. 
 Navigators of sailing boats will be more familiar with these issues than most. As well as being familiar 
with the ability to tack into the wind (progressing through zig-zags at around 45o to the oncoming wind),  
they will know that the fastest way to sail downwind is to tack on a broad reach at around 45o to the 

 For mention of this episode within an entertaining journalistic account of how Rick Cavallaro and 1

colleagues had such difficulties with disbelievers, see the article in Wired Magazine, 27 August 2010. 
https://www.wired.com/2010/08/ddwfttw/

https://www.wired.com/2010/08/ddwfttw/


downwind direction. This tactic is used in modern high-speed racing, particularly with ice-yachts [8]. 
Despite the extra distance involved in such tacking, the speed made good in the downwind direction can 
outpace the wind by a significant factor. If one transplanted such a speeding ice-yacht, on a downwind 
reach (or upwind tack) on a flat expanse of ice, to some imagined large ice-tube with the same wind 
blowing down (or up) it — we conveniently here ignore gravity — such an ice-yacht would spiral down 
the tube faster than the wind itself (or up the tube against the wind). The sails of the yacht would act 
much as the blade of a propellor — and the circular motion of this blade translates into linear motion 
downwind (or upwind). Combine such possibilities with the two propellors of Figure 1, and with the 
energy source from differential motion of air and water, then ‘downwind faster than the wind’ becomes 
easily achievable [16]. 
 Why do so many people find this paradoxical and hard to believe? Firstly because of unfamiliarity 
with the circular causal reasoning  required, in terms of the attractors of steady-state dynamics. But a 
second related reason may be the easy ambiguity of using terms such as ‘drive’ both locally (wind drives 
propellor) and globally (wind drives boat) but failing to realise these are different senses. This is a 
version of the mereological fallacy [7], or more generally a basic category error. Pre-Copernican 
astronomy was likewise misled by confusing motion locally relative to Earth with a supposed global 
motion relative to some universal framework. 

1.2 Linear causation, chickens and eggs
We assume here that the motivation for wanting an explanation is to be able to predict events, or in other 
words to avoid surprise. The default form for an explanation for a phenomenon is in terms of linear 
causation: “We accept without question premises A and B, and we can then deduce consequence or 
effect C; subsequently, from A B and C we can deduce D, and thence E, F… in linear sequence.” This is 
the way we build a tower out of bricks in successive stages on a firm foundation, or a mathematical 
proof derived from axioms. For each phenomenon, for each brick in the tower, for each lemma in the 
proof, we can provide lines of reasoning or of support back to firm foundations. An annoying young 
child, repeatedly asking “Why?” to each proffered new level of explanation, is appealing to this form of 
causal explanation. They may be seeking the foundational assumptions, that ultimately can only be 
given as “Because!”; or they may just be being annoying. 
 Such forms of explanation are so common that we usually omit the ‘linear’ qualification, and assume 
that all causal explanations will take this form. Hence the perceived need for an answer to: “Which came 
first, the chicken or the egg?”  Explanations of origins must necessarily be linear through time, must 
appeal to linear causation. But in contrast to this we here start to move towards systems of circular 
causation, where a number of components are mutually interdependent. This puzzles some, as we shall 
see. 

1.3 Irreducible complexity and rock arches
Creationist advocates of ‘intelligent design’ focus on what they call the ‘irreducible complexity’ of 
biology where there is their version of circular causation: “.. a single system which is composed of 
several well-matched, interacting parts that contribute to the basic function, and where the removal of 
any one of the parts causes the system to effectively cease functioning” [6]. Their issue is not so much 



with the functioning or persistence of such systems as with their origin. If the parts are mutually 
interdependent, how could they have been assembled incrementally through successive viable stages, 
such as implied by a Darwinian explanation? 
 The answer is illustrated by natural rock arches (Figure 2), that though simple nevertheless fit the 
definition of irreducible complexity . There are mutually dependent component parts (e.g. for a simple 2

choice of segmentation, left and right halves L and R) that do indeed mutually support each other; 
remove either one and the other shifts in consequence, probably with the collapse of the arch. There is a 
further component, the underlying ground G, that is also necessary to provide support; but G is 
independent of L and R since the removal of either leaves G unchanged. The natural processes that 
formed the arch did not require the hand of a creator during assembly; successive stages of addition 
(deposits of sediment) followed by subtraction of ‘scaffolding’ (erosion) are sufficient. Darwinian 
evolution is similarly not constrained by the paucity of imagination of the creationists, and is quite 
capable of assembling through successive viable stages of subtraction, neutral change and exaptation as 
well as addition. The fact that the maintenance of an end product may be explained through circular 
causation is no barrier to a separate linear causal explanation for its origin. 

2.0 Circular causation as used in explanations
The arch provides an intuitive picture of circular causation; let’s formalise this. In particular, we 
characterise when and how explanations of a phenomenon can be framed in terms of circular causation, 
and what are the limitations.  
 We use explanations to reframe complex phenomena or patterns, possibly difficult to understand, in 
terms of simpler entities or components that we do indeed comprehend. We can build an explanation on 
the known effect that each component A, B, C…Z has on one or more if the others. If such causal chains 
feed back on themselves in circuits A→B→…→A, then we have the potential for circular explanations. 

 Cairns-Smith [9] used the same example of an arch for discussion of very similar issues. I thank two 2

reviewers for pointing this out.

Figure 2. Irreducible simplicity? Natural rock arches: the world’s widest (Landscape Arch, 
Utah, 88m wide: Thomas Wolf www.foto-tw.de, Wikimedia Commons, CC BY-SA 3.0) and the 
world’s tallest (Shipton’s Arch, Xinjiang, 460m tall: IH).

http://www.foto-tw.de
http://www.foto-tw.de


If such circuits can be broken down into independent sub-circuits (e.g. A⇿B and C⇿D), then they can be 
analysed independently. Hence it is sufficient to just consider sets (A…Z) where each member is 
directly or indirectly potentially affected by every other member.  
 The rock arch is a minimal example, where each pier (L and R) can take on one of two values: e.g. 1 
for standing and 0 for collapsed. There are two possible steady stable states for {L,R}: {1,1} for a 
standing arch, and {0,0} for complete collapse. We are assuming that the lean of each pier is such that 
neither can stand unsupported so, though we can imagine an instantaneous snapshot taken of situation 
{0,1} or {1,0}, neither is a viable long term proposition. 
 Generalising from this, we can say that a circular explanation involves explaining the existence of 
(one or more) attractor(s) in a system of several interacting components with circular chains of cause 
and effect; all components, both individually and jointly, need to be in stable equilibrium. Such an 
equilibrium may be a static point attractor, as with the arch, or a steady state of dynamic equilibrium, as 
with DDWFTTW, or indeed any other form of cyclic or even chaotic attractor. Such an explanation is 
useful even where we may not have a linear historical explanation of origins available; we can still 
predict how external perturbations will shift or collapse such a system. Such explanations inevitably 
have no obvious starting point, and we shall see below how this can be confusing. 

2.1 Timescales and Circular causation
Any physical system that displays patterns significant enough for us observers to contemplate and 
discuss must inevitably have some associated rough range of timescales. Circular causation, being at 
root based on the concept of attractors, is no different. For natural rock arches the range might lie 
roughly from a few seconds to many years. An unsupported pier might take a few seconds to collapse, so 
one needs a longer period of observation than that to be happy that an arch is stable. At the other end of 
the scale, the fact that all such arches will have changed or disappeared after millennia does not stop us 
calling them currently stable over many years. 
 Typically we ignore events faster than the fast end of this timescale, except in so far as they will 
destabilise any unstable equilibrium. We may call this ‘noise’, that ensures the dynamics heads into 
attractor basins. But at the top of the range we may often choose a variety of timescales for 
consideration, when we consider metastability and the difference between ‘variables’ and ‘parameters’. 
On a timescale of years, rock erosion can probably be ignored and we can treat a rock pillar or arch as 
stable and fixed. When however we shift our perspective to that of millennia, erosion becomes a variable 
that we must consider significant. A ‘parameter’ typically describes an effect that counts as a variable on 
a long timescale, but can be considered as fixed over a shorter timescale. It is often necessary, when 
considering explanations in terms of circular causation, to make explicit such shifts in timescale 
perspective. This may become clearer in the Daisyworld example below, where solar insolation is 
considered as a fixed parameter for the purposes of temperatures settling into an attractor — but 
nevertheless may vary over longer timescales. 

2.2 Sequential and steady-state causation
In linear causation, where A has an effect on B that has a knock-on effect on C…, effects follow causes 
sequentially in time. At first sight this sequential property seems incompatible with circular causation. 



 But not really, since circular causation is based on steady-state analysis, and sequential cause-and-
effect is crucial to understanding whether a circuit A→B→…→A in steady-state is stable or unstable. 
The reasoning involves considering a random small shift to one component, e.g. A, when the whole 
circuit is in some specific steady-state situation, and then following the consequential chain of cause and 
effect around the circuit until it reaches A again. If a small positive (or vice versa: negative) shift at A 
results in a consequent negative (or vice versa: positive) response on A, the circuit is in negative 
feedback and hence stable. With the reverse response, it is unstable. So the analysis in terms of stable 
and unstable steady states that circular causation usually relies on is at a higher conceptual level than 
linear cause-and-effect alone, but nevertheless builds upon such sequential linear chains; no 
incompatibility. 
 It might be suggested that A→B→A should be rewritten as something like A(t)→B(t+1)→A(t+2), for 
the update ticks of some universal time t. I should emphasise that this would be a highly undesirable 
misinterpretation. It confuses the  map with the territory, confuses a computational simulation of a world  
(that typically uses clock ticks) with the real world (that does not). The reference in the previous 
paragraph to the consequences of  ‘a small shift’ in one variable should be read as ‘an arbitrarily small 
shift, over an arbitrarily small time’. Mathematically speaking, we learn in calculus to define dx/dt as the 
limit, as " , of " , where x takes value "  at time " . Stability of x at time t is 
defined as dx/dt=0 at time t (and not at any time t+1). 
   Why does this apparently insignificant distinction raise any concerns? Because the failure to 
appreciate this has led to too many simulations, in Artificial Life and elsewhere, failing to correctly 
model their target worlds through inappropriate choice of update time-steps. This typically results in 
computational artefacts in the simulation, such as numerical instabilities, that mislead; we shall give 
examples in the Daisyworld section 4.2 below. One pragmatic way to ensure that the simulation choice 
of update time-step "  is small enough is to make a first guess of an appropriate "  and run the relevant 
part of the simulation, recording the result; then repeat with a "  that is 1/10th the size, then again 1/10th 
smaller … until the results do not materially change in value. This  corresponds closely to the literal 
interpretation of defining dx/dt as ‘the limit, as " , of " ’. Simulations are invalid if there has 
been no check as to whether an inappropriate choice of "  has been made; at minimum a basic ‘reality 
check’ is needed, and ideally this more principled check  using decreasing values for . 3

  

3.0 Circularity taken to extremes: holograms
The simplest forms of circular causality involve a small number of mutually dependent variables, as in 
the mutually supporting piers of a stone arch, or the dynamical relations of a boat with propellors. More 
complex circularity can arise with multiple interconnected units forming multiple overlapping circuits. 
Thomas and colleagues [33,34,35] present interesting perspectives on these, particularly in the 
biological context of cell differentiation. What happens when you take this towards the extremes of 
millions of tiny interacting units, approaching an analogue continuum? 
 One version of such an extreme is illustrated by a hologram [15], Figure 3. The viewers looking 
through the holographic film see an image behind in 3D, that offers them the same shifts in perspective 

δt → 0 δx /δt (x + δx) (t + δt)

δt δt
δt

δt → 0 δx /δt
δt

δt

 Though the Matlab examples shown in this paper do not explicitly show such principled reality checks 3

in the code, they were indeed done.



as they move around as the shifts when they are viewing the original. Whereas in normal photography 
different parts of film record different parts of the image, a crucial feature of holograms is that the whole 
of the image is recorded everywhere across the film. So if e.g. only a small part of the film (shown at 
lower left in Figure 3) is available, then the whole of the image can be viewed (at somewhat lower 
resolution) by peering through that segment at an appropriate angle. 
 This property means that the holographic film has the useful feature of graceful degradation, that loss 
of parts of the film does not lose any part of the  image. The whole is still available, though the image 
quality starts to degrade. As such, the hologram model has been very influential as a source of 
inspiration for how brains may facilitate the storage of memories [14,22]. The metaphor suggests that 
just as with holograms there is no one-to-one mapping between image features and locations on the 
celluloid film, there is no need for any one-to-one mapping between individual memories and any 
locations in the brain that might be ‘storing those memories’. These ideas lie at the root of recent deep 
learning advances in AI; Hinton, recipient of the 2018 Turing Award for his foundational contributions 
to deep learning, was influenced in his original research directions by exactly this hologram metaphor 
[14]. 
 In what sense do holograms involve circular causation? Appropriate laser light focussed on the 
interference patterns recorded on the celluloid film results in the creation of a light field, or optic array, 
that is in crucial aspects identical to the light coming from the original object. It is instructive (and 
somewhat counter-intuitive) to identify what is happening by reference to Figure 3, and the role of the 

Figure 3. The virtual statue appears to the viewers to be in 3D behind the holographic 
film, and image parts, such as torch, have the same relationship to the whole as in the real 
statue. But there is no direct 1-to-1 correspondence between any small segment of the 
holographic film and some segment of the image.



observers depicted there. These observers will agree on the 3D location of the virtual image; if they each 
point at it, those pointer lines will intersect at that 3D location. Yet if we go round ‘behind the film’, 
nothing is there, we can pass our hand through empty space. There are not even any relevant light waves 
emanating from that specific location. In the absence of the observers there is nothing there!  
 However in the presence of those observers, the reconstructed wavefronts [15] resulting from the 
constructive and destructive summation of light waves from everywhere on the available image film will 
mutually support each other to form stable perceptions by those observers; perceptions that are 
interpreted by them as if there was an object there. The agreement by the observers as to the location of 
the virtual image remains stable even as the observers shift their viewpoints, even as parts of the 
celluloid film are removed or corrupted. 
 The stability, in location and form, of the virtual image (despite noise on/partial removal of the 
celluloid film, despite observer movement) follows the same pattern as the stability in location and form 
of the stone arch (despite any ground tremors). But whereas the stone arch is composed of real stone at 
its actual location, the virtual holographic image is not composed of anything material at its location, not 
even from light waves arising from there. The virtual image arises from the collaboration between (a) 
the observers with their visual perception attuned to normal visual circumstances and (b) the optic array 
from the celluloid film illuminated by laser. Just as left and right pillars of a stone arch support each 
other, here (a) observers and (b) that optic array support each other to maintain a stable virtual image at a 
location where nothing really exists! 
    Stability of something as sophisticated as the perceived form and location of a virtual image in the 
eyes of a human observer might seem far distant from the stability of an arch. But they are both 
examples of stable equilibria within circular causation A→B→A. Look for the consequences of noise, 
look for invariants despite such noise. In the above sketch of the hologram the only noises considered so 
far have been disruption of the celluloid film and observer movement, as illustration of the principle; a 
fuller analysis would include further consideration of the human perceptual system. 

4.0 Moving towards agent-based circular causation
Our first two examples, DDWFTTW and the arch, were inanimate, as is the hologram. We now move 
towards more animate models of circularity. Living creatures both depend on the world around them, 
and have effects on that world, and hence entail circular feedback loops. 
 We start with basic environmental interactions, in a simple yet still counter-intuitive artificial life 
model. From there our examples progress to more full-blown examples of cognition. 



4.1 Daisyworld: how can opposite effects both be good for you?
Our boat example of circular causation has just one attractor to its dynamics, for a given set of 
parameters. Our next case study, Daisyworld [41,18,19] has several potential attractors and introduces 
(at a simplistic level) notions of viability and homeostasis.  
 As summarised in Figure 4, the model assumes that daisies on a grey planet have a limited range of 
viability based on their local temperature. A grey daisy derives its temperature from the sun as it alters in 
solar output (over centuries) and is viable over a limited range of such external perturbations. A black 
daisy, by absorbing extra heat, extends its range right (to less sun); a white daisy, reflecting heat, will 
extend its potential range left (to more sun); the extension of range in one direction is not penalised by a 
corresponding diminution in the other direction.  
    The core result of Daisyworld Theory, as I have argued elsewhere [18,19], can be summarised with a 
‘single-Daisy’ version thus: 

"                                                                                            (eqn 3) 

For a current local temperature T, the daisy population D moves towards some value specified by a non-
negative viability function H(T). Let Viability Range S be the support of H, in mathematical terms the 
range of T values for which H(T) is non-zero; i.e the range of temperatures for which daisies are viable. 

"                                                                                          (eqn 4) 

For some externally fixed perturbation P (e.g. derived from current solar output) and the current daisy 
population D, the temperature move towards a value influenced by the quantity of daisies D upwards if 
"  (black daisies absorb heat) or downwards if "  (white daisies reflect heat). This coupled pair 
of equations in T and D will have one or more stable equilibrium solutions with D either zero (‘extinct’) 
or positive (‘extant’). For any given values of k and P we define Qk(P) as the maximum D value at any 
such stable equilibrium. The Feasibility Range of k, F(k) is the support of Qk(P); the range of P values 
for which there is at least one stable equilibrium solution with positive D. We can show [18,19] that 
when k=0, F(0)=S the support of H; though F(0) is a Feasibility range of P-values and S a Viability 
range of T-values, here they happen to be measured in the same units (though in more complex 

dD
dt

= H(T ) − D

dT
dt

= P + k D − T

k > O k < 0

Figure 4: Black, white, grey daisies have same (green) viability dependence on local 
temp. External forcing from Sun varies. Black increases, white decreases local temp. 
Feasibility ranges (⟺) of both B&W are extended to lower/higher perturbations.



Daisyworlds they will not). But the important Daisyworld result is that for all non-zero k, F(k) ⊇ F(0) 
and there is always some finite ‘big enough’ k=K (whether positive or negative) such that F(K) ⊃ F(0). 
In simple terms, make k big enough (+/-) and you will increase the feasibility range; whatever k, it is 
impossible to reduce the feasibility range below that for k=0.  
   For a simple demonstration we may use a simple hat-shaped viability function: 
"                                                              (eqn 5) 
This is a ‘witches hat’ shape, with a peak value at T=0 decreasing to zero for T anywhere outside the 
viability range [-0.5, 0.5]. We give here  basic Matlab code for numerically simulating the above 4

equations (eqn3, eqn4, eqn5). Though this is the simplest example with just one daisy-type, it serves as 
an introduction to the core principles before advancing to more complex Daisyworlds with two daisy-
types or more. 
 In this sense of promoting increased feasibility range, both increasing (black) and decreasing (white) 
local temperature is ‘good’ for the viability of an otherwise neutral daisy. The literature is full of people 
who disbelieve such a counter-intuitive result; some of the most prominent are cited and discussed by 
Harvey [18,19], pointing out that this is largely due to misunderstanding of the circular causation. In 
particular, there is a tendency to confuse the term ‘viability’ that refers to an individual daisy (shown in 
green on the vertical axis in Figure 4) with what is here called ‘feasibility’ referring to the potential 
viability within a range of external perturbations (shown in purple on the horizontal axis); these are 
(literally) orthogonal concepts. 
 So again, this may be in part due to a pre-Copernican confusion between local and global concepts. 

4.2 Daisyworld and Numerical Instabilities

Simulations of Daisyworld can mislead if they are not constructed so as to pass the reality check 
discussed above in the section 2.2 on Sequential and steady-state causation. A classic example comes 
from Kirchner, a Gaian sceptic. In a review of Daisyworld scenarios [26], he described one (his Figure 3 
and associated text) that exhibited “pathological” behaviour, an unstable oscillation between only-black 
and only-white daisies. My simulation version of this scenario came to a stable (and non-pathological) 
equilibrium with intermediate values, as expected. In an attempt to understand how our simulations 
differed, from correspondence with Kirschner (personal communications, May 2015) I established to my 

H(T ) = max(0,1 − |2T | )

 Basic demo (just 1 daisy-type) Daisyworld Matlab code:4

delta=0.01; kc=0; data=zeros(41,41);
for k=-4:0.2:4 % step through k values, both - and +
    kc=kc+1; pc=0; % counters
    for P=-2:0.1:2 % step through P values
        T=0; D=0; pc=pc+1; % initialise each time
        for t=1:100000 % iterate to stability
            D=D+delta*(max(0,1-2*abs(T))-D); % update D
            T=T+delta*(P+k*D-T); % update T
        end % should be stable
        data(kc,pc)=D>0.00001; % note when D is viable (use near-zero as cutoff …
    end % … to account for numerical approximations)
end          spy(data); % show Feasibility ranges for P, at different k-values



satisfaction (if not to his) that this was a classic case of the simulation time-step failing a basic reality 
check.  

If  

"                        "                                      (eqns 6) 

is simulated by Matlab code such as: 

delta=0.01; B=1;W=0; 
for t=1:10000 
    Bdelta=delta*(W-B); 
    Wdelta=delta*(B-W); 
    B=B+Bdelta; 
    W=W+Wdelta; 
end 

with a suitably small value for the time-step delta, then [B,W] settles down from initial values [1,0] 
towards equilibrium at [0.5,0.5]. But if delta is set to a value 1, the behaviour does indeed oscillate 
“pathologically” between [1,0] and [0,1] . The former non-pathological version is the correct simulation 
for such differential equations, the latter with delta = 1 is wholly misleading. 
    Advocates of Daisyworld as well as sceptics are similarly vulnerable to such errors. Even Lovelock’s 
most cited paper introducing Daisyworld [41], whilst qualitatively reasonably correct, nevertheless 
contained significant quantitative errors for related reasons, as pointed out in [24]. 

 

dB
dt

= (W − B)
dW
dt

= (B − W )

Figure 5. Different strategies for staying on the road: (1) move to centre line (set-
point). (2) stay away from edge.



4.3 Rein control: stability without a set-point
The Daisyworld phenomenon is a form of homeostasis since it involves stabilising some essential 
variable (e.g. room temperature or body temperature) at or around some appropriate value. There are 
basically two possible classes of mechanism for achieving this, illustrated in Figure 5. 
 The first — often wrongly assumed to be the only way — is the way central heating systems regulate 
room temperature T despite varying external temperature Te. We need the regulatory system to provide a 
correcting temperature offset Tc such that T = Te + Tc settles down to the desired Tsetpoint. The difference 
between between actual temperature T and the set-point desired temperature is measured; depending on 
whether this is positive or negative, the system acts so as to reverse this. 

                "                                                                 (eqn 7) 

 Here the function M( ) is a monotonically increasing function, in its simplest form a linear function 
M(x) = kx with k>0; here the size of k sets the timescale of the response to any perturbations. The 
system temperature would then move to T = Tsetpoint regardless of what value the external perturbation Te 
takes. More realistically, such a biological system will have limits beyond which the system fails to 
efficiently regulate. Nevertheless, the hallmark of this traditional class of feedback system is: within 
such limits there is regulation to a fixed set-point. 
 The second biological style of homeostasis is different and has no set-point; engineers typically are 
unaware of this . Clynes [11] was among the first to point out that biological control systems operate 5

with internal control variables that can only take non-negative values — and hence in order to control 
against both being ‘too hot’ and ‘too cold’ they must have two separate pathways for doing so. 
Sometimes called the principle of unidirectional rate sensitivity, Clynes also called this rein control, a 
metaphor that is easier to understand. Since the reins of a horse can only pull, not push, in order to steer 
a horse in either direction you need different reins on each side — and biological control systems do just 
this. 
 The rein control version is to use two separate control variables, pulling against each other so as to 
reach an equilibrium; a classic biological example would be antagonistic pairs of muscles. We illustrate 
here with an example rein control system for staying away from both edges of the road (Figure 5.2) to 
reach equilibrium somewhere in between. Let x represent the position on the road relative to the centre 
line at x=0; positive x is on the right of the road. There is an external perturbing force, say the wind W, 
tending to push a vehicle (or horse) to one side or the other. Our rein control consists of one or two 
correcting reins, CL and CR (Figure 6). We use the same naming convention as horses’ reins, with right 
rein CR being the one responding to being too far to the left (negative x); hence CR is only zero or 
positive,  CL is only zero or negative. 
The effect  on x of these perturbations and correcting forces may be summarised as: 

dTc

dt
= M(Tsetpoint − T )

 A search of IEEE publications for ‘rein control’, via IEEE Xplore Digital Library, finds just one mention, 5

namely a paper by the present author. Google Scholar offers 57 citations for Clynes’ main paper on this 
[11], none of them from a (non-biological) engineering context.



"                                                               (eqn 8) 

with an equilibrium at       "  . 
Different positive values for "  in the various differential equations will set different timescales for each. 
It would be important to account for this if fully analysing the dynamics, but for our present purposes of 
equilibrium analysis we may simplify by assuming all " . 
The right rein CR, as illustrated in Figure 6, obeys: 

"      ; if  "                                    (eqn 9a) 

        "                            ; if  " .                                  (eqn 9b) 
The left rein CL, as shown, behaves similarly: 

1
τ

d x
dt

= (W + CL + CR) − x

x = W + CL + CR
τ

τ = 1

dCR

dt
= max(0, − 1 − x) − CR x > − 2

= (−2 − x) x ≤ − 2

Figure 6. The heavy black line illustrates one possible example of a Right Rein correctional 
force CR. The equilibrium value of CR is: 0, for  x > -1 (“free rein”); 1 - x, for -2 ≤ x ≤ -1 
(“soft rein” indicated by spring); and ‘as large as is needed’, for x < -2 (“hard rein” 
indicated by rope over-riding spring). CR will be restrained from going to infinity by the 
circular causation of x being dependent on C, as well as C dependent on x: see equations in 
main text. Heavy grey line illustrates a similar possible Left Rein CL. The inset plot shows 
final x-values for a rein control system using such reins CL, CR. to correct against different 
perturbations W; see main text.



"             ; if "                                         (eqn 10a) 

       "                                 ; if " .                                       (eqn 10b) 
We append Matlab code for simulating these equations (eqn 8, eqn 9a/b, eqn 10a/b) numerically . The 6

resulting plot (inset in Figure 6) shows that x is maintained within the ‘hard boundaries’ [-2,2], 
regardless of W values. But there is no set-point, the final value of x is dependent on W. This example is 
just one from a large family of possible ‘reins’ with any combination of “hard” or “soft” or “free”. 
Conventional negative feedback control to a set-point can be seen as a specific restricted member of this 
family where both CL and CR have a “hard rein” fixed to that one set-point. 

4.4 Why call this homeostasis?
  
What, then, justifies calling this a form of homeostasis, when the resulting equilibrium value of x will 
vary according to the perturbing external force W? Because as W varies across a range of values, 
equilibrium x varies across a reduced range, less than in the absence of such reins.  This can be seen 
from simple mathematical considerations, and (as an aside for chemists or economists familiar with this) 
it would appear to be a very basic example of Le Châtelier’s Principle [27] in action. This Principle is 
usually stated as something like ‘the typical consequence of any perturbation to a system in equilibrium 
is a shift to a new equilibrium that partly counteracts the perturbation’. In many cases, such as 
Daisyworld, this ‘counteraction to a perturbation’ results in viability being possible over a wider range 
of external perturbations than would otherwise have been the case. Even if one does not stay at the 
centre line, one still stays on the road. 
 We note that Clynes’ rationale [11] for biological systems use of such strategies was the observation 
that internal bodily control signals used variables, such as chemical concentrations, or frequency/
intensity of spikes, that could vary in  positive values but not go below zero. Though artificial systems 
may not be so constrained, as an aside for those familiar with Artificial Neural Networks it may be of 
interest that this relates directly to the ReLU or Rectified Linear Unit activation function 
"  that has recently become popular.  This basic nonlinearity is surprisingly powerful. 

dCL

dt
= min(0,1 − x) − CL x < 2

= (2 − x) x ≥ 2

f (x) = max(0,x)

 Basic demo rein control Matlab code:6

delta=0.001; c=0; data=zeros(401,2);
for W=-2:0.01:2             % step through possible W values
    x=0; CR=0; CL=0; c=c+1;      % initialise
    for t=1:1000000         % settle to equilibrium
       if x> -2     CR=CR+delta*(max(0,-1-x)-CR); % soft or free rein
       else         CR=CR+delta*(-2-x); % hard rein
       end                         % Right Rein updated
       if x< 2      CL=CL+delta*(min(0,1-x)-CL); % soft or free rein
       else         CL=CL+delta*(2-x); % hard rein
       end                          % Left Rein updated
       x=x+delta*(W+CR+CL);           % x updated
    end % should be stable
    data(c,1)=W; data(c,2)=x;  % store data
end          plot(data(:,2),data(:,1));   % show final x-values for each W



5.0 Learning adaptive behaviour
Our next example of circular causation is the Homeostat (and by extension an autopoietic entity). 
Ashby’s [2] motivation was to design a machine that learnt through experience to maintain essential 
variables within bounds. How can a kitten  (or machine) learn to avoid the fire without prior knowledge 
of appropriate  input-output responses to heat and pain? 
 Ashby’s answer was to have a mechanism triggered by any crossing of the viability boundary that in 
essence caused some random variation of the input-output mapping (Figure 7a). Any inappropriate 
response would continue further variation, but if and when an appropriate input-output mapping was 
chanced upon, that formed a stable viable attractor to the circular dynamics. Conceptually this is similar 
to Darwinian random variation and selection, except within an individual rather than a population; 
herein lies a problem. 

5.1 When do Homeostats or autopoietic entities die?
 In this context viability is a binary dead-or-alive distinction, a viability boundary is a definite line. But 
if random variation is only triggered by crossing such a line, surely that is too late, the Homeostat is 
dead. So the viability signal that Ashby needs for the desired ‘ultrastability’ is inherently paradoxical. 
 I believe Ashby made a tactical error, he fell into the same pre-Copernican trap. Viability is both a 
global binary property of an organism, here the Homeostat, and a label for a local signal that triggers 
variation. To identify these global and local senses as the same would be a category error. Here the local 
sense needs to be analogue not binary (e.g. anything correlated with life-expectancy associated with 
current essential variables), with that probabilistically pulling the trigger for variational change. Even if 
both ‘viabilities’ were step-functions, they could not be the same step-function. 

Figure 7: (a) Schematic of Homeostat, 2nd feedback path triggers S if essential 
variables outside limits. (b) Related schema for autopoiesis, (c)  Models a, b are 
part of my world.



 This same issue of viability boundary is inherited directly in autopoietic theories [37], see Figure 7b, 
and Di Paolo [13] makes this explicit. Conservation or breakdown of organisation in an autopoietic 
system is a binary step-function, so how, Di Paolo asks, can that provide a gradient that confers 
significance of the danger for the organism (e.g. kitten)? The claim appears to be that some such 
gradient (Di Paolo develops a concept of adaptivity to provide it) is needed for a ‘pointer’ towards the 
danger lurking across the viability boundary. But it is a category error to identify direction in essential-
variables space with direction in the room with the fire; as with drive and viability in the earlier 
examples, this is a mis-identification of local with global meanings of a term. There should be some 
correlation between the two, but necessarily there cannot be identity between them. 
 One obvious class of candidate local signal would be any scalar entity that at least crudely negatively 
correlated with life-expectancy. For a kitten approaching a fire, then heat and (when getting too close) 
associated pain has just that crude negative correlation. With kittens, we assume that some such crude 
correlation has been promoted through Darwinian natural selection. But this is not the only explanation 
for such correlations — even natural rock arches subject to erosion (that clearly do not have origins in 
Darwinian evolution) tend to react to local rock falls (crudely negatively correlated with arch life-
expectancy) by rearrangement of forces in a manner (Le Châtelier’s Principle again, see Section 4.4) that 
promotes their survival. How? — through ‘Normal Settlement’. 

6.0 Circular causation and Normal Settlement
This paper has attempted to show why circularly causal systems are often so baffling. The type of 
explanatory strategy proposed is based on what I like to dignify as Harvey’s Universal Principles of 
Normal Settlement (NS) — the pompous title no doubt failing to conceal that these are just restatements 
of the blindingly obvious: 

(NS1) Any complex system will spend more time in some parts of its phase space than others; the more 
visited including attractors of all sorts, stable and (over extended periods) metastable states. 

(NS2) If you find the system in one of the common regions, you should be less surprised than when you 
find it in a less common region! 

 If you agree that a defining factor (or, as I would claim, the defining factor) for an explanation is that 
it should reduce the degree of surprise in the observer by underwriting (implicit or explicit) provisional 
predictions, then it follows from NS principles that identifying the more common regions of phase space 
is a step in the right direction. Sometimes this step is bigger than others; if the system can be shown to 
have a single point attractor (and sufficient time to reach it) this is a stronger result than where there are 
multiple attractors with little evidence to distinguish between them. 
 Explanations presented on this basis are frequently by some standards incomplete. For example they 
may fail to address the origins of a phenomenon, even that as simple as the stone arch example above. 
But nevertheless they can be predictive, and it is clear how they can be modified and improved. 
whenever a new phenomenon surprises. Incidentally, this style of explanation lies at the root of 
Darwinian Natural Selection, a different NS that is a specialisation of the more universal NS principles 
presented here. Natural Selection = Normal Settlement + Heredity. 



6.1 What about us?
Copernicus removed our firm foundation on earth at the centre of the universe. Special relativity 
eliminated the fixed aether and required new frameworks for physics. Life and cognition are much more 
complex than physics, and still await their Copernican, relativistic revolutions. Even the simplest proto-
agent can confuse us with its unfamiliar circular causation, its lack of a settled foundation on which to 
build analysis. 
 It is suggested here that such confusion arises often through mistaking the map for the territory, 
careless identifying of local and global concepts as the same. GOFAI and even connectionism is full of 
such pitfalls [17], through attributing cognitive agent-level functions to component parts. Sometimes this 
is useful conscious metaphor. Too often it is taken literally, people fall into the trap; so-called internal 
representations in the brain would be a classic example. 
 Autopoiesis takes circular causation most seriously. But even here there is yet further circularity often 
unrecognised. Physics explains and redefines the ‘stuff’ of our world, relates tables to atoms. But models 
of life and cognition are themselves ‘stuff’ in the world that we live in, we ourselves are inside what we 
seek to understand (Figure 7c). 
 Models of biological or cognitive systems, as used in biology or Artificial Life, are typically 
conceived from an assumed  ‘God’s-eye’ viewpoint outside the system of study. We need to carefully 
distinguish between what is perceptually available from our privileged external observer viewpoint and 
what is perceptually available to the organisms or agents of study. A satirical novel (and early Alife 
speculation) that highlights this issue is Flatland [1,21]. 
 This describes a plane 2D world in which  people are simple geometrical polygons or lines, and their 
world and interactions with it follow the consequent 2D constraints. Whereas we, from our 3D 
perspective, can imagine a Sphere passing through the plane, to its inhabitants this (or its intersection 
with their world) would appear as a dot out of nowhere, expanding into a circle of maximum diameter, 
that then dwindles and disappears again. In turn, these 2D inhabitants are aware of further constraints 
that hold for a 1D ‘Lineland’ or even a 0D ‘Pointland’. Visualising lesser dimensions is relatively easy, 
but for them visualising their position within higher dimensions is too much of a challenge. 
 This novel, though now dated, nevertheless highlights a core issue when we try to understand other 
worlds and our own world. If we choose to assume (whether wisely or not) that ultimately the agents in 
that world and the objects they interact with are basically made of the same ‘stuff’, then consequences 
follow. For agents in that world, objects arise (or are perceived, or enacted) out of stuff-stuff interactions 
— and this cannot be the same as stuff. So as a matter of logic, what is ‘matter’ to an agent in that world 
cannot be the same as any ‘stuff’ that both agents and objects are built from. Failure to make this 
distinction is the same kind of category error as the confusions between local and global  meanings of a 
term highlighted in earlier sections of this paper. 
 This is circularity taken to the limit, but we need to face up to the fact that cognition is not just a 
phenomenon that inescapably involves circular causation — it is a circle that includes us ourselves 
within it (Figure 7c). The ‘stuff’ in our models must be different from the ‘stuff’ of our models. 



6.2 Comparisons with other types of explanation
Conventionally the background section of a paper, citing other relevant work, appears at the beginning. 
By citing existing work in the field, we present the foundation on which new results can be built, in the 
tradition of linear causal explanations. For this paper it seems more appropriate to place it here at the 
end, for two reasons. Firstly, there is surprisingly little previous work on circular causation to cite; we 
have already mentioned that Cybernetics [41] and autopoiesis, enaction [37, 38, 39], whilst discussing 
circular causation, do not focus on the particular confusions and misunderstandings we address here. 
Secondly and more importantly, it is only after developing the analysis above that we can compare and 
contrast with existing ideas that look related — but on inspection may turn out to be somewhat different. 
 The view of circular causality presented here clearly overlaps with discussions on dynamical systems 
approaches to cognition (e.g. [4,36]), and with the approach associated with earlier work in Evolutionary 
Robotics (ER) (e,g. [5,23]). The importance of attractors in such analysis was sometimes explicit [23]. 
Ashby [2] was an important early influence. It is commonplace within ER to view the task of the 
roboticist as that of shaping the behaviour space of robots so as to have the desired attractors. 
 Some would relate the view presented here to notions of ‘emergence’. I reject that label, since it has 
been so widely used in such vague undefined terms as to be unhelpful. Where attempts have been made 
to define emergent explanations clearly [3], they have been negative definitions: emergence has been 
defined in terms of filling a gap in the observers’ expectations — this corresponds to my understanding 
of explanations as a response to surprise — but then there is rather little specified as just how this gap is 
being filled. 
 The view presented here should be seen as incompatible with some attempts [10] to subscribe to a 
dynamical systems or enactive approach to cognition that nevertheless retains cognitivist and 
representationalist explanations. This confuses representations as explananda (crucial features of our 
human cognition that need explaining) with representations as explanans (used as part of an 
explanation). It is an example of a basic category mistake confusing brains with minds or persons — 
while the view presented here is trying to make such distinctions very clear. The cognitivist carelessly 
elides the global sense of ‘representations’, as used by people in everyday life, with a local sense as used 
metaphorically by a homunculus in the brain [17]. 
 There is an ongoing debate in the philosophy of science literature [25,30] about the difference between 
(i) ‘mechanistic’ explanations in biology and (ii) explanations that use ‘dynamical and mathematical 
models’. On first reading, there could be loose parallels here with what I have been calling explanations 
via (a) ’linear causation’ and (b) ’circular causation’. But Silberstein and Chemero [32] see ‘localization 
and decomposition’ of the component parts of explanations as a prime distinguishing factor between (i) 
(that has ‘localization and decomposition’) and (ii) (that is not characterised thus). The arguments 
presented here distinguishing (a) linear from (b) circular explanations do not appeal to this factor. 
 There is an interesting connection between the ideas of circular causation presented here and repeated 
attempts (e.g. [12,28]) to use notions of ‘information’ as some crucial ingredient that explains why or 
how living organisms apparently cheat the 2nd law of thermodynamics. Schrödinger [30] brought ideas 
of information into biology, specifically genetics, and the tools of information theory have been 
invaluable. But technical usefulness has been too often mixed with analytical carelessness, with category 
errors. It looks to me that these ideas rely on Shannon information, and as Shannon [31] makes clear, his 
theory would have been better named communication theory than information theory. Shannon 



information is specifically a relational concept, relative to a sender and receiver communicating in the 
presence of noise. This places it squarely within the type of context in which circular causal explanations 
are appropriate, and principles of Normal Settlement are crucial. It also means one needs to distinguish 
carefully between local (information relative to component parts of a system conceived as metaphorical 
homunculi) and global (including information from an external ‘God’s-eye’ perspective) senses of 
information — and this is where too many fail to do this and fall into exactly the same trap as the 
cognitivist’s misuse of representations discussed above. In summary, these mistakes are symptoms of the 
proponents of information in this context failing to understand how explanations based on circular 
causation work. 

7.0 Conclusions
Of course circles do not have conclusions, but papers do, and we should summarise the main points to 
stress. 
 We define circular causation as what we appeal to in causal explanations of phenomena that rely on 
multiple contemporaneous interactions between component parts. Whereas linear explanations are built 
up incrementally, with each stage in principle fully explained and settled before the next stage is added,  
in contrast circularly causal explanations require the full circle complete before they work. 
 When we refer to causality (circular or linear), we here really refer to the type of explanation (circular 
or linear) that we use. The role of an explanation is taken as allowing predictions and reducing surprise. 
‘Circular reasoning’ typically refers to a logical fallacy, and this may in part explain why the concept of 
circular causation is often treated with suspicion. But mainly people are just unfamiliar with the idea, 
remarkably little is written about it. 
 Circularly causal explanations typically appeal to principles of ‘Normal Settlement’. We identify 
regions of phase space of a system that are more likely (often overwhelmingly so) to be visited than the 
average. So often we are dealing with dynamical systems, and their attractors and metastable regions. 
We typically explain why if a system is in a specific state or in a specific attractor then it is likely to stay 
like that. Typically we may not be offering any explanation for why the system arrived in that state in the 
first place. Linear explanations are usually needed for origins. 
 Circularly causal phenomena provoke lots of confusion in people unfamiliar with them. Examples 
such as DDWFTTW and Daisyworld have many disbelievers, with many proofs offered that the 
phenomena cannot be real. Though convincing to some, these ‘proofs’ are flawed. 
 One signature error that often accompanies this confusion is a misidentification of terms used locally 
to describe some component part of the system, with similar terms used globally to describe the global 
behaviour of the system. Examples given above include the concept of drive in DDWFTTW, of viability 
(and synonyms) in Daisyworld [18], of direction in Di Paolo’s analysis of autopoiesis [13]. In 
neuroscience such confusion is common, and Bennett and Hacker [7] refer to this as the mereological 
fallacy. I prefer to call it a straightforward category error, that circular causation seems particularly 
prone to. The cognitivist confusion between representations that people use in their life and 
‘representations in the brain’ is a notorious example, and I have suggested above that information is 
likewise misinterpreted by some. 
 Biology and cognition — and thus necessarily Artificial Life — are domains that are permeated 
throughout by multiple overlapping feedback circuits, both within organisms and further through their 



coupling with the environment. It is incumbent on us to recognise the underlying principles needed for 
explanations,  to be aware that our intuitions (too often based on linear assumptions) may be wrong, and 
to look out for the typical errors identified here. Ultimately, if we want to understand human cognition, 
we must be prepared for the consequences of being within the cognitive circle ourselves, not just outside 
observers.  
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