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Abstract 
Artificial Life and Evolutionary Computation studies have until 
now failed to model the symbiotic evaluation methods and the 
extensive amounts of horizontal gene transfer that are starting 
to be recognized in recent Metagenomic approaches to 
understanding microbial populations. Examples can be seen, in 
Learning Classifier Systems, and the SANE algorithm, of 
symbiotic evaluations; the Microbial Genetic Algorithm (GA) 
introduced horizontal gene transfer. Here for the first time these 
two are brought together in the Binomic GA, which is shown to 
perform well in a series of trials. It is proposed that Binomics, 
defined as computational algorithms inspired by Metagenomic 
studies, forms a potentially fruitful field of study waiting to be 
investigated.  

Introduction 
For many years our conventional understanding of Darwinian 
evolution has been dominated by the idea of species of 
individuals, where those individuals favoured by selection 
become parents and pass on their genes to their offspring. 
Although selection takes place at the individual level, this 
vertical transmission of genetic material leads to an 
identifiable entity at the species level that has the capacity to 
adapt over time. Our models of artificial evolution, such as 
Genetic Algorithms (GAs), have typically followed this 
picture. 
    But in the last decade or so some biologists have started to 
realize that a significant part of evolution on this planet – in 
particular bacterial evolution – has important mismatches with 
this picture. There can be a significant amount of horizontal 
gene transmission between different individuals. As a result, 
much of their functionality can be passed on from their 
neighbours rather than inherited from parents. This makes the 
concept of a species in such circumstances rather looser than 
previously thought. Further, the fitness of a population of 
diverse bacteria floating in the sea may depend significantly 
on their local collective symbiotic functionality, rather than 
simply on the individual fitness of each. 
    Studies of the collective genetic properties of such a diverse 
population have come to be known as Metagenomics. 
Research into these natural processes has been driven by 
recent major advances in gene sequencing techniques. 
Analysis of Metagenomic results now needs new tools from 
complex systems theory, and already some people have 
started applying ideas from Artificial Life (AL) and 
Evolutionary Computation (EC). What has been 

conspicuously missing so far has been a movement of ideas in 
the other direction. This paper is primarily a position paper 
calling for new developments in AL and EC, as applied to 
synthetic problems, to be inspired by these new discoveries in 
the natural world. Drawing on biologists’ use of the ‘-omics’ 
suffix to refer to the collective properties of a totality, we 
propose Binomics as a new sub-field where ideas from 
Metagenomics are applied to applications in the binary 
computational world. 
    We start with a brief review of Metagenomics, and then a 
survey of those main techniques within AL that do already 
distil some relevant ideas. We focus on symbiotic evaluation, 
where individuals are evaluated collectively; specifically we 
look at Learning Classifier Systems (LCS) and the SANE 
algorithm for artificial neuro-evolution. Then we consider 
horizontal gene transfer, looking at the Microbial GA. We 
note that to date nobody seems to have combined symbiotic 
evaluations with horizontal gene transfer.  
    So we do just this with a proposal for a Binomic Genetic 
Algorithm. Although this is primarily a position paper, we can 
demonstrate its performance in a series of trials and compare 
with other evolutionary techniques. These are preliminary 
studies, but gratifyingly we can report that in these trials the 
Binomic GA outperformed the competitors by at least an 
order of magnitude. We suggest that this is a fruitful new area 
for further study, and discuss the types of applications where 
the particular properties of a Binomic GA could be beneficial.   

Metagenomics 
As a very recent field, most of the reporting on Metagenomics 
comes in specialised technical research papers. Useful 
overviews for a more general audience include Handelsman 
(2004), a report by the Committee on Metagenomics (2007), 
and Eisen (2007).  
    Previously our understanding of microbes has been based 
on studying rather few samples. In order to perform 
reproducible scientific experiments, well-defined species have 
been used, often with great care taken to culture them in the 
lab in isolation to ensure their purity. It is typically assumed 
that the test-tube is full of a single species that is genetically 
well-defined. It has been belatedly realized that such 
assumptions may not hold true in the real world. 
    In microbial communities there may often be large 
functional differences between close relatives; further, 
horizontal gene transmission means that many functions 



(chemical cycles) typically performed by one species may be 
also performed by very different species. Microbes such as 
bacteria do not undergo sexual reproduction, but reproduce by 
binary fission. But they have a further method for exchanging 
genetic material, bacterial conjugation. Chunks of DNA, 
plasmids, can be transferred from one bacterium to the next 
when they are in direct contact with each other. Whereas the 
genomes of different humans vary by around 0.1%, different 
members of what may conventionally be termed a microbial 
species (or phylotype) can differ by up to 30%. It now makes 
conceptual sense – and technical developments make it 
possible – to perform shotgun sequencing of a whole 
bucketful of microbes taken from the Sargasso Sea (Venter et 
al., 2004) and consider the metagenomic sequence of the 
whole community, together with the functions that such a 
community collectively performs. Shotgun analysis involves 
breaking up the DNA randomly into small segments that are 
individually sequenced; then using computational methods, by 
seeking overlaps in these fragments, they are built up again 
into a complete sequence. 
    There are 10 times as many microbial cells in a human 
body than there are human cells; the human metagenome 
contains perhaps a hundred times more genes than the human 
genome (Qin et al. 2010). Many such bacteria are essential for 
our human well-being, and in turn they rely on us to provide 
them with an appropriate environment.  

Comparisons: Metagenomics and AL, EC 

Horizontal gene transfer rarely features in EC, though we give 
one example below with the Microbial GA. We can analyse 
the real world of bacteria floating in the sea in terms of two 
separate fitness criteria: internal (individual) and external 
(symbiotic). Firstly, each individual organism (given a 
sustaining environment) has to have the appropriately 
functioning internal mechanisms to individually survive. 
Secondly and collectively, their interactions -- the inputs and 
outputs of all such organisms -- must have an appropriate fit 
with their neighbours, so that they can collectively survive. In 
artificial evolution, we can choose to take the internal fitness 
criteria for granted and focus our attention solely on the 
external criteria, of fit to the environment. If we want to 
follow the Metagenomic metaphor, we shall be evolving 
individual entities whose value (as assessed by a fitness 
function) will depend on how they cooperate to tackle some 
task. Penn and Harvey (2004) demonstrated how ecosystem-
level evolution can take place without genetic change in the 
component species, but here we want to focus on ecosystem-
level evolution driven by genetic change. 
     We now discuss two areas of EC where relevant work has 
been done in the next sections on LCS and SANE. 

Learning Classifier Systems 

Learning Classifier Systems (LCS) were devised by John 
Holland (Holland 1976, Holland and Reitman, 1978) as a 
means of using a GA to do just this; for an introduction see 
Bull (2004). The classifiers are condition-action rules, 
typically expressed as a string of symbols, where the first part 
represents a template that expresses the conditions under 

which this classifier could match a possible input string; and 
the second part represents the output string of the classifier 
when the condition is met. Inputs to a classifier may come 
from the external task (e.g. they could come from sensors if 
this is a robot control task, or from a visual array if the task is 
pattern classifying), or come from other classifiers; outputs 
from a classifier could be to the external solution (e.g. strings 
interpreted as robot motor actions) or to other classifiers. 
Internal message-boards can be used for communication 
between the classifiers. 
    As Bull (2004) comments:  
 

It is important to note that the role of the GA in LCS 
is to create a cooperative set of rules which together 
solve the task. That is, unlike a traditional 
optimisation scenario, the search is not for a single 
fittest rule but a number of different types of rule 
which together give appropriate behaviour. The rule-
base of an LCS has been described as an evolving 
ecology of rules - “each individual rule evolves in the 
context of the external environment and the other 
rules in the classifier system.” [Forrest & Miller, 
1991]. 

 
This raises a major issue in deciding how to assign a fitness to 
each rule, when this can only be evaluated in the context of a 
collective ecology. Two main approaches have been 
developed for LCS, named for the places where they were 
first proposed.   

Pittsburgh LCS. In this approach each individual in the 
evolving population is a complete set of rules or classifiers. 
The rules play a role more similar to that of genes in an 
organism than being themselves independent organisms. In 
this way the problem of assigning value to each rule is 
avoided. The GA reproduces, with recombination and 
mutation, from the fitter rule sets. 
 
Michigan LCS. In this approach the individuals in the 
population are the individual rules or classifiers themselves. 
During evolution, any of the individual rules can be 
operational, and this needs some arbitration mechanism to 
decide between them if some are matching in their input 
conditions but potentially conflicting in their outputs. Further 
complications arise from deciding how to allocate fitness to 
each rule that is actually operational, bearing in mind that only 
the collective can be evaluated. In some cases there may be a 
temporal element, in that the consequences of one specific 
condition-action rule may not be immediately apparent, but 
only become evident due to later knock-on consequences.  
     Many different methods have been proposed for tackling 
these issues, including auctions with specificity-based 
arbitration mechanisms to allow default hierarchies to form, 
and bucket-brigade algorithms for the temporal credit-
assignment problem. This has resulted in many different 
flavours of Michigan LCS.  

Implicit Niching in LCS 
In a typical evolutionary algorithm such as a GA, we can 
expect selection to drive the population in the direction of 
genetic convergence, where it consists almost entirely of 



copies, or near-copies, of the single fittest individual. But in 
the context of an LCS, where fitness will likely depend on the 
co-existence of several different individuals performing sub-
functions of the whole task, such loss of diversity is 
undesirable. There is a need to find and maintain a diverse and 
cooperative set of classifiers. Some form of niching in the 
population is desirable. One approach to achieving this is 
through an island model, where distributed populations are 
separated into different demes.  
    Another approach is through fitness sharing (Goldberg and 
Richardson 1987), which requires some distance metric or 
similarity measure (either genotypic or phenotypic) between 
any two individuals. By using suitable methods to adjust the 
fitnesses of any individual according to how many other 
similar individuals there are nearby in this metric space, there 
is a tendency for the population to spread out over multiple 
peaks or niches in the fitness landscape; thus diversity is 
maintained. It can be shown that LCS models where fitness is 
shared amongst cooperating individuals can produce implicit 
niching (Horn et al. 1994), and this will be discussed further 
with the Binomic GA. 

Comparisons: LCS and Metagenomics 

We can relate the condition-action classifiers to the bacteria in 
the sea. The evaluation of the symbiotic functionality of 
groups of these does indeed reflect, in the context of artificial 
evolution, some aspects of what we observe in real world 
Metagenomics. The Michigan style of LCS does, at the 
expense of often complex auction and bucket-brigade 
schemes, manage the evaluation of individual ‘organisms’ 
(classifiers) that can only function effectively as part of a set. 
The evolutionary aspect is limited to the vertical genetic 
transfer between generations that is traditional with GAs.  

Symbiotic Evaluations: SANE 

There is a different perspective on evaluating different 
individuals on the basis of their group performance, taken by 
Moriarty and Miikkulainen (1996, 1999) in their proposal of 
the SANE algorithm. SANE stands for Symbiotic, Adaptive 
Neuro-Evolution, and this is one approach to evolving 
Artificial Neural Networks (ANNs).  The motivation is 
described thus (Moriarty and Miikkulainen, 1999):  
 

SANE incorporates the idea of diversity into neuro-
evolution. SANE evolves a population of neurons, 
where the fitness of each neuron is determined by 
how well it cooperates with other neurons in the 
population. To evolve a network capable of 
performing a task, the neurons must optimize 
different aspects of the network and form a 
mutualistic symbiotic relationship. Neurons will 
evolve into several specializations that search 
different areas of the solution space. 

 
In an example implementation, they show a simple ANN with 
2 layers of connection weights, from Input to Hidden neurons 
and from Hidden neurons to Outputs. They treat each Hidden 
neuron, together with its incoming and outgoing connections, 

as a member of the evolving population. Figure 1 shows how 
a complete network could be formed from e.g. 3 such Hidden 
neurons selected at random from the population. The network 
as a whole is evaluated on some required task, and the 
network’s score is added to the fitness of each Hidden neuron 
that it contains. Thereafter, the selection, replication, 
crossover and mutation of members of the population is 
carried out by conventional GA methods. 
 

 
 

 
 
 
 
 
 
 
 
    

Moriarty and Miikkulainen (1999) report that this 
implementation of SANE works well on such simple ANNs. 
They also comment that it is feasible to extend this approach 
to different neuron encodings, and to diverse network 
architectures including recurrency.  

Comparisons between SANE and Metagenomics 
Much as we did with the condition-action classifiers of LCS, 
we can relate the Hidden neurons (with incoming and 
outgoing connections) to the bacteria in the sea. Once again, 
these are only evaluated in the context of a group, which is 
why it has been called symbiotic (artificial) evolution. Implicit 
niching is again important. We can characterize this approach 
in much the same way as LCS, in that there are similarities in 
this symbiotic evaluation to some aspects of what we observe 
in real world Metagenomics; the evolutionary aspect is still 
restricted to the vertical gene transfer of conventional GAs. 

Horizontal Gene Transfer: Microbial GA 
Significant features of evolution that were under-recognised 
before Metagenomic studies included the symbiotic nature of 
functionality of groups of organisms, and the prevalence of 
horizontal gene transmission. In Genetic Algorithms, vertical 
genetic transmission has been very much the norm. An 
exception has been the Microbial GA (Harvey 2001, 2010 In 
Press) that we review here in a reprise of relevant sections of 
Harvey (2010). This is the result of stripping away as much as 
possible from a traditional GA, whilst maintaining the bare 
essentials of a population with Heredity, Variation and 
Selection. The Microbial GA uses Tournament Selection 
within a Steady State GA, hence we introduce these concepts 
first. 

Figure 1. Each Hidden Layer neuron, with its associated 
incoming and outgoing connections (e.g. the highlighted central 
one with its links), is a member of the population. Here 3 such 
neurons combine to make a complete feedforward ANN. 



Steady State GAs 
Traditionally GAs were first presented in generational form. 
This roughly corresponds to some natural species that has just 
one breeding season, say once a year, and after breeding the 
parents die out without a second chance. There are many 
natural species that do not have such constraints, with birth 
and death events happening asynchronously across the 
population. Hence the Steady State GA, which in its simplest 
form has as its basic event the replacement of just one 
individual from P by a single new one. One reason for using 
Steady State in a minimalist GA is that it allows for a very 
simple implementation of selection.  

Tournament Selection 
There are many problems with the traditional GA method of 
fitness-proportionate selection that are avoided by using some 
form of rank-based selection. In this, once all the members of 
the population have been evaluated, each fitness is rescaled on 
the basis of their relative ranking. A common choice made is 
to allocate (at least in principle) 2.0 reproductive units to the 
fittest, 1.0 units to the median, and 0.0 units to the least fit 
member, similarly scaling pro rata for intermediate rankings; 
this is linear rank selection. The probability of being a parent 
is now proportional to these rank-derived numbers, rather than 
to the original fitness scores.  
    It is possible to achieve equivalent results to this through 
tournament selection. If two members of the population are 
chosen at random, their fitnesses compared (the 
‘tournament’), and the Winner selected, then the probability 
of the Winner being any specific member of the population 
exactly matches the reproductive units allocated under linear 
rank selection.  

Who to Breed, Who to Die? 
Selection can be implemented in two very different ways; 
either is fine, as long as the end result is to bias the choice of 
those who contribute to future generations in favour of the 
fitter ones. The usual method in GAs is to focus the selection 
on who is to become a parent, whilst making an unbiased, 
unselective choice of who is to die. In the standard 
Generational GA, every member of the preceding generation 
is eliminated without any favouritism, so as to make way for 
the fresh generation reproduced from selected parents. In a 
Steady State GA, once a single new individual has been bred 
from selected parents, some other individual has to be 
removed so as to maintain a constant population size; this 
individual is often chosen at random, again unbiased.  
    Some people, however, will implement a method of biasing 
the choice of who is removed towards the less fit. It should be 
appreciated that this is a second form of selective pressure, 
that will compound with the selective pressure for fit parents 
and potentially make the combined selective pressure stronger 
than is wise. In fact, one can generate the same degree of 
selective pressure by biasing the culling choice towards the 
less fit (whilst selecting parents at random) as one gets by the 
conventional method of biasing the parental choice towards 
the more fit (whilst culling at random). 
    This leads to an unconventional, but effective, method of 
implementing Tournament Selection. For each birth/death 
cycle, generate one new offspring with random parentage; 

with a standard sexual GA, this means picking both parents at 
random, but it can similarly work with an asexual GA through 
picking a single parent at random. A single individual must be 
culled to be replaced by the new individual; by picking two at 
random, and culling the Loser, or least fit of the two, we have 
the requisite selection pressure.  
    Going further, we can consider a yet more unconventional 
method, that combines the random undirected parent-picking 
with the directed selection of who is to be culled. Pick two 
individuals at random to be parents, and generate a new 
offspring from them; then use the same two individuals for the 
tournament to select who is culled -- in other words the 
weaker parent is replaced by the offspring.  
    It turns out that this is easy to implement, and is effective. 
This is the underlying intuition behind the Microbial GA.  

Microbial Sex: Horizontal Gene Transmission 
    We can reinterpret the Tournament described above, so as 
to somewhat resemble bacterial conjugation. If the two 
individuals picked at random to be parents are called A and B, 
whilst the offspring is called C, then we have described what 
happens as C replacing the weaker one of the parents, say B; 
B disappears and is replaced by C. If C is the product of 
sexual recombination between A and B, however, then ~50% 
of C’s genetic material (give or take the odd mutation) is from 
A, ~50% from B.  So what has happened is indistinguishable 
from B remaining in the population, but with ~50% of its 
original genetic material replaced by material copied and 
passed over from A. We can consider this as a rather 
excessive case of horizontal gene transfer from A (the fitter) 
to B (the weaker).  
 

Figure 2. Sketch of the Microbial GA. The genotypes are 
represented as a pool of strings. One cycle of the GA is 
represented by the operations PICK (at random), COMPARE 
(their fitnesses to determine Winner = W, Loser = L, 
RECOMBINE (some proportion of Winner’s genetic material 
‘infects’ the Loser) and MUTATE (the revised version of Loser. 



The Microbial GA in schematic form 

We now have the basis for a radical, minimalist revision of 
the normal form of a GA, although functionally, in terms of 
Heredity, Variation and Selection, it is performing just the 
same job as the standard version. This is illustrated in Figure 
2. Here the recombination is described in terms of ‘infecting’ 
the Loser with genetic material from the Winner, and we can 
note that this rate of infection can take different values. In 
bacterial conjugation it will typically be rather a low 
percentage that is replaced or supplemented; if instead we 
want to reproduce the typical effects of sexual reproduction, 
as indicated in the previous section, this rate should be ~50%. 
But in principle we may want, for different effects, to choose 
any value between 0% and 100%.  
    From a programming perspective, this cycle is very easy to 
implement efficiently. For each such tournament cycle, the 
Winner genotype can remain unchanged within the genotype-
array, and the Loser genotype can be modified (by ‘infection’ 
and mutation) in situ. We can note that this cycle gives a 
version of ‘elitism’ for free: since the current fittest member of 
the population will win any tournament that it participates in, it 
will thus remain unchanged in the population -- until eventually 
overtaken by some new individual even fitter. Further, it allows 
us to implement an effective version of geographical clustering 
for a trivial amount of extra code. 

Microbial GA: with a Trivial Geography 
For some purposes we may not want a panmictic population, 
and instead constrain the operations of choosing tournament 
participants, and hence exchange of genetic material, to be 
within some local geographical distribution, perhaps within 
demes. This allows for more genetic diversity to be 
maintained across sub-populations. Spector and Klein (2005) 
note that a one-dimensional geography, as in Figure 3 where 
the population is considered to be on a (virtual) ring, can be as 
effective as higher dimensional versions. If we consider our 
array that contains the genotypes to be wrap-around, then we 
can implement this version by, for each tournament cycle: 
choose the first member A of the tournament at random from 
the whole population; then select the next member B at 
random from a deme, or sub-population that starts 
immediately after A in the array-order. The deme size D, <= 

P, is a parameter deciding just how local each tournament is.  

Comparisons: Microbial GA and Metagenomics 
The Microbial GA is a deliberately minimalist version of a 
classical GA, but re-described in terms of horizontal gene 
transmission. The parameter that determines what proportion 
of genetic material is copied from Winner to Loser after each 
tournament can be varied according to need. Setting this at 
50% gives the closest  analogy to a classical GA, but other 
values may be of interest. Low ‘rates of infection’ may reflect 
typical values of gene transfer seen in real world 
Metagenomic studies; setting the rate to 100% would 
correspond to replication by fission of the Winner, since the 
Loser then becomes an identical copy. The addition of 
geographical demes could be tailored to correspond to any 
model of local interactions between, for example, bacteria 
swimming in the sea. 
    So this is a rare example of a GA with horizontal gene 
transmission. If we want to replicate in an evolutionary 
algorithm more of the essential properties that we see in 
Metagenomic studies of bacteria in a sea, then what is still 
missing is the aspect of assessing the fitness of each member 
of the population in some symbiotic or communal fashion.  

Binomic GA 

We now introduce a Binomic GA, that combines the 
symbiotic evaluation methodology of SANE with the 
horizontal gene transfer of the Microbial GA. We start with an 
outline of the general requirements, and then illustrate in the 
context of evolving Artificial Neural Networks. 

General Requirements 
We shall be evolving the equivalent of a Sargasso Sea (Sea) of 
individual organisms (Orgs). Orgs are not evaluated in 
isolation, but only as part of a randomly chosen subset of the 
Sea, a Bucket; such a Bucket may be drawn from a local area 
(or Deme) or from the whole of the Sea (Figure 4). The fitness 
function is used to evaluate a Bucket as a whole, and this 
fitness is passed on equally to all members of that Bucket. It is 
used to update the current fitness of each such Org, on the 
basis of New_Org_fit = R*Bucket_fit + (1.0-R)*Old_Org_fit. 
With an appropriate choice of R (0.0<R<1.0), the effective 

Figure 3. The population is geographically distributed 
on a ring, numbered from 0 to P-1. For a tournament, 
A is picked at random from the whole population; 
then B is picked at random from the deme (here of size 
D=5) immediately following A. 

Figure 4. A Bucketful of Orgs is evaluated as a whole, and the 
resulting fitness assigned equally to all in that Bucket. Such a 
Bucket can be drawn locally from an area of the Sea, or (with a 
'well-mixed' Sea) drawn at random. 



fitness of each Org has any variance smoothed over several 
recent evaluations of different Buckets that it happens to have 
featured in, whilst still tracking any general changes in its 
environment. 
    Figure 5 sketches the Binomic GA. As with a Microbial 
GA, genetic changes in the Sea of Orgs are driven via a 
Tournament involving selecting two Orgs at random, 
comparing their currently stored fitnesses (as calculated via 
Buckets), and designating one as W = Winner, the other as L = 
Loser. W will remain unchanged, and L is the single Org that 
gets changed as a result of this tournament.  

 With some small probability V (for vertical gene 
transmission) L is made an identical clone of W and also 
inherits its fitness, that is then updated as below. Otherwise 
(horizontal gene transmission) some proportion REC of the 
genes of W are copied over so as to replace those genes in L.  
 The tournament is completed by mutating L, and then 
evaluating a number (1 or more) of random Buckets that each 
contain L. In this way its inherited fitness is updated, along 
with the fitnesses of those other Orgs that happened to share 
those Buckets. The mutation will be a limited change in the 
Org, either retaining its functionality whilst making a small 
change in some parameter value (such as, in the case of 
ANNs, a neural network weight) or making a small change in 
functionality (such as, with ANNs, adding or deleting a 
connection between nodes). This should become clearer with 
a worked example that follows a brief explanation of niching. 

Implicit Niching 
To understand how implicit niching can occur in an algorithm 
like this, let us illustrate with a cartoon example. Suppose a 
population has 4 types of entity, bread, butter, jam and 
diverse garbage. The only collection that has any value is a 
bread+butter+jam sandwich. When fitnesses are allocated 
through assessing the value of a Bucket of such individuals, 
we can see that garbage would tend to decrease. But further, 
consider what happens if one of the useful components, e.g. 
jam, is in much shorter supply than the others. Then as a 
consequence of some Buckets containing bread and butter but 
no jam (and hence valueless), the relative fitness allocated to 
those individuals will decrease; whereas the relative fitness of 
jam (that will under these circumstances almost always 
complete a sandwich) increases. In this way, all these different 
component parts will tend towards similar proportional 
representation in the population as a whole. 

Altruism and cheating. Any procedure that uses some form 
of group selection raises concerns about the possibility of 
cheating. If fitness is allocated collectively, why should an 
individual altruistically contribute to the common good, why 
not benefit from others’ efforts whilst making no contribution 
itself? This potential pitfall is avoided by the use of Buckets 
allocating fitness within a temporary local subset of the whole 
Sea, even if that subset is taken at random from the whole 
well-mixed Sea. Restricting Buckets to (overlapping) local 
regions within a geographically distributed Sea provides yet 
more pressure to eliminate cheats and garbage. 

Evolving ANNs with a Binomic GA 
The SANE algorithm, discussed above, implemented the 
equivalent of Orgs as subsets of a 3-layer ANN, each one 
based on a single node in the middle (Hidden) layer with 
connections and weights to genetically specified Input or 
Output nodes. We can generalize this to ANNs of arbitrary 
topology (including recurrent networks such as CTRNNs) by 
first making each Org in principle equivalent to the whole 
fully-connected ANN; but then setting the majority of  
connections between nodes to zero, with a small subset of 
genetically specified non-zero weights. We can maintain, 
throughout evolution, the typical proportion of weights that 
are non-zero by monitoring the add-link and delete-link 
components of the mutation operator. Thus if, for instance, at 
any mutation each non-zero weight was mutated to zero with 
probability 9%, and each zero weight mutated to a non-zero 
value with probability 1%, we can expect the proportion of 
non-zero weights to stay around 10%. In this manner, each 
Org is a only a small part of the whole possible ANN, and 
may very well be functionless on its own through having no 
connected path from inputs to outputs. 
 When a Bucket is assembled, then this is treated as the full 
ANN with any specific weight on a connection calculated as 
the sum (an alternative method would be to use the mean) of 
all values for that connection as specified on all the 
constituent Orgs; a variant method with subtle differences 
would be to exclude any zero values in the calculation of such 
a mean.  

Designing an Autoencoder ANN with a Binomic GA 
As a working demonstration we chose to use the Binomic GA 
to evolve ANNs in the form of an autoencoder, as described 
below. This allows us to compare performance with other 
versions of evolutionary algorithms that we had developed for 
similar autoencoders in a separate study. 
    Such autoencoders (Hinton and Salakhutdinov, 2006) are 
ANNs with a feedforward succession of layers, potentially 
fully connected between each successive layer. When 
appropriate weights are found, it should reduce high-
dimensional input data through a lower-dimensional 
Bottleneck layer and then recover the input pattern and 
replicate it at the final output layer. Between Input and 
Bottleneck there is a Hidden Layer, which should encode the 
input pattern into the Bottleneck; thereafter a further Hidden 
Layer should decode to the Output. 
    We used autoencoders of the form N-h-M-h-N (see Figure 
6), where N is number of Inputs/Outputs, M is the size of the 
Bottleneck layer, and h is the size of each Hidden layer. In our 

Figure 5. The Binomic GA. 



implementation, all inputs were either 1 or -1. The Hidden 
Layer transfer functions were hyperbolic tangents, whereas 
the Bottleneck transfer function was linear. The output layer 
transfer function was a discrete step function that mapped 
positive/negative values into +1/-1 respectively. For 
simplicity, no biases were used in any of the networks. 
    We report here initial results on evolving with the Binomic 
GA appropriate weights for such autoencoders of sizes 3-12-
2-12-3 and 4-24-4-24-3. Evaluations of such networks tested 
every possible binary input pattern and assessed how many 
output patterns matched. We compared performance of the 
Binomic GA (BGA) with two versions of a straightforward 
Microbial GA (recombination or ‘infection’ rate 0.5) where 
each individual in the population was a complete autoencoder 
with the appropriate architecture and genotypes specifying all 
the weights. The Microbial GA versions differed in mutation 
method: either a single weight was mutated, or all weights 
were mutated together.  

Parameters used 
We report on initial BGA experiments using a population or 
Sea of 50 Orgs, where each Org was a subset of the full 
autoencoder with (initially) 50% of the weights set to zero, the 
rest set to small random numbers with mean zero and standard 
deviation 0.1. Each Bucket took 25 Orgs at random from the 
Sea, and superimposed these on each other to form an 
autoencoder with weights on each connection equal to the sum 
of the respective weights on each Org. The fitness score of 
this Bucket was allocated equally to all of its component Orgs, 
their fitnesses updated with a smoothing factor R=0.1. No 
geographical demes were used. 
    Each tournament took two Orgs at random from the Sea, 
and determined Winner and Loser depending on their current 
fitnesses. The Loser was modified with a probability 0.5 of 
Vertical Gene Transmission (becoming a copy of the Winner), 
otherwise Horizontal Gene Transmission occurred (with 50% 
of the Winner’s genes, or genetically specified weights, 
overwriting the corresponding Loser’s genes). In order to 
maintain the proportions of zero/non-zero weights at around 
the initial 50/50 ratio, each non-zero weight in the Loser was 

deleted (set to zero) with probability (Number of non-zero 
weights)/(Number of weights) and conversely each zero 
weight was made non-zero, set to an initial small random 
value, with probability (Number of zero weights)/(Number of 
weights). Then a single non-zero weight of the Loser was 
mutated by adding a mutation, mean value 0.0, standard 
deviation 0.5 (the same mutation method as used with the 
single-weight-mutation Microbial GA). 
    Each time a tournament was completed, and the Loser thus 
modified, one Bucket containing the Loser was evaluated and 
all the Orgs within that Bucket had their fitnesses adjusted. 
This completes the Binomic GA cycle.   

Experimental Results 
For making comparisons, we take the significant factor to be 
the number of autoencoders that need evaluating before a 
perfect score is achieved. Runs were terminated if no success 
was achieved by a cutoff point. Each experiment was repeated 
10 times; as is common with GAs, there was variance between 
runs; but there was a clear and striking pattern. The Binomic 
GA clearly outperformed its competitors.  
    We show in Figures 7 and 8 results for the 3-12-2-12-3 
autoencoder, and the more difficult 4-24-3-24-4 autoencoder. 
In both cases the Binomic GA reliably generated perfect 
results, overall significantly faster than the competing 
methods, and with less variance. These are initial tests to 
demonstrate in principle that this method works, and it is 
gratifying to see the striking performance. 

Discussion 
GAs have been based on a traditional view of Darwinian 
evolution with individuals being evaluated for their fitness, 
and vertical gene transmission down the generations. 
Metagenomic studies have recently started to transform our 

Figure 6. The task for this 4-24-3-24-3 autoencoder ANN is for 
the binary Input Pattern (here 4 bits) to be replicated at the 
final Output Layer, despite having passed through a narrower 
Bottleneck (here 3 nodes) in the middle. 

Figure 7. Number of evaluations needed to achieve a perfect 
score using 3 different GA methods (10 runs each) on the 3-12-2-
12-3 autoencoder. The Microbial GA, with single weight 
mutation, took mean 19,092, std. dev. 24,932, maximum 75,623 
evaluations; with multiple mutations 8,921, 5,118, 21,868 
respectively. The Binomic GA took mean 2,052, std. dev. 1,098, 
maximum 4,105 evaluations, and is shown rescaled in the insert. 



view of evolution in the world of bacteria, which were 
amongst the earliest living entities and continue to play an 
enormous, often under-appreciated, role. We have highlighted 
the symbiotic nature of evaluations in communities of such 
real organisms, as emulated in part in the artificial world with 
LCS and SANE. We have shown how the horizontal gene 
transmission of bacteria is emulated in the Microbial GA. But 
as yet nobody appears to have combined these two aspects 
into applications in AL or EC. 
    This is primarily a position paper drawing attention to this 
lack of AL/EC work inspired by Metagenomics, despite 
significant traffic in the other direction. We propose a new 
sub-field of Binomics bringing these two ideas together as 
potentially fruitful in synthetic applications. The Binomic GA 
has been demonstrated to work well in preliminary tests, and 
this new approach opens up a whole range of new questions. 
    We need to investigate what parameter settings work well 
for what kind of problem. Does the autoencoder problem have 
some special property that is relevant? We note a potential 
relationship with neutral networks in the fitness landscape. 
The effects of varying Bucket size and the impact of drawing 
the Buckets locally within the Sea need to be studied. Taking 
account of this Metagenomic inspiration, we may expect that 
an appropriate application could be Evolutionary Computation 
that needs to be carried out online, with the evolving 
population actually carrying out its function in real time whilst 
adapting to environmental changes. One such example could 
be anti-virus (the computer variety of virus) software agents 
where a diverse population protects a system in real time, 
whilst reacting and adapting to new environmental threats.  
    Our preliminary work with the BGA leads us to believe that 
there is enormous scope for further developments. We hope 
this paper will stimulate interest in what has been until now a 
surprising gap in Artificial Life studies. 
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Figure 8. Results similarly shown for the 4-24-3-24-4 
autoencoder. The Microbial GA, single weight mutation, took 
mean 140,608, std. dev. 154,047, maximum (cutoff without 
success) 400,000 evaluations; with multiple mutations 65,681, 
105,408, 329,895 respectively. The Binomic GA took mean 
12,681 evaluations, std. dev. 5,856, maximum 20,454.  


