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Abstract

For ��� years it has been recognised that interactions between learning and evolution� such as the Baldwin

e�ect �Baldwin� ����	� can be subtle and often counter
intuitive� Recently a new e�ect has been discussed�

it is suggested that evolutionary progress towards one speci
c goal may be assisted by lifetime learning

on a di�erent task which may or may not be �uncorrelated� �Parisi� Nol
� � Cecconi� ����	� Here the

phenomenon is reproduced in a simple scenario where the tasks are indeed uncorrelated � �Another New

Factor� does indeed exist� The e�ect is then explained as being due to recovery from weight
perturbations�

caused by mutation� in a neural network� It is a special case of a recently discovered relearning e�ect

�Harvey � Stone� ����	� the spontaneous recovery of perturbed associations by learning uncorrelated

tasks�

Accepted for publication in Evolutionary Computation� Special Issue on�

Evolution� Learning� and Instinct� ��� Years of the Baldwin E�ect
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� Introduction

In ���� Baldwin proposed �A New Factor in Evolution�� and since then it has often been observed that

interactions between learning and evolution can be subtle and counter
intuitive� In recent papers �Parisi

et al�� ����� Nol
� Elman� � Parisi� ����	 another phenomenon was reported� which I shall here call

Another New Factor �ANF� I shall be claiming that it is indeed di�erent from the Baldwin e�ect	� This

work used simulations of populations of arti
cial neural networks �NNs	 that evolve �to get 
tter at one

task	 at the population level and may also learn �a di�erent task	 at the individual level� The ANF

result stated was that average 
tness at the evolutionary task is improved when lifetime learning at the

di�erent task is introduced�

The extent to which the lifetime task �di�ers� from the evolutionary task is a matter of some signi



cance� In the later paper �Nol
 et al�� ����	 the two tasks are such that it is open to question whether

they are completely unrelated� however in the earlier paper �Parisi et al�� ����	 separate experiments are

also brie�y reported �p� ���	 where the second task relies on �randomly generated teaching inputs�� I

will distinguish between the �weak� sense of ANF� in which the relevant tasks are merely di�erent� and a

�strong� sense of ANF in which the relevant tasks can be uncorrelated as de
ned below in section ����

In this paper the emphasis is on the strong sense of ANF� are there interactions between evolution

based on 
tness at one task� and lifetime learning on an uncorrelated task� in particular such that the

latter improves performance on the former� �Nol
 et al�� ����	 does not directly address this strong

ANF� though the earlier paper implicitly brings up the 
rst reference to such a phenomenon of which I

am aware� Such a phenomenon� if it exists� clearly di�ers from the Baldwin e�ect which concerns similar

tasks being tackled by both evolution and lifetime learning� and which relies on �nearness in genotype

space� to a successful solution of the evolutionary task to be correlated with �decreased learning e�ort

required� on the lifetime learning task for genetic assimilation to be favoured��

I will 
rst describe the simulations in which a weak form of ANF can be observed� drawing on �Nol


et al�� ����	� I then perform a much simpler experiment� in which both evolution and lifetime learning

are reduced to movements in a multi
dimensional weight space towards target vectors� and demonstrate

similar phenomena in a strong form of ANF� In this simpler situation the parallels with relearning in

NNs with perturbed weights can be seen clearly� I then summarise a recently discovered relearning e�ect

�Harvey � Stone� ����	 which can be seen to provide an explanation for ANF �in the strong sense	� I

conclude by summarising the di�erences between this explanation for ANF� and the explanations 
rst

suggested�

The answer to the question posed in the title of this paper will be� ANF does indeed occur� even in

the strong form between uncorrelated tasks� But this is not a new factor unique to evolution� rather it

is an example of recovery of perturbed associations by learning unrelated tasks � which may extend to

�Throughout this paper when I refer to the Baldwin e�ect I am focusing on the genetic assimilation aspects� where under

certain conditions evolution will replace plastic mechanisms of lifetime learning with genetically speci�ed mechanisms that

achieve �partly or wholly� similar competencies�
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interactions between evolution and learning only under particular conditions�

��� Correlation

It was stated above that for the strong form of ANF the tasks may be uncorrelated� to avoid misinter


pretation this should be de
ned��

Given a set of real
valued input vectors X and a set of real
valued output vectors Y � I de
ne a

behaviour B as a speci
c mapping from input vectors to output vectors� B � X � Y � I assume that the

behaviour B can be implemented in a neural network with a certain vector of weights W � Let B� be the

space of possible behaviours� and W � the space of possible weights associated with them� for each weight

vector W in W �� there is a corresponding behaviour B in B��

I de
ne a task T as a reward or reinforcement function for behaviours� mapping them onto real


values�� T � B� � �� Since weight vectors correspond to behaviours� this is equivalent to de
ning T as a

function mapping weight vectors to real
values� T � W � � �� Let T � be the space of all possible tasks�

Let P be a probability distribution de
ned on T � � T �� If there are distributions P��P� on T �� from

which tasks T�� T� are drawn� such that P�hT�� T�i	 � P��T�	�P��T�	� then T� and T� are independent�

I refer to such tasks T� and T� as uncorrelated within this paper� It should be noted that this usage di�ers

somewhat from the statistical usage of �uncorrelated� which strictly is a property of sequences of samples�

Because of the surprising and counter
intuitive nature of the ANF e�ect described here� and the

underlying e�ect originally described in �Harvey � Stone� ����	� it has sometimes been assumed that it

must require some constraints on the tasks or weight vectors� It cannot be emphasised too strongly that

this is not the case� For instance� if weight vectors W� and W� correspond to behaviours B� and B� that

give optimal performance on� respectively� tasks T� and T� it is irrelevant whether W� and W� are or are

not orthogonal� the possibility that W� � �W� need not be ruled out� Likewise even if behaviour B� is

chosen such that B��x	 � �B��x	 for all input vectors x � X� this is still no bar to the e�ect operating�

� Learning and Evolution in Neural Networks � Animat Model

In �Parisi et al�� ����� Nol
 et al�� ����	 a population of animats �arti
cial organisms	 is simulated� their

behaviour depends on an arti
cial neural network whose weights are genetically speci
ed as real values

�see Figure �	� Each animat is separately tested� for a lifetime of ���� actions� in a grid
like environment

of �� � �� cells within which �food� is randomly scattered at intervals� Two of the NN�s inputs are

Sensory Inputs which encode the direction of and distance to the currently nearest food element� from

�I am deeply grateful to an anonymous referee for the precise form of this de�nition�
�One possible reinforcement function would be a penalty function using the non�negative reals which measures the

di�erence between the current behaviour B of a network and the desired behaviour B�� This di�erence can be based on a

distance metric between current outputs B�x� and desired or target outputs B��x� for input vectors x � X� Such a penalty

function should be minimised� giving a zero value only for the desired behaviour� Other classes of reward�reinforcement

functions are possible�
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Figure �� The architecture used in the simulations of �Nol� et al�� �		
�� The weights on the lower

connections �bold lines� may be a�ected by both evolution and lifetime learning�

the animat�s current position� Two of the NN�s outputs de
ne the animat�s next move� the analog values

are thresholded to the nearest binary value� giving two bits which decide between step
forward� turn
left�

turn
right� stay
still� These Motor Outputs are also passed back to a further two inputs for the next time

step� giving the network an element of recurrency�

Ignoring for the time being the remaining two outputs� an Evolutionary Task can be set� de
ning a


tness function� which uses the 
xed �genetically speci
ed	 connection weights between the � inputs� the

� hidden nodes� and the � motor outputs� Each animat is assessed on how much food it collects during its

lifetime� and on the basis of evaluating the whole population� size ���� an evolutionary algorithm �EA	

produces the next generation� The best �� are each cloned � times� asexually� to create ��� o�spring�

then the inherited weight matrices are each mutated by adding to each of � randomly selected weights a

di�erent number randomly taken from the interval �
���������

This process was repeated for ��� generations� and performance on the Evolutionary Task was seen to

improve� However� a signi
cant new factor was suggested when these non
learning trials were compared

with a similar set of trials which involved lifetime learning on a second� di�erent� Lifetime Task�

In these learning trials� in addition to the previous Evolutionary Task� the second pair of outputs

�Figure �	 attempted to predict the animat�s sensory inputs at the following time step� At each of the

animat�s ���� cycles� this prediction was compared with the actual sensory inputs then observed� and

the error in prediction used to adjust the connection weights between the � inputs� the � hidden nodes�

and the � Prediction outputs� Backpropagation was used to change the weights� of which those between

inputs and hidden nodes were simultaneously implicated in the performance on the separate Evolutionary

Task�

Hence this lifetime learning in�uenced the relative 
tnesses of di�erent members of the population�

which were assessed on performance at the Evolutionary Task� However� when the best were selected to
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create the next generation� it was their original �at birth� weights that were inherited� not the weights as

altered by learning� there was no inheritance of acquired characteristics� It was demonstrated that there

was better performance at the Evolutionary Task after this learning than in the non
learning case� under

the same evolutionary selection�

This might at 
rst sight seem unsurprising� after all� presumably there is some correlation between

the tasks� within this environment� of 
nding food and of predicting sensory inputs of food� But success

at the 
rst task depends on appropriate outputs encoded in � values thresholded to � bits and interpreted

as forward�left�right�stay� whereas for the second task appropriate outputs are � real values interpreted

as representing distance and angle� any correlation between these will be complex� Any surmise that the

e�ects observed could be obtained even if the two tasks were completely uncorrelated would be surprising

and counter
intuitive � yet this claim was indeed made in an earlier paper �Parisi et al�� ����	 p�����

We have run some simulations in which individual networks are taught by using randomly

generated teaching inputs on the two additional output units � � � � and in this case too there

is a positive in�uence of learning on evolution� even if the improvement is less great than in

the case of prediction learning � � �

It remains to be explained why learning a task such as predicting the consequences of

one�s own actions� which is correlated with the task for which organisms are selected� results

in a larger bene
cial e�ect on evolution�

Here I do not pursue the latter question� however I do investigate the surprising claim that the e�ect

occurs between uncorrelated tasks� even though this claim was not repeated in later papers such as �Nol


et al�� ����	� I shall now demonstrate a similar e�ect in a very simple simulation� I can use two tasks

which are clearly uncorrelated� yet the explanation relies on the particular way in which the EA is used�

� The Simple Model

The EA used is as far as possible identical to that used in the Animat Model above� except that the

genotypes consist of vectors of �� real numbers� which in the initial random population are each randomly

drawn from the interval �
��������� The Evolutionary Task E and the Learning Task L are de
ned in terms

of minimising the distance from a genotype to a 
xed target vector� E and L respectively� each component

of the ��
dimensional target vectors is similarly drawn at random from �
���������� The performance of

any individual at either task is given by the Euclidean distance jG� Ej or jG� Lj between the vector

G speci
ed by its genotype� and the target vector�

When conducting trials� selection and cloning of the best �� from ���� and mutation by adding

random perturbations drawn from �
�������� to � randomly chosen weights in each individual genotype�

were as above� In any one trial the population was seen to move towards the target vector E over ���

�In these tasks input vectors are irrelevant� Since the target vectors are chosen at random� the tasks are uncorrelated in

the sense of Section 	�	�

�



GENERATIONS

D
IS

T
A

N
C

E
 F

R
O

M
 E

V
O

L
U

T
IO

N
 T

A
R

G
E

T

    Top 20 unmutated

    0     50     100

    0

    1

    2

    3

    4

    5

    6
    Average without learning

    Average with learning

    Best without learning

    Best with learning

Figure �� Results when mutation was applied only to �� o�spring� and not to the 
� elite parents�

generations� First a non
learning trial was performed� and then a learning trial using the identical starting

population and evolutionary target vector E� Learning was implemented using just a single application

of the delta rule during an individual genotype�s life� the genotype vector was moved once only towards

the target learning vector L by a proportion � � ��� of its initial distance from L� the new vector is

G
� �G� ��L�G	� The 
tness of the genotype was then assessed as jG��Ej� its new distance from E�

but those selected to pass on genetic material passed on their �at birth�� pre
learning� genetically speci
ed

values G� This method of assessing 
tness allocates zero cost to the learning process itself� in contrast

to the usual models of the Baldwin e�ect�

To conform with the Animat Model practice� �� sets of such non
learning and learning trials were

made� with fresh vectors E� L� and starting population each time� In the Animat Model reproduction

involves keeping the elite �� individuals and generating � mutated copies of each� it was not clear from

�Nol
 et al�� ����	 whether the elite �� were kept unchanged� or were also themselves mutated� so both

methods were used in turn� In Figure � the results are shown using the 
rst method� giving the average

and best 
tness at the Evolutionary Task at each of the ��� generations� As with the Animat Model�

we have the ANF result that average performance of the learning trials is better than the non
learning

ones� Peak performance also is improved by learning� which was not demonstrated in the original Animat

Model �see Figure � of �Nol
 et al�� ����		�

In Figure � comparable results are shown for the case when all ��� are mutated� the end results are
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Figure �� Results when mutation was applied to all members of the population each generation� See text

for explanation of bars Ai and Bi�

not as good� but the comparisons between learning and non
learning trials remain� On the right side of

this graph two sets of three bars are marked� using the same vertical axis as a measure of distance� A� is

the average distance of the initial random starting population from the Evolutionary target E� A� is the

average after this population has had the mutation operator applied to all members� A� is the average

after a subsequent learning move towards L �in all cases this is averaged over �� trials	� B�� B� and

B� are the equivalent 
gures using the population after a run �with learning	 of ��� generations� It can

be seen that in each case� even in the absence of any selection and reproduction within the population�

mutation increases the average distance from E� and changes due to learning �towards L	 then decrease

considerably the average distance from E� Herein lies a clue leading to the explanation for ANF�

A further clue is given by the fact that the initial random population is broadly con
ned within

genotype space by the initial range of random values� and then the particularly strong truncation selection

method used provides an extremely strong convergence pressure� only balanced in this asexual EA by the

mutation rate� In the absence of mutation such selection would result in the initial best member taking

over the whole population in just � generations �from �� to �� to ��� to ����	� With mutation the

population consists of similar individuals with some values �weights in the NN case	 perturbed around

those of the elite of the previous generation� To quote from �Nol
 et al�� ����	� p� ���

The o�spring of a reproducing individual occupy initial positions in weight space that are

deviations �due to mutations	 from the position occupied by their parent at birth �i�e�� prior

to learning	�
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The e�ect of lifetime learning is to partially restore degraded performance of networks which have

had their weights perturbed �by mutation	 away from trained �through evolution	 values � a form of

relearning�

The Simple Model presented in this section has shown that strong ANF does exist� even when the

Evolutionary Task and Lifetime Learning Task are clearly uncorrelated �see Section ���	 in that they are

based on di�erent random vectors� However� for the explanation in terms of relearning we need the result

to be presented in the next section�

� Spontaneous Recovery of Associations by Learning Unrelated

Tasks

A spontaneous recovery e�ect in connectionist nets was 
rst noted in �Hinton � Sejnowski� ����	� and

analysed in �Hinton � Plaut� ����	� A NN was 
rst trained on a set of associations� and then its

performance on this set was degraded by training on a new set� When retraining was then carried out on

a proportion of the original set of associations� performance also improved on the remainder of that set�

In �Harvey � Stone� ����	 a more general e�ect is demonstrated� A NN is 
rst trained on a set of

associations� called task A� and then performance on this task is degraded by random perturbations of the

connection weights� Performance on A is then monitored whilst the NN is trained on a new uncorrelated

task C �in contrast to �Hinton � Plaut� ����	 where a subset of the original task is used	� It will be

shown that� counter
intuitively� in most cases performance on the original task A initially improves�

The following is a simplistic analogy� which assumes that this e�ect carries over to human learning

of cognitive tasks� If you have a French examination tomorrow� but you have forgotten quite a lot of

French� then a short spell of learning some new task� such as unicycling� can be expected to improve your

performance in the French examination� Students of French should be warned not to take this fanciful

analogy too literally��

I give an informal argument� drawn from �Harvey � Stone� ����	� to explain the underlying geomet


rical reasons for this e�ect�

��� Geometric Analysis

A number of assumptions will be used here� later their validity will be evaluated�

Learning in connectionist models typically involves a succession of small changes to the connection

weights between units� This can be interpreted as the movement of a point W in weight space� the

�It relies on an assumption that French and unicycling make use of a common subset of neuronal connections� The

analogy also assumes that� from the set of all human capacities� ability to stay on a unicycle is uncorrelated �in the sense

of Section 	�	� with ability at English�French translation� The relearning e�ect does indeed happen with correlated tasks

�one might expect English�Spanish� even to a lesser extent English�Tagalog� to be correlated with English�French�
 but the

uncorrelated case is the focus of interest here�

�
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Figure �� In this ��D representation of weight space� A represents weights appropriate for the �rst task� C for the

second task� The circle represents hypersphereH� points perturbed away from A by a distance r� Initial movement

from a point B on the circumference towards C has two possible consequences� trajectory B� � C is outside H�

whereas B� � C intersects H� See text for signi�cance of other symbols used�

dimensionality of which is the number of weights� For the present� we assume that training on a particular

task A moves W in a straight line towards a point A� where A represents the weights of a NN which

performs perfectly on task A� we also assume that distance from A is monotonically related to decrease

in performance on task A�

Let A be the position ofW after task A has been learned �see Figure �	� Assume that some �forgetting�

takes place� through random weight changes� which shifts W to a new point B� The point B lies on the

surface of H� a hypersphere of radius r � jA� Bj centred on A�

We then initiate training on a task C which is unrelated to task A� under our assumptions� training

moves W from B towards a point C� which is distance d � jA� Cj from A� If the line connecting B to

C passes through the volume of H then the distance jW �Aj initially decreases as W moves towards C�

In such cases� training on task C initially causes improvement in performance on task A�

We assume that point A has been chosen from a bounded set of points S� which may have any

distribution� that H is centred on A� that B is chosen from a uniform distribution over the surface of H�

and that C is chosen from S independently of the positions of A or B� What� then� is the probability that

line segment BC passes through H� That is� what is the probability that training on task C generates

spontaneous recovery on task A�

If C lies within H �i�e� if d � r	 then recovery is guaranteed� For any point C outside H there is a

probability p � ��� of recovery on task A� Figure � demonstrates this for a two
dimensional space� The

point B may lie anywhere on the circumference of H� The line segment BC only fails to pass through H

if B lies on the smaller arc PQ� where CP and CQ are tangents to the circle� and hence cos��	 � r�d�

Thus p � ���� and p� ��� as d���

Consider the extension to a third dimension� while retaining the same values r� d and �� The proba


bility q � ��� p	 that BC fails to pass through the sphere H is equal to the proportion of the surface of
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Figure �� In this ��D representation of weight space� points A� C and the larger circle are as in previous �gure�

the relevant angle � is now de�ned within the smaller circle� Learning is assumed to move any points on the larger

circle directly towards C a distance � times their original distance from C� eg� P moves to R� Such points move

onto the smaller circle centred on E where AE � � � AC� D is on the intersection of these circles� and DF is

a perpendicular dropped from D onto AC� On the right are sketched � further cases� in 	
� � � ��� and q �

probability of failing to improve will be ��
� In 	�� ��� � q � ���� in 	�� and 	�� q � ����

H which lies within a cone de
ned by PCQ with apex C� This proportion is considerably smaller in �
D

than it is in �
D� In �Harvey � Stone� ����	 this is generalised to n
dimensions� and it is demonstrated

analytically what can be seen intuitively� namely that for any given � � ���� as n increases q tends to

zero�

Hence for large n� it is almost certain that the line segment BC passes through the hypersphere H�

This implies that initially the point W moves from B closer to A� Hence performance improves� at least

temporarily� on task A�

Returning to the assumptions stated earlier� we can now examine their validity� First� an irregular

error surface ensures that training does not� in general� move W in a straight line �though in the Simple

Model above� using the delta rule� the straight line assumption is accurate	� Second� perfect performance

on task C may� in general� be associated not with one point C� but with many points which are equivalent

in that they each provide a similar mapping from input to output� W may move towards the nearest

of many Cs� which is therefore not chosen from S independently of A� This may alter the probability

that W passes through H� In the Simple Model above� where there is a single learning target vector� the

assumption of a single point is accurate� For discussion of further issues� and experimental demonstrations

of the phenomenon using backpropagation� see �Harvey � Stone� ����	� There it is made clear that this

relearning phenomenon is only likely to be signi
cant when the distance between weight vectors A and

C is not too large in relation to the perturbations in weight vectors caused� in the current instance� by

mutations� We can ensure that this condition holds where the weight vectors arise from any learning

process in a feedforward NN with sigmoidal activation functions� since individual units of the NN saturate

at 
nite values� weight vectors after training on di�erent tasks can be expected to lie within a limited
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Figure �� Graph showing probability of failing to improve performance at original task� against dimensionality of

weight space� for various values of �� Both axes are logarithmically scaled�

�hyper
	volume of weight space� Since there is a bound on the distance A to C� we can make its ratio to

perturbation size as small as we like by increasing the latter�� This condition does not� however� imply

that their respective tasks are correlated � see Section ����

��� E�ects of distance moved through learning

The above discussion only applies to the 
rst e�ects of an in
nitesimal amount of learning on the new

task� If learning continued until the new task was fully learnt� and C had been reached in weight space�

then in general C is outside H and performance on task A has diminished �even if it had temporarily

improved initially	� I now quantify the e�ects of di�ering amounts of learning�

In Figure � it is assumed that learning on C over a period is equivalent to a single application of

the delta rule which reduces error by a proportion �� hence points on the larger circle move onto the

smaller circle� Given that these circles represent the �hyper
	surfaces of hyperspheres centred on A and

E� the ratio of interest is the proportion of latter surface which lies outside the former� i�e� the proportion

subtended by angle �� This ratio gives the probability q that after learning on the second task there has

failed to be improvement in performance on the 
rst task� It is shown in �Harvey � Stone� ����	 that

this depends on the dimensionality n of the weight space� and is given by�

q �

R
�

�
sinn����	 d�

R
�

�
sinn����	 d�

�This point was drawn to my attention by Jim Stone�
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the amount of learning equivalent to a single application of the delta learning rule� For speci�c values of d�r and

� a value of � can be estimated by interpolation� together with the dimensionality of weight space n this can be

used with Figure � to estimate q the probability of failing to improve performance� Above are lines for � � ����

corresponding to q � ��� for all n� and � � � corresponding to q � � for all n�

While a general analytical solution for all n cannot be found� in Figure � data points are plotted

for various values of n and � speci
c values of �� ���� ����� ������ �������������� These values are

equivalent to  �x	 � ��x � �	���x�� for x from � to ��

From geometrical calculations shown on Figure �� we have sin�		 � �� � �	sin��	 and cos�		 �

��d�r	 � ��� �	cos��	� Using sin��		 � cos��		 � � this gives�

��� �	�sin���	 � ���
d

r
	� � ���

d

r
	d��� �	cos��	 � ��� �	�cos���	 � �

���
d

r
	��� �	cos��	 � ��� ��� �	�	� ���

d

r
	�

��
d

r
	�� � �	cos��	 � �� ��� � �

d

r
	�	

For any particular value of � we can plot d�r against �� In Figure � this is done for the same � values

of � as in Figure �� Both these graphs are needed to calculate q the probability of failing to improve
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d�r � ��� d�r � � d�r � �

�  n � �� n � ��  n � �� n � ��  n � �� n � ��

� � ������ � ���� ��� ���� ������ ��� ���� �����

��� ��� ������ � ���� ��� ����� ����� ��� ��� ����

��� ��� ����� � ���� ��� ���� ����� �

�
���� �

�
�q�� �

�
�q��

��� ��� ���� ������ � ��� ���� �

�
���� �

�
�q�� �

�
�q��

��� ��� ���� ������ � � �

�
��� ��� � � � � �

��� ��� ���� ����� �

�
���� �

�
�q�� �

�
�q�� no real � � �

Table �� For di�erent values of d�r and �� the appropriate value of � is estimated from Figure �� Where � � ����

this is estimated in terms of �� which then allows for interpolation between the ��i� values on Figure �� Where

� �� ���� or is there is no real �� its value is listed explicitly� The approximate probabilities q of failing to improve

performance are listed for two dimensionalities of weight space� n � �� and n � ���

performance on the 
rst task as a consequence of learning � on the second task� with relevant parameters

being d�r and n� The lack of an analytical solution for arbitrary values of n means that in practice

interpolation must be used between the few speci
c values of n calculated�

There are two further values for � of particular interest� and lines for these values are also plotted

in Figure �� When � � ��� this gives the equation � � ���� � �d
r
	�	� corresponding to q � ���� When

� � � this gives � � ���� � d

r
	� corresponding to q � �� These latter two results are independent of

dimensionality n�

When � � � this gives the probability of failing to improve in
nitesimally as a result of an in
nitesimal

amount of learning� the calculation originally given in �Harvey � Stone� ����	� This is here extended for

a delta learning rule for � 
 �� caution should be used in carrying this over to other learning techniques

such as back propagation� The general picture emerges from Figure � and Table � that the ANF e�ect

is strongest for small values of d�r �when d�r � ��� then even with large amounts of learning such as

� � ��� it is still nearly certain	 and at these values dimensionality n is of signi
cance� For larger values

of d�r� for instance �� then for � � ��� the e�ect is less than ��� and for � 
 ����� it has disappeared

completely� For d�r 
 �� then it just needs � 
 ���� for the e�ect to be less than ���� it should be

remembered� however� that for in
nitesimal amounts of learning the e�ect persists out to arbitrary values

of d�r�

In typical circumstances for NNs where trained weight vectors can be expected to lie within a limited

space �see end of previous section	 d will also be bounded� The ANF e�ect will be most prominent when r

is relatively large in comparison� in evolutionary cases r corresponds to perturbations through mutation�

and these were indeed relatively large in �Parisi et al�� ����� Nol
 et al�� ����	�
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Figure �� A sketch of Evolutionary and Learning �tness landscapes for the Simple Model� The 
��dimensional

weight space is loosely represented by the horizontal axis� After a few generations the population after learning

	i�e� when it is evaluated� will be centred around E� implying that before learning moved it towards L it was further

to the left� Applications of learning rules such as the delta rule towards target vector L will move points that are

left of E 	e�g� x� further than those right of E 	e�g� y��

� Discussion

The link between this relearning e�ect and ANF as shown in the Animat Model was 
rst pointed out in

�Harvey� ����	� Here the same ANF has been recreated in a much simpler model where the two tasks

are clearly uncorrelated� and it can be seen that this relearning e�ect is a su!cient explanation for the

improvement in performance on the Evolutionary Task� Each individual in the population has inherited

its weights from an elite member of the previous generation� these weights have then been perturbed by

mutation� but lifetime learning on an uncorrelated task improves performance on the Evolutionary Task�

A di�erent explanation is o�ered in �Nol
 et al�� ����	� where the notion of dynamic correlation

between 
tness landscapes is introduced �p��� and p���	�

� � � two surfaces are dynamically correlated if a weight matrix that moves towards higher

values on one surface tends also to move toward higher values on the other surface�

� � � evolution progressively selects for individuals that are located in regions of dynamic cor


relation between the 
tness surface and the learning surface�

In the Simple Model which reproduces strong ANF the 
tness surfaces are extremely simple� and are

sketched in Figure �� From the earlier graphs it can be seen that the expected distance of the random

vector L from E is� as with the similarly determined random initial population� around ���� and after a

few generations the average distance of members of the population from E is less than ���� Hence one

can assume that typically the population lies within the region of genotype space indicated in Figure ��

loosely centred around E after learning since selection relies on evaluating them after they have learnt�
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Figure �� Binary genotypes� a member G is shown which is perturbed from the target E in just ��� of

its loci� The second Learning target vector L typically di�ers from E in ��� of loci� as they are assumed

uncorrelated� When learning changes loci of G to match L� an expected ��� of the time there is no

change� 
�� of the time the match of G with E is made worse� and only �� of the time is it made better�

This implies that before learning the population was� in the 
gure� to the left of E� One would expect

more than ���� but by no means all� of the population to be born in a region of �dynamic correlation�

between 
tness surfaces�

In so far as the �dynamic correlation� hypothesis refers to a single point representing the population

average and its position on the two 
tness landscapes� it is no more than a restatement of the phenomenon

in di�erent terms� If the hypothesis is intended to cover each individual member of the population� then

in general� as in the example given here� it is not correct� The �relearning� explanation presented here as

an alternative provides a su!cient� and completely di�erent� explanation�

It has been suggested	 that the relearning e�ect may be related to James
Stein shrinkage �Efron �

Morris� ����� James � Stein� ����	� That is� reducing the variance of the outputs of a NN reduces

the squared error at the expense of introducing a bias� It may be that training on the unrelated task L

incidentally induces shrinkage� Figure � illustrates this in one of the n dimensions of weight space� learning

adjustments that happen to take points towards E �e�g� x	 tend to be larger than adjustments which

take points further from E �e�g� y	� Hence when dealing with a large number of cases one can expect the

average distance of such points from L to decrease� at least initially� the e�ects of more
than
in
nitesimal

learning movements were analysed in section ����

�G� E� Hinton� personal communication�
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� Restrictions on the Phenomenon

The ANF phenomenon exhibited in the Animat and Simple Models relies on both evolution and lifetime

learning acting on the same units� in this case weights of a NN or components of a vector� In this respect it

is similar to the Baldwin e�ect� Although the Baldwin e�ect has been demonstrated with an essentially

binary genotype �Hinton � Nowlan� ����	� for this e�ect real
valued components �or approximations

thereof	 are essential�

To show that this e�ect would not work with a binary genotype� consider Figure �� In this simple

example� relating to a binary genotype� a member G mutated from the Evolutionary Target genotype

E is assumed to have ��� of its loci correct� i�e� matching those of E� Typically an unrelated Learning

vector L di�ers from E in around ��� of its loci� Any learning method which tends to change loci of G

towards the corresponding alleles of L will a�ect its performance at task E in the proportions shown �

changes for the worse typically greatly outnumber changes for the better�

The e�ect has only been analysed here for an EA which has no recombination� However when

the population is genetically converged one would expect recombination to make little di�erence� this

expectation has been supported by adding recombination to the Simple Model and observing similar

results� The explanation relies on the population being in a local region of weight space� around E� in

which distance from E is monotonically related to performance� Hence the strong truncation selection

used in this EA� coupled with signi
cant weight changes through mutation� provide ideal conditions for

quickly converging a population around the target� In the absence of comparable conditions there is no

reason to expect this ANF phenomenon�

� Conclusion

Interactions between evolution and learning are tricky� and need to be analysed with care� The phe


nomenon originally demonstrated in the Animats Model �Parisi et al�� ����� Nol
 et al�� ����	 showed

that� under some circumstances� lifetime learning on a di�erent task can aid progress through evolution

on the evolutionary task� Only in the earlier of these two papers was this claimed for two uncorrelated

tasks� the e�ect I have termed strong ANF� This claim has been veri
ed here� and demonstrated in the

Simple Model� using target vectors E and L selected independently at random� The explanation comes

not from interactions between evolution and learning per se� but rather from a relearning e�ect on weights

perturbed by mutation� Hence the e�ect can only be expected under very restricted conditions where

evolutionary processes of mutation are mimicking the e�ects of weight perturbation around a learnt set

of weights�

The Baldwin e�ect requires the evolutionary and learning tasks to be similar for genetic assimilation

to take place� The strong ANF e�ect is based on two separate tasks� If one takes the special case

where these two tasks are indeed the same� then indeed d�r is at a minimum value of zero and the ANF

e�ect will be at its strongest � but it has been reduced to the trivial and uninteresting statement that

��



Baldwin e�ect with ANF e�ect

genetic assimilation

Key factor Genetic assimilation Improvement on uncorrelated task

Number of tasks One is su!cient Two necessary� E and L

Correlation Yes Works when uncorrelated

Improve at
birth performance Yes No

Cost of learning Needed Unnecessary

Size of mutations Not crucial Size compared to d is very signi
cant

Amount of learning Not crucial If too large e�ect typically disappears

Dimensionality Typically irrelevant The bigger n is� the stronger the e�ect

Speci
c to evolution Usually assumed so General� any weight
perturbations

Binary genotype OK� Yes No� needs real values

Table �� A summary of some di�erences between the Baldwin e�ect 	with genetic assimilation� and ANF� This

list is not meant to be exhaustive�

�improving performance on B also improves performance on A when A � B�� In a natural context one

expects learning to have some cost to the individual� if one arti
cially manipulates these costs to be zero

or less� this will have di�erent consequences for the two e�ects� The Baldwin e�ect requires there to be

some positive cost of learning� such that individuals that need to learn less are thereby 
tter� for genetic

assimilation to take place� the ANF e�ect does not need any cost to learning� For the Baldwin e�ect the

size of mutations� the rate of learning and the dimensionality of weight space are not of crucial signi
cance

�as can be seen from consideration of the simulations in �Hinton � Nowlan� ����		� whereas these have

critical relevance to the existence of� or extent of the ANF e�ect� These di�erences are summed up in

Table ��

The e�ect I have termed �Another New Factor� means that under the circumstances outlined here

lifetime learning on one task can indeed improve performance on another task which is the subject of

evolutionary selection pressure� even when the two tasks are uncorrelated� The e�ect is orthogonal to

the Baldwin e�ect� The restrictive conditions for this e�ect mean that under most circumstances it will

not occur in practice� nevertheless in �Parisi et al�� ����	 the conditions were right�
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