
Binomics: Where Metagenomics meets the Binary World

Inman Harvey1,2, Nicholas Tomko1,2

1CCNR, University of Sussex, Brighton, U.K.
2Evolutionary and Adaptive Systems Group, University of Sussex

inmanh@gmail.com, nick.tomko@gmail.com

Abstract
Artificial Life and Evolutionary Computation studies have until
now failed to model the symbiotic evaluation methods and the
extensive amounts of horizontal gene transfer that are starting
to be recognized in recent Metagenomic approaches to
understanding microbial populations. Examples can be seen, in
Learning Classifier Systems, and the SANE algorithm, of
symbiotic evaluations; the Microbial Genetic Algorithm (GA)
introduced horizontal gene transfer. Here for the first time these
two are brought together in the Binomic GA, which is shown to
perform well in a series of trials. It is proposed that Binomics,
defined as computational algorithms inspired by Metagenomic
studies, forms a potentially fruitful field of study waiting to be
investigated.

Introduction
For many years our conventional understanding of Darwinian
evolution has been dominated by the idea of species of
individuals, where those individuals favoured by selection
become parents and pass on their genes to their offspring.
Although selection takes place at the individual level, this
vertical transmission of genetic material leads to an
identifiable entity at the species level that has the capacity to
adapt over time. Our models of artificial evolution, such as
Genetic Algorithms (GAs), have typically followed this
picture.
 But in the last decade or so some biologists have started to
realize that a significant part of evolution on this planet – in
particular bacterial evolution – has important mismatches with
this picture. There can be a significant amount of horizontal
gene transmission between different individuals. As a result,
much of their functionality can be passed on from their
neighbours rather than inherited from parents. This makes the
concept of a species in such circumstances rather looser than
previously thought. Further, the fitness of a population of
diverse bacteria floating in the sea may depend significantly
on their local collective symbiotic functionality, rather than
simply on the individual fitness of each.
 Studies of the collective genetic properties of such a diverse
population have come to be known as Metagenomics.
Research into these natural processes has been driven by
recent major advances in gene sequencing techniques.
Analysis of Metagenomic results now needs new tools from
complex systems theory, and already some people have
started applying ideas from Artificial Life (AL) and
Evolutionary Computation (EC). What has been

conspicuously missing so far has been a movement of ideas in
the other direction. This paper is primarily a position paper
calling for new developments in AL and EC, as applied to
synthetic problems, to be inspired by these new discoveries in
the natural world. Drawing on biologists’ use of the ‘-omics’
suffix to refer to the collective properties of a totality, we
propose Binomics as a new sub-field where ideas from
Metagenomics are applied to applications in the binary
computational world.
 We start with a brief review of Metagenomics, and then a
survey of those main techniques within AL that do already
distil some relevant ideas. We focus on symbiotic evaluation,
where individuals are evaluated collectively; specifically we
look at Learning Classifier Systems (LCS) and the SANE
algorithm for artificial neuro-evolution. Then we consider
horizontal gene transfer, looking at the Microbial GA. We
note that to date nobody seems to have combined symbiotic
evaluations with horizontal gene transfer.
 So we do just this with a proposal for a Binomic Genetic
Algorithm. Although this is primarily a position paper, we can
demonstrate its performance in a series of trials and compare
with other evolutionary techniques. These are preliminary
studies, but gratifyingly we can report that in these trials the
Binomic GA outperformed the competitors by at least an
order of magnitude. We suggest that this is a fruitful new area
for further study, and discuss the types of applications where
the particular properties of a Binomic GA could be beneficial.

Metagenomics
As a very recent field, most of the reporting on Metagenomics
comes in specialised technical research papers. Useful
overviews for a more general audience include Handelsman
(2004), a report by the Committee on Metagenomics (2007),
and Eisen (2007).
 Previously our understanding of microbes has been based
on studying rather few samples. In order to perform
reproducible scientific experiments, well-defined species have
been used, often with great care taken to culture them in the
lab in isolation to ensure their purity. It is typically assumed
that the test-tube is full of a single species that is genetically
well-defined. It has been belatedly realized that such
assumptions may not hold true in the real world.
 In microbial communities there may often be large
functional differences between close relatives; further,
horizontal gene transmission means that many functions

(chemical cycles) typically performed by one species may be
also performed by very different species. Microbes such as
bacteria do not undergo sexual reproduction, but reproduce by
binary fission. But they have a further method for exchanging
genetic material, bacterial conjugation. Chunks of DNA,
plasmids, can be transferred from one bacterium to the next
when they are in direct contact with each other. Whereas the
genomes of different humans vary by around 0.1%, different
members of what may conventionally be termed a microbial
species (or phylotype) can differ by up to 30%. It now makes
conceptual sense – and technical developments make it
possible – to perform shotgun sequencing of a whole
bucketful of microbes taken from the Sargasso Sea (Venter et
al., 2004) and consider the metagenomic sequence of the
whole community, together with the functions that such a
community collectively performs. Shotgun analysis involves
breaking up the DNA randomly into small segments that are
individually sequenced; then using computational methods, by
seeking overlaps in these fragments, they are built up again
into a complete sequence.
 There are 10 times as many microbial cells in a human
body than there are human cells; the human metagenome
contains perhaps a hundred times more genes than the human
genome (Qin et al. 2010). Many such bacteria are essential for
our human well-being, and in turn they rely on us to provide
them with an appropriate environment.

Comparisons: Metagenomics and AL, EC

Horizontal gene transfer rarely features in EC, though we give
one example below with the Microbial GA. We can analyse
the real world of bacteria floating in the sea in terms of two
separate fitness criteria: internal (individual) and external
(symbiotic). Firstly, each individual organism (given a
sustaining environment) has to have the appropriately
functioning internal mechanisms to individually survive.
Secondly and collectively, their interactions -- the inputs and
outputs of all such organisms -- must have an appropriate fit
with their neighbours, so that they can collectively survive. In
artificial evolution, we can choose to take the internal fitness
criteria for granted and focus our attention solely on the
external criteria, of fit to the environment. If we want to
follow the Metagenomic metaphor, we shall be evolving
individual entities whose value (as assessed by a fitness
function) will depend on how they cooperate to tackle some
task. Penn and Harvey (2004) demonstrated how ecosystem-
level evolution can take place without genetic change in the
component species, but here we want to focus on ecosystem-
level evolution driven by genetic change.
 We now discuss two areas of EC where relevant work has
been done in the next sections on LCS and SANE.

Learning Classifier Systems

Learning Classifier Systems (LCS) were devised by John
Holland (Holland 1976, Holland and Reitman, 1978) as a
means of using a GA to do just this; for an introduction see
Bull (2004). The classifiers are condition-action rules,
typically expressed as a string of symbols, where the first part
represents a template that expresses the conditions under

which this classifier could match a possible input string; and
the second part represents the output string of the classifier
when the condition is met. Inputs to a classifier may come
from the external task (e.g. they could come from sensors if
this is a robot control task, or from a visual array if the task is
pattern classifying), or come from other classifiers; outputs
from a classifier could be to the external solution (e.g. strings
interpreted as robot motor actions) or to other classifiers.
Internal message-boards can be used for communication
between the classifiers.
 As Bull (2004) comments:

It is important to note that the role of the GA in LCS
is to create a cooperative set of rules which together
solve the task. That is, unlike a traditional
optimisation scenario, the search is not for a single
fittest rule but a number of different types of rule
which together give appropriate behaviour. The rule-
base of an LCS has been described as an evolving
ecology of rules - “each individual rule evolves in the
context of the external environment and the other
rules in the classifier system.” [Forrest & Miller,
1991].

This raises a major issue in deciding how to assign a fitness to
each rule, when this can only be evaluated in the context of a
collective ecology. Two main approaches have been
developed for LCS, named for the places where they were
first proposed.

Pittsburgh LCS. In this approach each individual in the
evolving population is a complete set of rules or classifiers.
The rules play a role more similar to that of genes in an
organism than being themselves independent organisms. In
this way the problem of assigning value to each rule is
avoided. The GA reproduces, with recombination and
mutation, from the fitter rule sets.

Michigan LCS. In this approach the individuals in the
population are the individual rules or classifiers themselves.
During evolution, any of the individual rules can be
operational, and this needs some arbitration mechanism to
decide between them if some are matching in their input
conditions but potentially conflicting in their outputs. Further
complications arise from deciding how to allocate fitness to
each rule that is actually operational, bearing in mind that only
the collective can be evaluated. In some cases there may be a
temporal element, in that the consequences of one specific
condition-action rule may not be immediately apparent, but
only become evident due to later knock-on consequences.
 Many different methods have been proposed for tackling
these issues, including auctions with specificity-based
arbitration mechanisms to allow default hierarchies to form,
and bucket-brigade algorithms for the temporal credit-
assignment problem. This has resulted in many different
flavours of Michigan LCS.

Implicit Niching in LCS
In a typical evolutionary algorithm such as a GA, we can
expect selection to drive the population in the direction of
genetic convergence, where it consists almost entirely of

copies, or near-copies, of the single fittest individual. But in
the context of an LCS, where fitness will likely depend on the
co-existence of several different individuals performing sub-
functions of the whole task, such loss of diversity is
undesirable. There is a need to find and maintain a diverse and
cooperative set of classifiers. Some form of niching in the
population is desirable. One approach to achieving this is
through an island model, where distributed populations are
separated into different demes.
 Another approach is through fitness sharing (Goldberg and
Richardson 1987), which requires some distance metric or
similarity measure (either genotypic or phenotypic) between
any two individuals. By using suitable methods to adjust the
fitnesses of any individual according to how many other
similar individuals there are nearby in this metric space, there
is a tendency for the population to spread out over multiple
peaks or niches in the fitness landscape; thus diversity is
maintained. It can be shown that LCS models where fitness is
shared amongst cooperating individuals can produce implicit
niching (Horn et al. 1994), and this will be discussed further
with the Binomic GA.

Comparisons: LCS and Metagenomics

We can relate the condition-action classifiers to the bacteria in
the sea. The evaluation of the symbiotic functionality of
groups of these does indeed reflect, in the context of artificial
evolution, some aspects of what we observe in real world
Metagenomics. The Michigan style of LCS does, at the
expense of often complex auction and bucket-brigade
schemes, manage the evaluation of individual ‘organisms’
(classifiers) that can only function effectively as part of a set.
The evolutionary aspect is limited to the vertical genetic
transfer between generations that is traditional with GAs.

Symbiotic Evaluations: SANE

There is a different perspective on evaluating different
individuals on the basis of their group performance, taken by
Moriarty and Miikkulainen (1996, 1999) in their proposal of
the SANE algorithm. SANE stands for Symbiotic, Adaptive
Neuro-Evolution, and this is one approach to evolving
Artificial Neural Networks (ANNs). The motivation is
described thus (Moriarty and Miikkulainen, 1999):

SANE incorporates the idea of diversity into neuro-
evolution. SANE evolves a population of neurons,
where the fitness of each neuron is determined by
how well it cooperates with other neurons in the
population. To evolve a network capable of
performing a task, the neurons must optimize
different aspects of the network and form a
mutualistic symbiotic relationship. Neurons will
evolve into several specializations that search
different areas of the solution space.

In an example implementation, they show a simple ANN with
2 layers of connection weights, from Input to Hidden neurons
and from Hidden neurons to Outputs. They treat each Hidden
neuron, together with its incoming and outgoing connections,

as a member of the evolving population. Figure 1 shows how
a complete network could be formed from e.g. 3 such Hidden
neurons selected at random from the population. The network
as a whole is evaluated on some required task, and the
network’s score is added to the fitness of each Hidden neuron
that it contains. Thereafter, the selection, replication,
crossover and mutation of members of the population is
carried out by conventional GA methods.

Moriarty and Miikkulainen (1999) report that this
implementation of SANE works well on such simple ANNs.
They also comment that it is feasible to extend this approach
to different neuron encodings, and to diverse network
architectures including recurrency.

Comparisons between SANE and Metagenomics
Much as we did with the condition-action classifiers of LCS,
we can relate the Hidden neurons (with incoming and
outgoing connections) to the bacteria in the sea. Once again,
these are only evaluated in the context of a group, which is
why it has been called symbiotic (artificial) evolution. Implicit
niching is again important. We can characterize this approach
in much the same way as LCS, in that there are similarities in
this symbiotic evaluation to some aspects of what we observe
in real world Metagenomics; the evolutionary aspect is still
restricted to the vertical gene transfer of conventional GAs.

Horizontal Gene Transfer: Microbial GA
Significant features of evolution that were under-recognised
before Metagenomic studies included the symbiotic nature of
functionality of groups of organisms, and the prevalence of
horizontal gene transmission. In Genetic Algorithms, vertical
genetic transmission has been very much the norm. An
exception has been the Microbial GA (Harvey 2001, 2010 In
Press) that we review here in a reprise of relevant sections of
Harvey (2010). This is the result of stripping away as much as
possible from a traditional GA, whilst maintaining the bare
essentials of a population with Heredity, Variation and
Selection. The Microbial GA uses Tournament Selection
within a Steady State GA, hence we introduce these concepts
first.

Figure 1. Each Hidden Layer neuron, with its associated
incoming and outgoing connections (e.g. the highlighted central
one with its links), is a member of the population. Here 3 such
neurons combine to make a complete feedforward ANN.

Steady State GAs
Traditionally GAs were first presented in generational form.
This roughly corresponds to some natural species that has just
one breeding season, say once a year, and after breeding the
parents die out without a second chance. There are many
natural species that do not have such constraints, with birth
and death events happening asynchronously across the
population. Hence the Steady State GA, which in its simplest
form has as its basic event the replacement of just one
individual from P by a single new one. One reason for using
Steady State in a minimalist GA is that it allows for a very
simple implementation of selection.

Tournament Selection
There are many problems with the traditional GA method of
fitness-proportionate selection that are avoided by using some
form of rank-based selection. In this, once all the members of
the population have been evaluated, each fitness is rescaled on
the basis of their relative ranking. A common choice made is
to allocate (at least in principle) 2.0 reproductive units to the
fittest, 1.0 units to the median, and 0.0 units to the least fit
member, similarly scaling pro rata for intermediate rankings;
this is linear rank selection. The probability of being a parent
is now proportional to these rank-derived numbers, rather than
to the original fitness scores.
 It is possible to achieve equivalent results to this through
tournament selection. If two members of the population are
chosen at random, their fitnesses compared (the
‘tournament’), and the Winner selected, then the probability
of the Winner being any specific member of the population
exactly matches the reproductive units allocated under linear
rank selection.

Who to Breed, Who to Die?
Selection can be implemented in two very different ways;
either is fine, as long as the end result is to bias the choice of
those who contribute to future generations in favour of the
fitter ones. The usual method in GAs is to focus the selection
on who is to become a parent, whilst making an unbiased,
unselective choice of who is to die. In the standard
Generational GA, every member of the preceding generation
is eliminated without any favouritism, so as to make way for
the fresh generation reproduced from selected parents. In a
Steady State GA, once a single new individual has been bred
from selected parents, some other individual has to be
removed so as to maintain a constant population size; this
individual is often chosen at random, again unbiased.
 Some people, however, will implement a method of biasing
the choice of who is removed towards the less fit. It should be
appreciated that this is a second form of selective pressure,
that will compound with the selective pressure for fit parents
and potentially make the combined selective pressure stronger
than is wise. In fact, one can generate the same degree of
selective pressure by biasing the culling choice towards the
less fit (whilst selecting parents at random) as one gets by the
conventional method of biasing the parental choice towards
the more fit (whilst culling at random).
 This leads to an unconventional, but effective, method of
implementing Tournament Selection. For each birth/death
cycle, generate one new offspring with random parentage;

with a standard sexual GA, this means picking both parents at
random, but it can similarly work with an asexual GA through
picking a single parent at random. A single individual must be
culled to be replaced by the new individual; by picking two at
random, and culling the Loser, or least fit of the two, we have
the requisite selection pressure.
 Going further, we can consider a yet more unconventional
method, that combines the random undirected parent-picking
with the directed selection of who is to be culled. Pick two
individuals at random to be parents, and generate a new
offspring from them; then use the same two individuals for the
tournament to select who is culled -- in other words the
weaker parent is replaced by the offspring.
 It turns out that this is easy to implement, and is effective.
This is the underlying intuition behind the Microbial GA.

Microbial Sex: Horizontal Gene Transmission
 We can reinterpret the Tournament described above, so as
to somewhat resemble bacterial conjugation. If the two
individuals picked at random to be parents are called A and B,
whilst the offspring is called C, then we have described what
happens as C replacing the weaker one of the parents, say B;
B disappears and is replaced by C. If C is the product of
sexual recombination between A and B, however, then ~50%
of C’s genetic material (give or take the odd mutation) is from
A, ~50% from B. So what has happened is indistinguishable
from B remaining in the population, but with ~50% of its
original genetic material replaced by material copied and
passed over from A. We can consider this as a rather
excessive case of horizontal gene transfer from A (the fitter)
to B (the weaker).

Figure 2. Sketch of the Microbial GA. The genotypes are
represented as a pool of strings. One cycle of the GA is
represented by the operations PICK (at random), COMPARE
(their fitnesses to determine Winner = W, Loser = L,
RECOMBINE (some proportion of Winner’s genetic material
‘infects’ the Loser) and MUTATE (the revised version of Loser.

The Microbial GA in schematic form

We now have the basis for a radical, minimalist revision of
the normal form of a GA, although functionally, in terms of
Heredity, Variation and Selection, it is performing just the
same job as the standard version. This is illustrated in Figure
2. Here the recombination is described in terms of ‘infecting’
the Loser with genetic material from the Winner, and we can
note that this rate of infection can take different values. In
bacterial conjugation it will typically be rather a low
percentage that is replaced or supplemented; if instead we
want to reproduce the typical effects of sexual reproduction,
as indicated in the previous section, this rate should be ~50%.
But in principle we may want, for different effects, to choose
any value between 0% and 100%.
 From a programming perspective, this cycle is very easy to
implement efficiently. For each such tournament cycle, the
Winner genotype can remain unchanged within the genotype-
array, and the Loser genotype can be modified (by ‘infection’
and mutation) in situ. We can note that this cycle gives a
version of ‘elitism’ for free: since the current fittest member of
the population will win any tournament that it participates in, it
will thus remain unchanged in the population -- until eventually
overtaken by some new individual even fitter. Further, it allows
us to implement an effective version of geographical clustering
for a trivial amount of extra code.

Microbial GA: with a Trivial Geography
For some purposes we may not want a panmictic population,
and instead constrain the operations of choosing tournament
participants, and hence exchange of genetic material, to be
within some local geographical distribution, perhaps within
demes. This allows for more genetic diversity to be
maintained across sub-populations. Spector and Klein (2005)
note that a one-dimensional geography, as in Figure 3 where
the population is considered to be on a (virtual) ring, can be as
effective as higher dimensional versions. If we consider our
array that contains the genotypes to be wrap-around, then we
can implement this version by, for each tournament cycle:
choose the first member A of the tournament at random from
the whole population; then select the next member B at
random from a deme, or sub-population that starts
immediately after A in the array-order. The deme size D, <=

P, is a parameter deciding just how local each tournament is.

Comparisons: Microbial GA and Metagenomics
The Microbial GA is a deliberately minimalist version of a
classical GA, but re-described in terms of horizontal gene
transmission. The parameter that determines what proportion
of genetic material is copied from Winner to Loser after each
tournament can be varied according to need. Setting this at
50% gives the closest analogy to a classical GA, but other
values may be of interest. Low ‘rates of infection’ may reflect
typical values of gene transfer seen in real world
Metagenomic studies; setting the rate to 100% would
correspond to replication by fission of the Winner, since the
Loser then becomes an identical copy. The addition of
geographical demes could be tailored to correspond to any
model of local interactions between, for example, bacteria
swimming in the sea.
 So this is a rare example of a GA with horizontal gene
transmission. If we want to replicate in an evolutionary
algorithm more of the essential properties that we see in
Metagenomic studies of bacteria in a sea, then what is still
missing is the aspect of assessing the fitness of each member
of the population in some symbiotic or communal fashion.

Binomic GA

We now introduce a Binomic GA, that combines the
symbiotic evaluation methodology of SANE with the
horizontal gene transfer of the Microbial GA. We start with an
outline of the general requirements, and then illustrate in the
context of evolving Artificial Neural Networks.

General Requirements
We shall be evolving the equivalent of a Sargasso Sea (Sea) of
individual organisms (Orgs). Orgs are not evaluated in
isolation, but only as part of a randomly chosen subset of the
Sea, a Bucket; such a Bucket may be drawn from a local area
(or Deme) or from the whole of the Sea (Figure 4). The fitness
function is used to evaluate a Bucket as a whole, and this
fitness is passed on equally to all members of that Bucket. It is
used to update the current fitness of each such Org, on the
basis of New_Org_fit = R*Bucket_fit + (1.0-R)*Old_Org_fit.
With an appropriate choice of R (0.0<R<1.0), the effective

Figure 3. The population is geographically distributed
on a ring, numbered from 0 to P-1. For a tournament,
A is picked at random from the whole population;
then B is picked at random from the deme (here of size
D=5) immediately following A.

Figure 4. A Bucketful of Orgs is evaluated as a whole, and the
resulting fitness assigned equally to all in that Bucket. Such a
Bucket can be drawn locally from an area of the Sea, or (with a
'well-mixed' Sea) drawn at random.

fitness of each Org has any variance smoothed over several
recent evaluations of different Buckets that it happens to have
featured in, whilst still tracking any general changes in its
environment.
 Figure 5 sketches the Binomic GA. As with a Microbial
GA, genetic changes in the Sea of Orgs are driven via a
Tournament involving selecting two Orgs at random,
comparing their currently stored fitnesses (as calculated via
Buckets), and designating one as W = Winner, the other as L =
Loser. W will remain unchanged, and L is the single Org that
gets changed as a result of this tournament.

 With some small probability V (for vertical gene
transmission) L is made an identical clone of W and also
inherits its fitness, that is then updated as below. Otherwise
(horizontal gene transmission) some proportion REC of the
genes of W are copied over so as to replace those genes in L.
 The tournament is completed by mutating L, and then
evaluating a number (1 or more) of random Buckets that each
contain L. In this way its inherited fitness is updated, along
with the fitnesses of those other Orgs that happened to share
those Buckets. The mutation will be a limited change in the
Org, either retaining its functionality whilst making a small
change in some parameter value (such as, in the case of
ANNs, a neural network weight) or making a small change in
functionality (such as, with ANNs, adding or deleting a
connection between nodes). This should become clearer with
a worked example that follows a brief explanation of niching.

Implicit Niching
To understand how implicit niching can occur in an algorithm
like this, let us illustrate with a cartoon example. Suppose a
population has 4 types of entity, bread, butter, jam and
diverse garbage. The only collection that has any value is a
bread+butter+jam sandwich. When fitnesses are allocated
through assessing the value of a Bucket of such individuals,
we can see that garbage would tend to decrease. But further,
consider what happens if one of the useful components, e.g.
jam, is in much shorter supply than the others. Then as a
consequence of some Buckets containing bread and butter but
no jam (and hence valueless), the relative fitness allocated to
those individuals will decrease; whereas the relative fitness of
jam (that will under these circumstances almost always
complete a sandwich) increases. In this way, all these different
component parts will tend towards similar proportional
representation in the population as a whole.

Altruism and cheating. Any procedure that uses some form
of group selection raises concerns about the possibility of
cheating. If fitness is allocated collectively, why should an
individual altruistically contribute to the common good, why
not benefit from others’ efforts whilst making no contribution
itself? This potential pitfall is avoided by the use of Buckets
allocating fitness within a temporary local subset of the whole
Sea, even if that subset is taken at random from the whole
well-mixed Sea. Restricting Buckets to (overlapping) local
regions within a geographically distributed Sea provides yet
more pressure to eliminate cheats and garbage.

Evolving ANNs with a Binomic GA
The SANE algorithm, discussed above, implemented the
equivalent of Orgs as subsets of a 3-layer ANN, each one
based on a single node in the middle (Hidden) layer with
connections and weights to genetically specified Input or
Output nodes. We can generalize this to ANNs of arbitrary
topology (including recurrent networks such as CTRNNs) by
first making each Org in principle equivalent to the whole
fully-connected ANN; but then setting the majority of
connections between nodes to zero, with a small subset of
genetically specified non-zero weights. We can maintain,
throughout evolution, the typical proportion of weights that
are non-zero by monitoring the add-link and delete-link
components of the mutation operator. Thus if, for instance, at
any mutation each non-zero weight was mutated to zero with
probability 9%, and each zero weight mutated to a non-zero
value with probability 1%, we can expect the proportion of
non-zero weights to stay around 10%. In this manner, each
Org is a only a small part of the whole possible ANN, and
may very well be functionless on its own through having no
connected path from inputs to outputs.
 When a Bucket is assembled, then this is treated as the full
ANN with any specific weight on a connection calculated as
the sum (an alternative method would be to use the mean) of
all values for that connection as specified on all the
constituent Orgs; a variant method with subtle differences
would be to exclude any zero values in the calculation of such
a mean.

Designing an Autoencoder ANN with a Binomic GA
As a working demonstration we chose to use the Binomic GA
to evolve ANNs in the form of an autoencoder, as described
below. This allows us to compare performance with other
versions of evolutionary algorithms that we had developed for
similar autoencoders in a separate study.
 Such autoencoders (Hinton and Salakhutdinov, 2006) are
ANNs with a feedforward succession of layers, potentially
fully connected between each successive layer. When
appropriate weights are found, it should reduce high-
dimensional input data through a lower-dimensional
Bottleneck layer and then recover the input pattern and
replicate it at the final output layer. Between Input and
Bottleneck there is a Hidden Layer, which should encode the
input pattern into the Bottleneck; thereafter a further Hidden
Layer should decode to the Output.
 We used autoencoders of the form N-h-M-h-N (see Figure
6), where N is number of Inputs/Outputs, M is the size of the
Bottleneck layer, and h is the size of each Hidden layer. In our

Figure 5. The Binomic GA.

implementation, all inputs were either 1 or -1. The Hidden
Layer transfer functions were hyperbolic tangents, whereas
the Bottleneck transfer function was linear. The output layer
transfer function was a discrete step function that mapped
positive/negative values into +1/-1 respectively. For
simplicity, no biases were used in any of the networks.
 We report here initial results on evolving with the Binomic
GA appropriate weights for such autoencoders of sizes 3-12-
2-12-3 and 4-24-4-24-3. Evaluations of such networks tested
every possible binary input pattern and assessed how many
output patterns matched. We compared performance of the
Binomic GA (BGA) with two versions of a straightforward
Microbial GA (recombination or ‘infection’ rate 0.5) where
each individual in the population was a complete autoencoder
with the appropriate architecture and genotypes specifying all
the weights. The Microbial GA versions differed in mutation
method: either a single weight was mutated, or all weights
were mutated together.

Parameters used
We report on initial BGA experiments using a population or
Sea of 50 Orgs, where each Org was a subset of the full
autoencoder with (initially) 50% of the weights set to zero, the
rest set to small random numbers with mean zero and standard
deviation 0.1. Each Bucket took 25 Orgs at random from the
Sea, and superimposed these on each other to form an
autoencoder with weights on each connection equal to the sum
of the respective weights on each Org. The fitness score of
this Bucket was allocated equally to all of its component Orgs,
their fitnesses updated with a smoothing factor R=0.1. No
geographical demes were used.
 Each tournament took two Orgs at random from the Sea,
and determined Winner and Loser depending on their current
fitnesses. The Loser was modified with a probability 0.5 of
Vertical Gene Transmission (becoming a copy of the Winner),
otherwise Horizontal Gene Transmission occurred (with 50%
of the Winner’s genes, or genetically specified weights,
overwriting the corresponding Loser’s genes). In order to
maintain the proportions of zero/non-zero weights at around
the initial 50/50 ratio, each non-zero weight in the Loser was

deleted (set to zero) with probability (Number of non-zero
weights)/(Number of weights) and conversely each zero
weight was made non-zero, set to an initial small random
value, with probability (Number of zero weights)/(Number of
weights). Then a single non-zero weight of the Loser was
mutated by adding a mutation, mean value 0.0, standard
deviation 0.5 (the same mutation method as used with the
single-weight-mutation Microbial GA).
 Each time a tournament was completed, and the Loser thus
modified, one Bucket containing the Loser was evaluated and
all the Orgs within that Bucket had their fitnesses adjusted.
This completes the Binomic GA cycle.

Experimental Results
For making comparisons, we take the significant factor to be
the number of autoencoders that need evaluating before a
perfect score is achieved. Runs were terminated if no success
was achieved by a cutoff point. Each experiment was repeated
10 times; as is common with GAs, there was variance between
runs; but there was a clear and striking pattern. The Binomic
GA clearly outperformed its competitors.
 We show in Figures 7 and 8 results for the 3-12-2-12-3
autoencoder, and the more difficult 4-24-3-24-4 autoencoder.
In both cases the Binomic GA reliably generated perfect
results, overall significantly faster than the competing
methods, and with less variance. These are initial tests to
demonstrate in principle that this method works, and it is
gratifying to see the striking performance.

Discussion
GAs have been based on a traditional view of Darwinian
evolution with individuals being evaluated for their fitness,
and vertical gene transmission down the generations.
Metagenomic studies have recently started to transform our

Figure 6. The task for this 4-24-3-24-3 autoencoder ANN is for
the binary Input Pattern (here 4 bits) to be replicated at the
final Output Layer, despite having passed through a narrower
Bottleneck (here 3 nodes) in the middle.

Figure 7. Number of evaluations needed to achieve a perfect
score using 3 different GA methods (10 runs each) on the 3-12-2-
12-3 autoencoder. The Microbial GA, with single weight
mutation, took mean 19,092, std. dev. 24,932, maximum 75,623
evaluations; with multiple mutations 8,921, 5,118, 21,868
respectively. The Binomic GA took mean 2,052, std. dev. 1,098,
maximum 4,105 evaluations, and is shown rescaled in the insert.

view of evolution in the world of bacteria, which were
amongst the earliest living entities and continue to play an
enormous, often under-appreciated, role. We have highlighted
the symbiotic nature of evaluations in communities of such
real organisms, as emulated in part in the artificial world with
LCS and SANE. We have shown how the horizontal gene
transmission of bacteria is emulated in the Microbial GA. But
as yet nobody appears to have combined these two aspects
into applications in AL or EC.
 This is primarily a position paper drawing attention to this
lack of AL/EC work inspired by Metagenomics, despite
significant traffic in the other direction. We propose a new
sub-field of Binomics bringing these two ideas together as
potentially fruitful in synthetic applications. The Binomic GA
has been demonstrated to work well in preliminary tests, and
this new approach opens up a whole range of new questions.
 We need to investigate what parameter settings work well
for what kind of problem. Does the autoencoder problem have
some special property that is relevant? We note a potential
relationship with neutral networks in the fitness landscape.
The effects of varying Bucket size and the impact of drawing
the Buckets locally within the Sea need to be studied. Taking
account of this Metagenomic inspiration, we may expect that
an appropriate application could be Evolutionary Computation
that needs to be carried out online, with the evolving
population actually carrying out its function in real time whilst
adapting to environmental changes. One such example could
be anti-virus (the computer variety of virus) software agents
where a diverse population protects a system in real time,
whilst reacting and adapting to new environmental threats.
 Our preliminary work with the BGA leads us to believe that
there is enormous scope for further developments. We hope
this paper will stimulate interest in what has been until now a
surprising gap in Artificial Life studies.

References
Bull, L., editor (2004). Applications of Learning Classifier Systems.

Springer.
Committee on Metagenomics (2007). The New Science of Metagenomics:

Revealing the Secrets of Our Microbial Planet. National Research
Council, National Academies Press, Washington, DC.
Downloadable from www.nap.edu/catalog/11902.html

Eisen, J. A. (2007). Environmental Shotgun Sequencing: Its Potential and
Challenges for Studying the Hidden World of Microbes. PLoS Biol.
5(3): e82. Doi: 10.1371/journal.pbio.0050082.

Farmer, J. D. (1990). A Rosetta stone for connectionism. In Forrest, S.,
editor, Emergent Computation: Proc. 9th Int. Conf. of the Center for
Nonlinear Studies on Self-organizing, Collective, and Cooperative
phenomena in Natural and Artificial Computing Networks, pages
153-187. Amsterdam: North-Holland.

Forrest, S. and Miller, J. (1991). Emergent Behavior in Classifier
Systems. Physica D 42: 213-217.

Goldberg, D. E., and Richardson, J. (1987). Genetic algorithms with
sharing for multimodal function optimization. In J. Grefenstette
(Ed.), Proceedings of the Second International Conference on
Genetic Algorithms, pages 41-49. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Handelsman, J. (2004). Metagenomics: Application of Genomics to
Uncultured Microorganisms. Microbiology and Molecular Biology
Reviews, 68(4): 669-685.

Harvey, I. (2001). Artificial Evolution: a Continuing SAGA. In Gomi, T.,
editor, Evolutionary Robotics: From Intelligent Robots to Artificial
Life. Springer-Verlag LNCS 2217.

Harvey, I. (2010 in Press). The Microbial Genetic Algorithm. In G.
Kampis et al., editors, Proc. of Tenth Eur. Conf. on Artificial Life.
Springer.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the
dimensionality of data with neural networks. Science, 313(5786):
504-577.

Holland, J. H. (1976). Adaptation. In Rosen, R. and Snell, S. N., editors,
Progress in Theoretical Biology, 4. Plenum.

Holland, J. H. and Reitman, J. H. (1978). Cognitive Systems Based in
Adaptive Algorithms. In Waterman, D. and Hayes-Roth, F., editors,
Pattern-directed Inference Systems. Academic Press.

Horn, J., Goldberg, D. E. and Deb, K. (1994). Implicit Niching in a
learning classifier system: Nature’s way. Evolutionary
Computation, 2(1): 37-66.

Moriarty, D. E. and Miikkulainen, R. (1996). Efficient Reinforcement
Learning through Symbiotic Evolution. Machine Learning, 22: 11-
33.

Moriarty, D. E. and Miikkulainen, R. (1999). Learning Sequential
Decision Tasks. In Honavar, V., Patel, M. and Balakrishnan, K.,
editors, Advances in the Evolutionary Synthesis of Neural Systems.
MIT Press, Cambridge, MA.

Penn, A. and Harvey, I., (2004). The Role of Non-Genetic Change in the
Heritability, Variation and Response to Selection of Artificially
Selected Ecosystems. In Pollack, J., Bedau, M., Husbands, P.,
Ikegami, T., and Watson, R.A., editors, Proceedings of the Ninth
International Conference on the Simulation and Synthesis of Living
Systems, ALIFE'9, pages 352-357. MIT Press, Cambridge MA.

Qin, J., Li, R. et al. (2010). A human gut microbial gene catalogue
established by metagenomic sequencing. Nature, 464: 59-67.

Smith, R. E. and Brown Cribbs, H. (1994). Is a Learning Classifier
System a Type of Neural Network? Evolutionary Computation,
2(1): 19-36.

Spector, L. and Klein, J., (2005). Trivial Geography in Genetic
Programming. In Yu, T., Riolo, R.L., Worzel, B., editors, Genetic
Programming Theory and Practice III, pp. 109-124. Boston, MA:
Kluwer Academic Publishers.

Venter, J. C., Remington, K. (and 21 further co-authors) (2004).
Environmental genome shotgun sequencing of the Sargasso Sea.
Science 304(5667): 66-74.

Figure 8. Results similarly shown for the 4-24-3-24-4
autoencoder. The Microbial GA, single weight mutation, took
mean 140,608, std. dev. 154,047, maximum (cutoff without
success) 400,000 evaluations; with multiple mutations 65,681,
105,408, 329,895 respectively. The Binomic GA took mean
12,681 evaluations, std. dev. 5,856, maximum 20,454.

