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Abstract

For 100 years it has been recognised that interactions between learning and evolution, such as the Baldwin
effect (Baldwin, 1896), can be subtle and often counter-intuitive. Recently a new effect has been discussed:
it 1s suggested that evolutionary progress towards one specific goal may be assisted by lifetime learning
on a different task which may or may not be ‘uncorrelated’ (Parisi, Nolfi, & Cecconi, 1992). Here the
phenomenon is reproduced in a simple scenario where the tasks are indeed uncorrelated — ‘Another New
Factor’ does indeed exist. The effect is then explained as being due to recovery from weight-perturbations,
caused by mutation, in a neural network. It is a special case of a recently discovered relearning effect
(Harvey & Stone, 1996), the spontaneous recovery of perturbed associations by learning uncorrelated

tasks.
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1 Introduction

In 1896 Baldwin proposed ‘A New Factor in Evolution’, and since then it has often been observed that
interactions between learning and evolution can be subtle and counter-intuitive. In recent papers (Parisi
et al., 1992; Nolfi, Elman, & Parisi, 1994) another phenomenon was reported, which I shall here call
Another New Factor (ANF; I shall be claiming that it is indeed different from the Baldwin effect). This
work used simulations of populations of artificial neural networks (NNs) that evolve (to get fitter at one
task) at the population level and may also learn (a different task) at the individual level. The ANF
result stated was that average fitness at the evolutionary task is improved when lifetime learning at the
different task is introduced.

The extent to which the lifetime task ‘differs’ from the evolutionary task is a matter of some signifi-
cance. In the later paper (Nolfi et al., 1994) the two tasks are such that it is open to question whether
they are completely unrelated; however in the earlier paper (Parisi et al., 1992) separate experiments are
also briefly reported (p. 211) where the second task relies on ‘randomly generated teaching inputs’. T
will distinguish between the ‘weak’ sense of ANF | in which the relevant tasks are merely different; and a
‘strong’ sense of ANF in which the relevant tasks can be uncorrelated as defined below in section 1.1.

In this paper the emphasis is on the strong sense of ANF: are there interactions between evolution
based on fitness at one task, and lifetime learning on an uncorrelated task, in particular such that the
latter improves performance on the former? (Nolfi et al., 1994) does not directly address this strong
ANF, though the earlier paper implicitly brings up the first reference to such a phenomenon of which 1
am aware. Such a phenomenon, if it exists, clearly differs from the Baldwin effect which concerns similar
tasks being tackled by both evolution and lifetime learning; and which relies on ‘nearness in genotype
space’ to a successful solution of the evolutionary task to be correlated with ‘decreased learning effort
required’ on the lifetime learning task for genetic assimilation to be favoured!.

T will first describe the simulations in which a weak form of ANF can be observed, drawing on (Nolfi
et al., 1994). T then perform a much simpler experiment, in which both evolution and lifetime learning
are reduced to movements in a multi-dimensional weight space towards target vectors, and demonstrate
similar phenomena in a strong form of ANF. In this simpler situation the parallels with relearning in
NNs with perturbed weights can be seen clearly. I then summarise a recently discovered relearning effect
(Harvey & Stone, 1996) which can be seen to provide an explanation for ANF (in the strong sense). I
conclude by summarising the differences between this explanation for ANF, and the explanations first
suggested.

The answer to the question posed in the title of this paper will be: ANF does indeed occur, even in
the strong form between uncorrelated tasks. But this is not a new factor unique to evolution, rather it

is an example of recovery of perturbed associations by learning unrelated tasks — which may extend to

IThroughout this paper when I refer to the Baldwin effect I am focusing on the genetic assimilation aspects, where under
certain conditions evolution will replace plastic mechanisms of lifetime learning with genetically specified mechanisms that

achieve (partly or wholly) similar competencies.



interactions between evolution and learning only under particular conditions.

1.1 Correlation

It was stated above that for the strong form of ANF the tasks may be uncorrelated; to avoid misinter-
pretation this should be defined?.

Given a set of real-valued input vectors X and a set of real-valued output vectors Y, I define a
behaviour B as a specific mapping from input vectors to output vectors: B : X — Y. I assume that the
behaviour B can be implemented in a neural network with a certain vector of weights W. Let B* be the
space of possible behaviours, and W™ the space of possible weights associated with them; for each weight
vector W in W*, there is a corresponding behaviour B in B*.

I define a task 7 as a reward or reinforcement function for behaviours, mapping them onto real-
values®, 7 : B* — . Since weight vectors correspond to behaviours, this is equivalent to defining 7 as a
function mapping weight vectors to real-values: 7 : W* — R. Let 7* be the space of all possible tasks.
Let P be a probability distribution defined on 7% x 7*. If there are distributions P1,P5 on 77, from
which tasks 77,75 are drawn, such that P({71,72)) = P1(71) x P2(72), then 73 and 75 are independent.
I refer to such tasks 77 and 7, as uncorrelated within this paper. It should be noted that this usage differs
somewhat from the statistical usage of ‘uncorrelated’ which strictly is a property of sequences of samples.

Because of the surprising and counter-intuitive nature of the ANF effect described here, and the
underlying effect originally described in (Harvey & Stone, 1996), it has sometimes been assumed that it
must require some constraints on the tasks or weight vectors. It cannot be emphasised too strongly that
this 1s not the case. For instance, if weight vectors W7 and Ws correspond to behaviours B; and B that
give optimal performance on, respectively, tasks 7; and 75 it is irrelevant whether W and W5 are or are
not orthogonal; the possibility that W, = —W5 need not be ruled out. Likewise even if behaviour Bs is
chosen such that Ba(2) = —Bj () for all input vectors » € X, this is still no bar to the effect operating.

2 Learning and Evolution in Neural Networks — Animat Model

In (Parisi et al., 1992; Nolfi et al., 1994) a population of animats (artificial organisms) is simulated; their
behaviour depends on an artificial neural network whose weights are genetically specified as real values
(see Figure 1). Each animat is separately tested, for a lifetime of 5000 actions, in a grid-like environment
of 10 x 10 cells within which ‘food’ is randomly scattered at intervals. Two of the NN’s inputs are

Sensory Inputs which encode the direction of and distance to the currently nearest food element, from

2] am deeply grateful to an anonymous referee for the precise form of this definition.

30One possible reinforcement function would be a penalty function using the non-negative reals which measures the
difference between the current behaviour B of a network and the desired behaviour B’. This difference can be based on a
distance metric between current outputs B(z) and desired or target outputs B’(x) for input vectors z € X. Such a penalty
function should be minimised, giving a zero value only for the desired behaviour. Other classes of reward/reinforcement

functions are possible.
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Figure 1: The architecture used in the simulations of (Nolfi et al., 1994). The weights on the lower

connections (bold lines) may be affected by both evolution and lifetime learning.

the animat’s current position. Two of the NN’s outputs define the animat’s next move: the analog values
are thresholded to the nearest binary value, giving two bits which decide between step-forward, turn-left,
turn-right, stay-still. These Motor Qutputs are also passed back to a further two inputs for the next time
step, giving the network an element of recurrency.

Ignoring for the time being the remaining two outputs, an Evolutionary Task can be set, defining a
fitness function, which uses the fixed (genetically specified) connection weights between the 4 inputs, the
7 hidden nodes, and the 2 motor outputs. Each animat is assessed on how much food it collects during its
lifetime, and on the basis of evaluating the whole population, size 100, an evolutionary algorithm (EA)
produces the next generation. The best 20 are each cloned 5 times, asexually, to create 100 offspring;
then the inherited weight matrices are each mutated by adding to each of 5 randomly selected weights a
different number randomly taken from the interval [-1.0,1.0].

This process was repeated for 100 generations, and performance on the Evolutionary Task was seen to
improve. However, a significant new factor was suggested when these non-learning trials were compared
with a similar set of trials which involved lifetime learning on a second, different, Lifetime Task.

In these learning trials, in addition to the previous Evolutionary Task, the second pair of outputs
(Figure 1) attempted to predict the animat’s sensory inputs at the following time step. At each of the
animat’s 5000 cycles, this prediction was compared with the actual sensory inputs then observed, and
the error in prediction used to adjust the connection weights between the 4 inputs, the 7 hidden nodes,
and the 2 Prediction outputs. Backpropagation was used to change the weights, of which those between
inputs and hidden nodes were simultaneously implicated in the performance on the separate Evolutionary
Task.

Hence this lifetime learning influenced the relative fitnesses of different members of the population,

which were assessed on performance at the Evolutionary Task. However, when the best were selected to



create the next generation, it was their original ‘at birth’ weights that were inherited, not the weights as
altered by learning; there was no inheritance of acquired characteristics. It was demonstrated that there
was better performance at the Evolutionary Task after this learning than in the non-learning case, under
the same evolutionary selection.

This might at first sight seem unsurprising; after all, presumably there is some correlation between
the tasks, within this environment, of finding food and of predicting sensory inputs of food. But success
at the first task depends on appropriate outputs encoded in 2 values thresholded to 2 bits and interpreted
as forward/left /right /stay, whereas for the second task appropriate outputs are 2 real values interpreted
as representing distance and angle; any correlation between these will be complex. Any surmise that the
effects observed could be obtained even if the two tasks were completely uncorrelated would be surprising

and counter-intuitive — yet this claim was indeed made in an earlier paper (Parisi et al., 1992) p.211:

We have run some simulations in which individual networks are taught by using randomly
generated teaching inputs on the two additional output units ..., and in this case too there
is a positive influence of learning on evolution, even if the improvement is less great than in
the case of prediction learning ...

It remains to be explained why learning a task such as predicting the consequences of

one’s own actions, which is correlated with the task for which organisms are selected, results

in a larger beneficial effect on evolution.

Here I do not pursue the latter question; however I do investigate the surprising claim that the effect
occurs between uncorrelated tasks, even though this claim was not repeated in later papers such as (Nolfi
et al., 1994). T shall now demonstrate a similar effect in a very simple simulation: T can use two tasks

which are clearly uncorrelated, yet the explanation relies on the particular way in which the EA is used.

3 The Simple Model

The EA used is as far as possible identical to that used in the Animat Model above, except that the
genotypes consist of vectors of 50 real numbers, which in the initial random population are each randomly
drawn from the interval [-1.0,1.0]. The Evolutionary Task £ and the Learning Task £ are defined in terms
of minimising the distance from a genotype to a fixed target vector, E and L respectively; each component
of the 50-dimensional target vectors is similarly drawn at random from [-1.0,1.0]*. The performance of
any individual at either task is given by the Euclidean distance |G — E| or |G — L| between the vector
G specified by its genotype, and the target vector.

When conducting trials, selection and cloning of the best 20 from 100, and mutation by adding
random perturbations drawn from [-1.0,1.0] to 5 randomly chosen weights in each individual genotype,

were as above. In any one trial the population was seen to move towards the target vector E over 100

4In these tasks input vectors are irrelevant. Since the target vectors are chosen at random, the tasks are uncorrelated in

the sense of Section 1.1.
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Figure 2: Results when mutation was applied only to 80 offspring, and not to the 20 elite parents.

generations. First a non-learning trial was performed, and then a learning trial using the identical starting
population and evolutionary target vector E. Learning was implemented using just a single application
of the delta rule during an individual genotype’s life: the genotype vector was moved once only towards
the target learning vector L by a proportion § = 0.1 of its initial distance from L: the new vector is
G’ = G+ 6(L — G). The fitness of the genotype was then assessed as |G’ — E|, its new distance from E;
but those selected to pass on genetic material passed on their ‘at birth’, pre-learning, genetically specified
values G. This method of assessing fitness allocates zero cost to the learning process itself, in contrast
to the usual models of the Baldwin effect.

To conform with the Animat Model practice, 10 sets of such non-learning and learning trials were
made, with fresh vectors E, L, and starting population each time. In the Animat Model reproduction
involves keeping the elite 20 individuals and generating 4 mutated copies of each; it was not clear from
(Nolfi et al., 1994) whether the elite 20 were kept unchanged, or were also themselves mutated, so both
methods were used in turn. In Figure 2 the results are shown using the first method, giving the average
and best fitness at the Evolutionary Task at each of the 100 generations. As with the Animat Model,
we have the ANF result that average performance of the learning trials is better than the non-learning
ones. Peak performance also is improved by learning, which was not demonstrated in the original Animat
Model (see Figure 4 of (Nolfi et al., 1994)).

In Figure 3 comparable results are shown for the case when all 100 are mutated; the end results are
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Figure 3: Results when mutation was applied to all members of the population each generation. See text

for explanation of bars A; and B;.

not as good, but the comparisons between learning and non-learning trials remain. On the right side of
this graph two sets of three bars are marked, using the same vertical axis as a measure of distance. A1l is
the average distance of the initial random starting population from the Evolutionary target E; A2 is the
average after this population has had the mutation operator applied to all members; A3 is the average
after a subsequent learning move towards L (in all cases this is averaged over 10 trials). B1, B2 and
B3 are the equivalent figures using the population after a run (with learning) of 100 generations. It can
be seen that in each case, even in the absence of any selection and reproduction within the population,
mutation increases the average distance from E, and changes due to learning (towards L) then decrease
considerably the average distance from E. Herein lies a clue leading to the explanation for ANF.

A further clue 1s given by the fact that the initial random population is broadly confined within
genotype space by the initial range of random values; and then the particularly strong truncation selection
method used provides an extremely strong convergence pressure, only balanced in this asexual EA by the
mutation rate. In the absence of mutation such selection would result in the initial best member taking
over the whole population in just 3 generations (from 1% to 5% to 25% to 100%). With mutation the
population consists of similar individuals with some values (weights in the NN case) perturbed around

those of the elite of the previous generation. To quote from (Nolfi et al., 1994), p. 22:

The offspring of a reproducing individual occupy initial positions in weight space that are
deviations (due to mutations) from the position occupied by their parent at birth (i.e., prior

to learning).



The effect of lifetime learning is to partially restore degraded performance of networks which have
had their weights perturbed (by mutation) away from trained (through evolution) values — a form of
relearning.

The Simple Model presented in this section has shown that strong ANF does exist, even when the
Evolutionary Task and Lifetime Learning Task are clearly uncorrelated (see Section 1.1) in that they are
based on different random vectors. However, for the explanation in terms of relearning we need the result

to be presented in the next section.

4 Spontaneous Recovery of Associations by Learning Unrelated

Tasks

A spontaneous recovery effect in connectionist nets was first noted in (Hinton & Sejnowski, 1986), and
analysed in (Hinton & Plaut, 1987). A NN was first trained on a set of associations, and then its
performance on this set was degraded by training on a new set. When retraining was then carried out on
a proportion of the original set of associations, performance also improved on the remainder of that set.

In (Harvey & Stone, 1996) a more general effect is demonstrated. A NN is first trained on a set of
associations, called task A; and then performance on this task is degraded by random perturbations of the
connection weights. Performance on A is then monitored whilst the NN is trained on a new uncorrelated
task C (in contrast to (Hinton & Plaut, 1987) where a subset of the original task is used). It will be
shown that, counter-intuitively, in most cases performance on the original task A initially improves.

The following is a simplistic analogy, which assumes that this effect carries over to human learning
of cognitive tasks. If you have a French examination tomorrow, but you have forgotten quite a lot of
French, then a short spell of learning some new task, such as unicycling, can be expected to improve your
performance in the French examination. Students of French should be warned not to take this fanciful
analogy too literally®.

I give an informal argument, drawn from (Harvey & Stone, 1996), to explain the underlying geomet-

rical reasons for this effect.

4.1 Geometric Analysis

A number of assumptions will be used here; later their validity will be evaluated.
Learning in connectionist models typically involves a succession of small changes to the connection

weights between units. This can be interpreted as the movement of a point W in weight space, the

5Tt relies on an assumption that French and unicycling make use of a common subset of neuronal connections. The
analogy also assumes that, from the set of all human capacities, ability to stay on a unicycle is uncorrelated (in the sense
of Section 1.1) with ability at English-French translation. The relearning effect does indeed happen with correlated tasks
(one might expect English-Spanish, even to a lesser extent English-Tagalog, to be correlated with English-French); but the

uncorrelated case is the focus of interest here.



Figure 4: In this 2-D representation of weight space, A represents weights appropriate for the first task, C for the
second task. The circle represents hypersphere H, points perturbed away from A by a distance r. Initial movement
from a point B on the circumference towards C has two possible consequences: trajectory B — C' s outside 'H,

whereas By — C intersects H. See text for significance of other symbols used.

dimensionality of which is the number of weights. For the present, we assume that training on a particular
task A moves W in a straight line towards a point A, where A represents the weights of a NN which
performs perfectly on task .4; we also assume that distance from A is monotonically related to decrease
in performance on task A.

Let A be the position of W after task A has been learned (see Figure 4). Assume that some ‘forgetting’
takes place, through random weight changes, which shifts W to a new point B. The point B lies on the
surface of H, a hypersphere of radius » = |A — B| centred on A.

We then initiate training on a task C which is unrelated to task .4; under our assumptions, training
moves W from B towards a point C', which is distance d = |4 — C| from A. If the line connecting B to
C' passes through the volume of H then the distance |WW — A initially decreases as W moves towards C'.
In such cases, training on task C initially causes improvement in performance on task A.

We assume that point A has been chosen from a bounded set of points &, which may have any
distribution; that H 1s centred on A; that B is chosen from a uniform distribution over the surface of H;
and that C'is chosen from & independently of the positions of A or B. What, then, i1s the probability that
line segment BC passes through H? That is, what is the probability that training on task C generates
spontaneous recovery on task A7

If C lies within H (i.e. if d < r) then recovery is guaranteed. For any point C' outside H there is a
probability p > 0.5 of recovery on task 4. Figure 4 demonstrates this for a two-dimensional space. The
point B may lie anywhere on the circumference of H. The line segment BC' only fails to pass through H
if B lies on the smaller arc PQ; where C'P and C'@Q are tangents to the circle, and hence cos(f) = r/d.
Thus p > 0.5, and p — 0.5 as d — co.

Consider the extension to a third dimension, while retaining the same values r, d and 8. The proba-

bility ¢ = (1 — p) that BC' fails to pass through the sphere H is equal to the proportion of the surface of
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Figure 5: In this 2-D representation of weight space, points A, C' and the larger circle are as in previous figure;
the relevant angle 8 is now defined within the smaller circle. Learning s assumed to move any points on the larger
circle directly towards C' a distance b times their original distance from C; eg. P mowves to R. Such points move
onto the smaller circle centred on E where AE = 6 x AC. D is on the intersection of these circles, and DF s
a perpendicular dropped from D onto AC. On the right are sketched 4 further cases: in (1) 8 = 7/2 and ¢ =
probability of failing to improve will be 0.5. In (2) 0.5 < ¢ < 1.0, in (3) and (4) ¢ = 1.0.

‘H which lies within a cone defined by PCQ with apex C'. This proportion is considerably smaller in 3-D
than it is in 2-D. In (Harvey & Stone, 1996) this is generalised to n-dimensions; and it is demonstrated
analytically what can be seen intuitively, namely that for any given § < 7/2, as n increases ¢ tends to
zero.

Hence for large n, it is almost certain that the line segment BC passes through the hypersphere H.
This implies that initially the point W moves from B closer to A. Hence performance improves, at least
temporarily, on task A.

Returning to the assumptions stated earlier, we can now examine their validity. First, an irregular
error surface ensures that training does not, in general, move W in a straight line (though in the Simple
Model above, using the delta rule, the straight line assumption is accurate). Second, perfect performance
on task C may, in general, be associated not with one point €', but with many points which are equivalent
in that they each provide a similar mapping from input to output. W may move towards the nearest
of many C's, which is therefore not chosen from & independently of A. This may alter the probability
that W passes through H. In the Simple Model above, where there is a single learning target vector, the
assumption of a single point is accurate. For discussion of further issues, and experimental demonstrations
of the phenomenon using backpropagation, see (Harvey & Stone, 1996). There it is made clear that this
relearning phenomenon is only likely to be significant when the distance between weight vectors A and
C' is not too large in relation to the perturbations in weight vectors caused, in the current instance, by
mutations. We can ensure that this condition holds where the weight vectors arise from any learning
process in a feedforward NN with sigmoidal activation functions; since individual units of the NN saturate

at finite values, weight vectors after training on different tasks can be expected to lie within a limited

10
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Figure 6: Graph showing probability of failing to improve performance at original task, against dimensionality of

weight space, for various values of 8. Both axes are logarithmically scaled.

(hyper-)volume of weight space. Since there is a bound on the distance A to C', we can make its ratio to
perturbation size as small as we like by increasing the latter®. This condition does not, however, imply

that their respective tasks are correlated — see Section 1.1.

4.2 Effects of distance moved through learning

The above discussion only applies to the first effects of an infinitesimal amount of learning on the new
task. If learning continued until the new task was fully learnt, and C had been reached in weight space,
then in general C is outside H and performance on task A has diminished (even if it had temporarily
improved initially). T now quantify the effects of differing amounts of learning.

In Figure 5 it is assumed that learning on C over a period is equivalent to a single application of
the delta rule which reduces error by a proportion 8§; hence points on the larger circle move onto the
smaller circle. Given that these circles represent the (hyper-)surfaces of hyperspheres centred on A and
E, the ratio of interest is the proportion of latter surface which lies outside the former, i.e. the proportion
subtended by angle #. This ratio gives the probability ¢ that after learning on the second task there has
failed to be improvement in performance on the first task. It is shown in (Harvey & Stone, 1996) that

this depends on the dimensionality n of the weight space, and is given by:

f0€ sin" "% (o) da
g=

o foﬂ sin?~2(«a) do

6This point was drawn to my attention by Jim Stone.

11
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Figure 7: The five lower lines are for values of 8 < «/2. Each line plots d/r (logarithmically scaled) against 8,
the amount of learning equivalent to a single application of the delta learning rule. For specific values of d/r and
b a value of 8 can be estimated by interpolation; together with the dimensionality of weight space n this can be
used with Figure 6 to estimate q the probability of failing to improve performance. Above are lines for § = ©/2,

corresponding to ¢ = 0.5 for all n, and 6 = & corresponding to ¢ = 1 for all n.

While a general analytical solution for all n cannot be found, in Figure 6 data points are plotted
for various values of n and 5 specific values of #: #/4,3%/8,7Tx/16,157/32,317/64. These values are
equivalent to ©(x) = (2° — 1)7/2°%! for  from 1 to 5.

From geometrical calculations shown on Figure 5, we have sin(n) = (1 — §)sin(0) and cos(n) =

§(d/r) + (1 — 8)cos(0). Using sin?(n) + cos?(n) = 1 this gives:

(1- 6)252'712(9) + 62(d)2 + 26(d)d(1 —é)cos(0) + (1 — 6)26052(9) =1

r r

28(2)(1 = 8)cos(8) = (1 - (1 - 6)2) — 6%(Ly?

r r

d d

2(=)(1 — 8)cos(0) = 2 — 6(1 4 (=)?)
r r

For any particular value of § we can plot d/r against §. In Figure 7 this is done for the same 5 values

of # as in Figure 6. Both these graphs are needed to calculate ¢ the probability of failing to improve

12
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Table 1: For different values of d/r and §, the appropriate value of § is estimated from Figure 7. Where § < ©/2,
this is estimated in terms of ©, which then allows for interpolation between the ©(1) values on Figure 6. Where
6 >= /2, or is there is no real 0, its value is listed explicitly. The approzimate probabilities q of failing to improve

performance are listed for two dimensionalities of weight space, n = 20 and n = 50.

performance on the first task as a consequence of learning é on the second task, with relevant parameters
being d/r and n. The lack of an analytical solution for arbitrary values of n means that in practice
interpolation must be used between the few specific values of n calculated.

There are two further values for 6 of particular interest, and lines for these values are also plotted
in Figure 7. When 6 = = /2 this gives the equation é = 2/(1 + (%)2), corresponding to ¢ = 0.5. When
¢ = m this gives & = 2/(1 + %), corresponding to ¢ = 1. These latter two results are independent of
dimensionality n.

When 6 = 0 this gives the probability of failing to improve infinitesimally as a result of an infinitesimal
amount of learning, the calculation originally given in (Harvey & Stone, 1996). This is here extended for
a delta learning rule for é > 0; caution should be used in carrying this over to other learning techniques
such as back propagation. The general picture emerges from Figure 7 and Table 1 that the ANF effect
is strongest for small values of d/r (when d/r < 0.5 then even with large amounts of learning such as
8§ = 0.5 it is still nearly certain) and at these values dimensionality n is of significance. For larger values
of d/r, for instance 5, then for 6 = 0.1 the effect is less than 50% and for & > 0.333 it has disappeared
completely. For d/r > 10 then it just needs § > 0.02 for the effect to be less than 50%; it should be
remembered, however, that for infinitesimal amounts of learning the effect persists out to arbitrary values
of d/r.

In typical circumstances for NNs where trained weight vectors can be expected to lie within a limited
space (see end of previous section) d will also be bounded. The ANF effect will be most prominent when r
is relatively large in comparison; in evolutionary cases r corresponds to perturbations through mutation,

and these were indeed relatively large in (Parisi et al., 1992; Nolfi et al., 1994).
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Figure 8: A sketch of Fvolutionary and Learning fitness landscapes for the Simple Model. The 50-dimensional
weight space is loosely represented by the horizontal axis. After a few generations the population after learning
(i.e. when it is evaluated) will be centred around E, implying that before learning moved it towards L it was further
to the left. Applications of learning rules such as the delta rule towards target vector L will move points that are

left of E (e.g. ©) further than those right of E (e.g. y).

5 Discussion

The link between this relearning effect and ANF as shown in the Animat Model was first pointed out in
(Harvey, 1996). Here the same ANF has been recreated in a much simpler model where the two tasks
are clearly uncorrelated, and it can be seen that this relearning effect is a sufficient explanation for the
improvement in performance on the Evolutionary Task. Each individual in the population has inherited
its weights from an elite member of the previous generation; these weights have then been perturbed by
mutation, but lifetime learning on an uncorrelated task improves performance on the Evolutionary Task.

A different explanation is offered in (Nolfi et al., 1994), where the notion of dynamic correlation

between fitness landscapes is introduced (p.22 and p.23):

...two surfaces are dynamically correlated if a weight matrix that moves towards higher
values on one surface tends also to move toward higher values on the other surface.
...evolution progressively selects for individuals that are located in regions of dynamic cor-

relation between the fitness surface and the learning surface.

In the Simple Model which reproduces strong ANF the fitness surfaces are extremely simple, and are
sketched in Figure 8. From the earlier graphs it can be seen that the expected distance of the random
vector L from E is, as with the similarly determined random initial population, around 5.5; and after a
few generations the average distance of members of the population from E is less than 3.0. Hence one
can assume that typically the population lies within the region of genotype space indicated in Figure 8,

loosely centred around E after learning since selection relies on evaluating them after they have learnt.
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Figure 9: Binary genotypes: a member G is shown which is perturbed from the target E in just 10% of
its loci. The second Learning target vector L typically differs from E in 50% of loci, as they are assumed
uncorrelated. When learning changes loci of G to maich L, an expected 50% of the time there is no
change, 45% of the time the maich of G with E is made worse, and only 5% of the time is it made better.

This implies that before learning the population was, in the figure, to the left of E. One would expect
more than 50%, but by no means all, of the population to be born in a region of ‘dynamic correlation’
between fitness surfaces.

In so far as the ‘dynamic correlation’ hypothesis refers to a single point representing the population
average and its position on the two fitness landscapes, it is no more than a restatement of the phenomenon
in different terms. If the hypothesis is intended to cover each individual member of the population, then
in general, as in the example given here, 1t is not correct. The ‘relearning’ explanation presented here as
an alternative provides a sufficient, and completely different, explanation.

It has been suggested” that the relearning effect may be related to James-Stein shrinkage (Efron &
Morris, 1977; James & Stein, 1961). That is, reducing the variance of the outputs of a NN reduces
the squared error at the expense of introducing a bias. It may be that training on the unrelated task L
incidentally induces shrinkage. Figure 8 illustrates this in one of the n dimensions of weight space; learning
adjustments that happen to take points towards E (e.g. ) tend to be larger than adjustments which
take points further from E (e.g. y). Hence when dealing with a large number of cases one can expect the
average distance of such points from L to decrease, at least initially; the effects of more-than-infinitesimal

learning movements were analysed in section 4.2.

7G. E. Hinton, personal communication.
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6 Restrictions on the Phenomenon

The ANF phenomenon exhibited in the Animat and Simple Models relies on both evolution and lifetime
learning acting on the same units, in this case weights of a NN or components of a vector. In this respect 1t
is similar to the Baldwin effect. Although the Baldwin effect has been demonstrated with an essentially
binary genotype (Hinton & Nowlan, 1987), for this effect real-valued components (or approximations
thereof) are essential.

To show that this effect would not work with a binary genotype, consider Figure 9. In this simple
example, relating to a binary genotype, a member G mutated from the Evolutionary Target genotype
E is assumed to have 90% of its loci correct, i.e. matching those of E. Typically an unrelated Learning
vector L differs from E in around 50% of its loci. Any learning method which tends to change loci of G
towards the corresponding alleles of L will affect its performance at task E in the proportions shown —
changes for the worse typically greatly outnumber changes for the better.

The effect has only been analysed here for an EA which has no recombination. However when
the population is genetically converged one would expect recombination to make little difference; this
expectation has been supported by adding recombination to the Simple Model and observing similar
results. The explanation relies on the population being in a local region of weight space, around E; in
which distance from E is monotonically related to performance. Hence the strong truncation selection
used in this EA, coupled with significant weight changes through mutation, provide ideal conditions for
quickly converging a population around the target. In the absence of comparable conditions there is no

reason to expect this ANF phenomenon.

7 Conclusion

Interactions between evolution and learning are tricky, and need to be analysed with care. The phe-
nomenon originally demonstrated in the Animats Model (Parisi et al., 1992; Nolfi et al., 1994) showed
that, under some circumstances, lifetime learning on a different task can aid progress through evolution
on the evolutionary task. Only in the earlier of these two papers was this claimed for two uncorrelated
tasks, the effect I have termed strong ANF. This claim has been verified here, and demonstrated in the
Simple Model, using target vectors E and L selected independently at random. The explanation comes
not from interactions between evolution and learning per se, but rather from a relearning effect on weights
perturbed by mutation. Hence the effect can only be expected under very restricted conditions where
evolutionary processes of mutation are mimicking the effects of weight perturbation around a learnt set
of weights.

The Baldwin effect requires the evolutionary and learning tasks to be similar for genetic assimilation
to take place. The strong ANF effect is based on two separate tasks. If one takes the special case
where these two tasks are indeed the same, then indeed d/r is at a minimum value of zero and the ANF

effect will be at its strongest — but it has been reduced to the trivial and uninteresting statement that
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Baldwin effect with ANF effect

genetic assimilation
Key factor Genetic assimilation | Improvement on uncorrelated task
Number of tasks One 1s sufficient Two necessary, E and L
Correlation Yes Works when uncorrelated
Improve at-birth performance || Yes No
Cost of learning Needed Unnecessary
Size of mutations Not crucial Size compared to d is very significant
Amount of learning Not crucial If too large effect typically disappears
Dimensionality Typically irrelevant The bigger n is, the stronger the effect
Specific to evolution Usually assumed so General, any weight-perturbations
Binary genotype OK? Yes No, needs real values

Table 2: A summary of some differences between the Baldwin effect (with genetic assimilation) and ANF. This

list is not meant to be exhaustive.

“improving performance on B also improves performance on A when A4 = B’. In a natural context one
expects learning to have some cost to the individual; if one artificially manipulates these costs to be zero
or less, this will have different consequences for the two effects. The Baldwin effect requires there to be
some positive cost of learning, such that individuals that need to learn less are thereby fitter, for genetic
assimilation to take place; the ANF effect does not need any cost to learning. For the Baldwin effect the
size of mutations, the rate of learning and the dimensionality of weight space are not of crucial significance
(as can be seen from consideration of the simulations in (Hinton & Nowlan, 1987)), whereas these have
critical relevance to the existence of, or extent of the ANF effect. These differences are summed up in
Table 2.

The effect T have termed ‘Another New Factor’ means that under the circumstances outlined here
lifetime learning on one task can indeed improve performance on another task which is the subject of
evolutionary selection pressure, even when the two tasks are uncorrelated. The effect is orthogonal to
the Baldwin effect. The restrictive conditions for this effect mean that under most circumstances it will

not occur in practice; nevertheless in (Parisi et al., 1992) the conditions were right.
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