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Abstract 
In both social systems and ecosystems there is a need to resolve potential conflicts between the interests of individuals and the collective 
interest of the community. The collective interests need to survive the turbulent dynamics of social and ecological interactions. To see how 
different systems with different sets of interactions have varying degrees of robustness, we need to look at their different contingent histories. 
We analyse abstract Artificial Life models of such systems, and note that some prominent examples rely on explicitly a-historical 
frameworks; we point out where analyses that ignore a contingent historical context can be fatally flawed. The mathematical foundations of 
Gaia Theory are presented in a form whose very basic and general assumptions point to wide applicability across complex dynamical 
systems. This highlights surprising connections between robustness and accumulated contingent happenstance, regardless of whether 
Darwinian evolution is or is not implicated. Real life studies highlight the role of history, and Artificial Life studies should do likewise. 

Introduction 
In both ecosystems and social systems there are at least two levels at which, speaking loosely, ‘lifelike’ processes can be observed.  
There is one level at which the individual organisms, animals, humans are interacting with each other and pursuing their individual 
interests. But also there is a second level of ecosystem organisation, or social organisation, which provides the context within which 
they exist. In principle the same individuals could function, perhaps more or less successfully, if the ecosystem/social organisation 
was changed. One extreme version of such a change would be for the ecosystem/social organisation to break down in chaos, which 
is often against the interests of the individuals concerned. Systems survive or die, much as individuals do. 

Ecosystems and Social Systems. Some social organisation can be the outcome of a social contract where individuals have chosen 
to agree to a set of rules. Other social organisation, and all ecosystems, do not involve such explicit choice. Regardless of such 
differences, in both cases one can analyse individual behaviour in terms of self-interest potentially clashing with the interests of 
others around. In social systems we may call some actions ‘cheating’ and some consequences ‘punishment’. In ecosystems we tend 
to avoid such moral overtones and merely discuss ‘effects’ and ‘consequences’; the analyses may nevertheless be similar. 

How  do  they  Persist?  If a specific ecosystem/social system survives for a long time, explanation is called for. If no external 
authority is responsible for imposing this, then the organisation must be an emergent consequence of individual patterns of 
behaviour that are globally somewhat resilient to  the perturbations of everyday life. We may ask how one specific ecosystem/social 
system manages to persist, or we may ask about generic properties needed for persistence. 

What is their Origin? Each specific ecosystem/social system will have its own unique history, from origins up to the present day; 
just as each organism has its unique genetic and developmental history. It is the main thesis of this paper that generic theories, that 
gloss over or average such specific histories, often fail to capture salient features of reality. Examples of such theories will be 
criticised.  

Real Life. We consider both real systems and their artificial life counterparts, as in different columns of Table 1. For real social 
systems we look at common pool resource governance as studied by economists.  Natural systems refer here to ecosystems as 
studied by ecologists in the field. It will be suggested that those studying such real life systems will have no problems agreeing with 
the thesis that history matters. Hence this paper is mainly targeted at those producing abstract models that explicitly leave out any 
consideration of history. 

Artificial  Life  Models.  Simple abstract models of social systems are illustrated here by examples from IPD, Iterated Prisoner’s 
Dilemma. This is based on a classic two-person game where each player has simple choices and the interactions between them have 
consequences in terms of different payoffs. The basic dilemma of individual cheating versus cooperation is distilled into this 
simplest form. Ecosystem models discussed here are based on Daisyworld models where the organisms and environmental 
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influences are characterised as variables interacting in a dynamical system. Robustness and the role of contingent history are 
considered in the context of new results in Gaia Theory. 

Mathematical Summary. If processes are actually non-Markovian, modelling them as Markovian will lead to error.  

Plain  Language  Summary.  Real  life  takes  place  in  a  world  of  accumulated  historical  accidents  that  affect  how social  and 
ecological processes actually function. History matters.   

The contingent history of this paper is that it is an extension of Harvey [8] as presented at ALife XV in Mexico, 2016. Significant 
portions of text are thus taken directly from that paper with minimal editing, so that this paper may be read without need to consult 
its immediate precursor. What is notably new here is the latest version of the Gaian Regulation Theorem, summarised in the text and 
laid out in full in Appendix B. Key to this is a newly elaborated central concept of feasibility, related to but importantly different 
from viability. 

Artificial Life Models of Governance 
The Introduction to Hobbes’ Leviathan [9] gives the first known reference to artificial life under that name: 

NATURE (the art whereby God hath made and governes the world) is by the art of man, as in many other things, so in this also 
imitated, that it can make an Artificial Animal. For seeing life is but a motion of Limbs, the beginning whereof is in some 
principall part within, why may we not say that all Automata (Engines that move themselves by springs and wheels as doth a 
watch) have an artificiall life?

This introduces the metaphor of a nation state as an artificial man, Leviathan, with different components functioning together as 
mechanically deterministic parts but forming a living whole. What sort of governance can provide some form of global harmony 
ensuring cooperation and collaboration between component parts and reconciling any potential conflicts between them? How does 
some form of social contract arise (and continue to survive) from a natural state of anarchy? Hobbes’ answer was for central rule by 
an absolute sovereign. Though such a sovereign is ultimately driven by his private interests, these are aligned with the public 
interests in so far as “The riches, power, and honour of a monarch arise only from the riches, strength, and reputation of his 
subjects”. 
 Here we follow Hobbes’ surprisingly modern notion of artificial life, and the use of models such as Automata in the study of real 
life governance. However we part company with him on his assumption of a need for a central sovereign. Leviathan is Hobbes’ 
exemplar of central authority, but in all further examples we discuss below there is no central authority, no rules for behaviour are 
imposed from outside.  

Distributed Social Systems, Choice, Attractors 
When governance arises solely through interactions between individual participants, different styles of governance can only arise 
through the different choices they make. Strategies any one individual has for choosing are typically conditional in part on the 
choices the others have made. These individual choices bind into a social system when there is a stable pattern that persists despite 
potential disturbances from within or without. In dynamical systems terms, we are looking for the attractors of such systems. There 
may be many possible such attractors, some more congenial than others to the participants — e.g. with higher payoffs in utilitarian 
terms.  

Ecosystems, Choice, Attractors 

With  natural  ecosystems  we  may  not  be  considering  the  same  type  of  explicit  strategies  or  choices  seen  in  social  systems. 
Nevertheless, a different type of ‘choice’ is available, a choice of where to locate, which environment to inhabit. Animals may move 
from valley to hilltop; even plants, over generations, can shift their habitat. In this subtly different sense of choice, the component 
members of an ecosystem have ‘chosen’ to coexist in a specific locale where their various interactions (including their own knock-

Real Life Artificial Life

Social 
systems 

Common pool resources      
[18]

Iterated Prisoner’s Dilemma 
[19, 21]

Natural  
systems

Ecosystems 
Niche construction [3, 13] 

Daisyworld [23, 7] 
Complex systems [17]

Table 1: Classes of decentralised social systems and natural (eco-)systems and their Alife 
counterparts analysed here. 



on effects on the environment) allow them to thrive. In the theoretical space of all conceivable ecosystems, there is a multitude of 
such viable and robust locales that act as potential attractors. 

Real Social Systems: Common Pool Resources  
Real social systems with distributed governance are only stable if they are currently near an attractor, which is another way of 
saying that they recover from small disturbances. We look at how such systems may adapt to changing circumstances over the 
longer term, and hence the role of historical contingency in how they come to be in one attractor rather than another. Practical 
working examples of decentralised control can be seen in societies across the world ranging from water authorities in California to 
shared forest usage in Nepal and Switzerland and shared fisheries in Turkey. These are maintained and policed by the participants 
themselves rather than imposed by some external sovereign authority. Such ‘common pool resources’ have been the focus of 
economist Ostrom [18]. She proposes a list of design principles or ‘best practices’ that are common to such robust institutions: 
(1)Clear identified boundaries between those people and resources within the institution and those outside. 
(2)Appropriation rules congruent to local social and environmental conditions. 
(3)All (or most) members share in making or changing rules. 
(4)People who are users (or accountable to them) monitor the appropriation and resource management. 
(5)Sanctions for rule violations are graduated from low to high according to the severity or persistence of violations. 
(6)Conflict-resolution mechanisms are local and rapid. 
(7)External authority, e.g. higher government, does not enforce its own rule contrary to that of the local institution. 
(8)Where there are multiple levels of governance they are organised in multiple nested layers. 
 In such common-pool scenarios, anonymous entry or participation is not possible. All participants have not only a stake in 
maintaining the rules (principles 4 and 6) but also in changing them (principle 3). Such adaptation in the governance system needs 
to be congruent with local social and environmental conditions (principle 2); and the social conditions may include further higher or 
lower level layers of governance, overlapping in a nested fashion (principle 8). Within the generic constraints of these 8 principles 
there is scope for a multitude of possible governance systems each adapted, more or less, to local circumstances and fashioned 
through a historical succession of contingencies. 

ALife Models of Social Systems: IPD 
We move from stability, contingency, history in real systems to the same issues in ALife models. Recent innovations in IPD 
(Iterated Prisoner’s Dilemma) provide a case study. 

Motivation for IPD Models. These provide a minimal model of 2 agents (‘prisoners’) interacting. They must decide on  actions 
independently, but the payoff to each depends on what they both decide, and is designed to provide a conflict between individual 
and collective gains. 
 The supposed story is that they have agreed beforehand to deny everything about some joint crime, but now they are interviewed 
separately by the police. Each has to decide whether to keep quiet as promised (‘Cooperate’ with the other prisoner) or make some 
deal with the police (‘Defect’). In terms of utility, they both receive R (say 3) if both Cooperate; both receive P (1) if both Defect; 
and if one Defects, the other Cooperates the payout is T (5) to the defector and S (0) to the other. The choice of (T, R, P, S) = (5, 3, 
1, 0) (Figure 1a, following [19]) meets the IPD condition T>R>P>S that implies whatever agent 2’s decision is, agent 1 would gain 

Figure 1: (a) The IPD payoff table [19]. (b) Tit-for-Tat players 
differentiate into TFTC or TFTD (opening play C or D). 
Different varieties meeting (upper square) lead to 3 different 
end-attractors, average scores of (3,3), (1,1) and (2.5,2.5) (i.e. 
average of (5,0) and (0,5), lower square). The weighted (25%, 
25%, 50%) average of all these attractor scores is different 
yet again, (2.25,2.25).

Figure 2: No-feedback scenario: environmental perturbation 
S (solar output) directly affects local environmental T 
(temperature) which directly affects organism D (daisies). (a) 
D assumed to have steady-state dependency, ‘hat-shaped’ 
function of T, giving limited zone of viability. (b) D-
feasibility (binary yes/no) plotted against perturbation S 



more by Defecting than Cooperating. The further condition 2R>T+S implies the total payout for both Cooperating, 2R, is higher 
than the total payment when one Cooperates and the other Defects. 
 The rules treat each agent symmetrically, so any difference in outcome depends solely on how their strategies interact. In a single 
game with no further consequences, each agent maximises their payoff by Defecting, irrespective of the other agent’s choice. Hence 
they both Defect (D), receiving 1 each, whereas if both Cooperated (C) each would have received 3.  
 If such games are iterated indefinitely, in the IPD, then each agent’s actions may influence future responses. Under some 
circumstances a regime of Cooperation for mutual benefit can arise; IPD studies usually focus on just what conditions allow this and 
discourage cheats (i.e. Defectors). Such conditions provide counter-examples to Hobbes’ intuition that only a sovereign authority 
can guarantee a mutual Commonwealth. 

Tit for Tat, TFT. A  typical class of IPD strategy depends (either deterministically or probabilistically) on memory of the previous 
choices made by each agent in the previous N rounds, N≥1. Tit for Tat (TFT), for example, is the memory-1 strategy where an agent 
copies the action that the other agent took in the previous round ([1]; Figure 1b). Tit-for-Two-Tats is the memory-2 strategy where 
an agent only defects if the opponent defects twice in a row. More generally a memory-N strategy can be specified as a table with 
4^N cells, relating to 4 possibilities CC, CD, DC, DD (for own+opponent choices) on N previous rounds, each cell specifying the 
probability that C will be chosen by this agent in the new round. For example, TFT with memory 1 has these probabilities of 
Cooperating, dependent on the previous round: CC 100%, CD 0%, DC 100%, DD 0%.  

Historical and A-Historical Agents 
Such memory-1 strategies depend explicitly on short-term memory of the previous round; but they also depend on long-term history 
of starting conditions, since the very first move makes a difference, say C for TFTC or D for TFTD. There are two possible routes to 
finesse this issue, the first being to acknowledge that TFTC and TFTD are indeed two different strategies with different consequences 
(Figure 1b). Only when TFTC meets another TFTC does the virtual circle of Cooperation take off. If both are instead TFTD then a 
vicious circle of Defection takes over. A TFTC meeting TFTD results in alternating CD, DC choices. The starting conditions have a 
permanent effect on which basin of attraction is entered. 
 A second way to finesse this issue is to arrange affairs so that initial conditions eventually become irrelevant, and this could be 
the case with sufficient noise in the system. If with high enough probability a choice is accidentally reversed, then over enough 
iterations of IPD all possible basins of attraction will be visited. In a classic early Alife paper [15] Lindgren explicitly used this 
method. There is a cost to be paid for finessing matters this way, however: TFTC and TFTD are now indistinguishable in such a 
theory, despite the fact that over any finite run they typically have totally different behaviours. 
 In principle the IPD game iterates for an arbitrary number of rounds, not known in advance. If both players know it to be the final 
game, this becomes a one-shot PD where both must rationally Defect. In turn, the penultimate game falls to the same analysis, and 
so on back to the first. An infinite series of rounds avoids this trap, but is impossible in practice. But we can have a finite, non-
predetermined, number of rounds by arranging after each iteration a small (e.g. 1%) chance that it is then deemed to be the last. 
Then if any noise (as introduced by Lindgren) is small in comparison to this 1%, strategies such as TFTC and TFTD will be visibly 
seen to operate in different basins of attraction. Real world scenarios typically resemble this pattern rather than the infinite-iteration 
limit. For such real world scenarios, the history will matter. 
 This distinction between historical and a-historical agents is the central focus of this paper. Behaviour of the latter depends only 
on recent short-term events held in ‘memory’, whereas the former also depends on one-off longterm origins in history. Crudely, this 
can be related to different perspectives from Biology and Physics. Typically many biologists are interested in a specific species or in 
ecosystems with a specific evolutionary history (which we can relate to TFTC or TFTD). In contrast physicists, broadly speaking, 
may be happier making broad generalisations across some arbitrary range of entities (which we can relate to Lindgren’s TFT); often 
this makes the mathematics more tractable. Taken to extremes, this can result in broad statements that are generically true about “all 

Figure 3: As Fig. 2 plus a further influence of D on T (here 
positive, black daisies increase temperature) (a) Peak 
response of D to changes in S is shifted, with a hysteresis 
loop. (b) D-feasibility zone is extended (here to the left) by a 
buffer zone, only effective if entered from high S values, and 
not low ones.

Figure 4: As Fig. 3 plus white daisies DW affect negatively 
their local temperature TW as well as black daisies DB affecting 
positively TB. (a) shows steady-state values of each D (b) 
shows feasibility of DB&DW (simultaneously), against S. 



possible organisms” assuming ergodicity, thus including extant organisms on this planet together with all extinct organisms, and 
indeed all conceivable organisms on all conceivable planets; but nevertheless misleading about any one specific non-ergodic 
organism. What is true about generic a-historical IPD agent TFT can be false about TFTC or TFTD. 

Press and Dyson 
A recent ground-breaking IPD paper by Press and Dyson [19], displayed a novel class of memory-1 ZD (Zero Determinant) 
strategies. These allow an agent — provided it no longer had the simple ambition to maximise its own payout that traditionally is 
expected in IPD — to tailor its strategy to guarantee that the opponent’s payout will average some value such as 1.5 (between P and 
R) regardless of how the opponent responds. Or such an extorting agent can guarantee that the excess of payoff above P will be 
shared in unequal proportions such as 3:1. The details of these ZD strategies are not discussed here. They are highly novel and 
counter-intuitive and are acknowledged by others to be valid, given the context; but many of the conclusions Press and Dyson drew 
have been shown to be misplaced [22]. We summarise these points, then go even further in questioning the validity of their 
Markovian assumptions.. 

Extortionate  ZD  Strategies.  Suppose agent_X chooses an extortionate ZD strategy that gains a bigger proportion of the excess 
rewards (above a base-level of P) regardless of agent_Y’s responses. Then if agent_Y is an optimising player that adjusts strategy so 
as to increase its own payoff (Press and Dyson call this an evolutionary player) the result is that agent_X scores even higher. The 
erroneous implication Press and Dyson draw is that in an evolutionary scenario where multiple strategies are competing against 
each other, such extortionate strategies will triumph and dominate. As Stewart and Plotkin [22] and other commentators point out, 
this is not so. If extortionate players came to dominate an evolutionary scenario, they will typically be competing with similar 
extortionate strategies. If agent_X and agent_Y are both forcing their excess payout (above P=1) to be 3 times greater than their 
opponents, this is neatly resolved by the excess being 0 for each, the (1,1) score of mutual Defection.   

Generous ZD Strategies. It turns out that so-called Generous ZD strategies — that roughly speaking do the opposite of extortion in 
making sure that differential benefits mostly accrue to their opponents — will dominate in an evolutionary scenario. Such Generous 
strategies behave optimally against other Generous strategies, and also replace non-cooperative ZD strategies [22].  

Such ZD Strategies Ignore Historical Contingency 
The main contribution of this paper to this novel development in IPD studies is to point out what other commentators have 
apparently missed: this whole class of ZD strategies, whether extortionate or generous, has been set up to be a-historical and hence 
to be largely irrelevant as models of human (or animal) strategies — since these human strategies are typically historical, contingent 
and contextual. Press and Dyson [19] explicitly set up their ZD strategies to use the same finesse Lindgren [15] uses, as discussed 
above, to average over all possible contingent longterm histories; they focus on generic strategies dependent on short-term memory 
alone. Indeed, they go further than Lindgren in showing that such Markovian assumptions allow any memory-N strategy to be 
generically equivalent to (some other) minimal memory-1 strategy. 
 Their proof covers the TFT strategy averaged over all possible histories, but fails to cover a TFTC strategy, even with its short 
history of a single first move. A fortiori, such IPD results have even less relevance to the real world when e.g. analysing the mating 
behaviour of this specific butterfly, with its long evolutionary and ecological history of multiple over-lapping constraints as context; 
or when analysing the governance system for that Turkish communal fishing arrangement, with its long social and cultural history 
of multiple over-lapping polycentric social contracts. Ostrom [18] explicitly mentions congruence with local social and 
environmental conditions among her design principles observed in long-lasting common pool governance systems, and this 
historically contingent context is what is stripped away in such generic proofs. Mathematically, one cannot analyse non-Markovian 
processes as if they were Markovian. 

Real Ecosystems  
We now consider the systems in the lower row of Table 1, starting with a minimal overview of real ecosystems.    

Ecological  Succession.  This  is the observed process of change in structure of an ecological community over the medium to long 
term. For instance after a mass extinction a typical sequence is for a few species of plants and animals to initially return; then 
successive new organisms arrive, building on what is already there in what Ostrom might want to call multiple nested polycentric 
layers in analogy to her social systems. In some cases this may be a somewhat predictable succession towards a final ‘climax 
community’ [3]; but more recent ideas tend to take account of the many historical contingencies involved, including the varied 
feedbacks through knock-on environmental effects, and see a more unpredictable picture of ‘alternative stable states’ [14]. In the 
short-term an ecosystem is in a stable steady state, but in the longer term it is somewhat accidental which one of many such possible 
equilibria it is, and what range of fellow organisms it contains.   

Niche  Construction. Such theories emphasise that organisms may not be merely accepting or selecting (through moving to) their 
specific environment; they may also have an active role in changing it [12].  



ALife Models of Ecosystem Regulation 
Many ecological models incorporate interactions between different species of biota; here we focus on models that explicitly also 
incorporate environmental variables and their interactions with biota. The context is Gaia Theory. 

Gaia Theory. Also known as the Gaia hypothesis,  this proposes that mutual interactions between organisms and their natural 
environmental surroundings (e.g. weather, geology) has resulted on this planet in a complex self-regulating system that tends to 
maintain conditions conducive to the survival of the organisms [16]. This is controversial, with its apparent appeal to teleology, and 
some sceptical viewpoints will be discussed below. Daisyworld (DW) models [23, 7] offer a simplified vision of how organisms and 
environment interact, in some sense cooperatively, in the form of an  Artificial Life model. This can be compared to a very basic 
form of niche construction.  

Motivation  for  Daisyworld  Models.  These models are not widely known, and where known largely misunderstood [7]. The 
rationale is to model a number of types of organisms (e.g. one being ‘daisies’ D) that can survive within a limited range of local 
environmental conditions (e.g. one such being ‘temperature’ T). Collective survival of an ecosystem of different organisms means 
all of them are currently viable in their local environment; robustness of an ecosystem is measured in terms of how wide a range of 
perturbing environmental conditions it can survive; e.g. perturbations from an external ‘sun’ S creating hotter/colder conditions. An 
organism may have some local environmental effect (e.g. the albedo of a black daisy may raise local temperature), and complexity is 
measured as the number of such different effects within the ecosystem. The key DW result is that more such complexity leads to 
greater ecosystem robustness. 
 We demonstrate this, starting from the simplest ecosystem with a single species; for equations see Appendix A. Figure 2 shows 
schematically the basic influence of environment T on an organism D.  Figure 3 shows the consequence of further adding an effect 
from the organism D onto the environmental variable T. The consequence is to extend, i.e. widen the range of solar forcing 
(perturbing external effect S) for which the organism is feasible [7]. Here the effect is positive (e.g. the albedo of a black daisy 
increases local temperature) the solar feasibility range is extended towards lower values than otherwise. A negative effect (e.g. white 
daisies tend to reflect heat and decrease temperature) would extend the solar feasibility range towards higher values.   

Viability  and  Feasibility.  Discussions in Gaia Theory and Daisyworld modelling have been plagued by a failure to distinguish 
between these two different but inter-related concepts. Here the term viability is used to refer to the deterministic relationship 
between organisms (e.g. daisies D) and local environmental conditions (e.g. temperature T): when the daisy population as a function 
of local temperature (as specified by the equations) is positive, this defines a viability-range, e.g. [Tlo, Thi] defined in degrees 
Centigrade. By contrast the term feasibility here refers to the relationship between organism-viability and external perturbations 
(here solar forcing S): analysis of the system dynamics should allow us to determine a feasibility-range of external perturbations, 
e.g. solar forcing [Slo, Shi] defined in Watts/m2, within which a viable (>0) steady-state daisy population is possible. 
 Though S and T are fundamentally different quantities measured in different units, there is a convenient shortcut that allows them 
both to be measured in T-units of temperature: one may scale measures of solar output S to the temperature T that would prevail if 
all biota was absent, a dead planet. This shortcut is usually taken in the literature, as it is in this paper (e.g. see caption to Figure 2); 
but it comes at the often-unrecognised conceptual cost of facilitating confusion between viability and feasibility. Much 
misunderstanding of Gaia Theory arises from this conceptual confusion, and indeed the present author has been guilty of this 
himself — hence the need to edit some mentions of ‘viability range’ from a previous paper [7] to ‘feasibility range’ in this version. 
A crucial distinction is that the mapping T→D is single-valued, the viability of biota (e.g. daisies) is a deterministic function of local 
environmental conditions (e.g. temperature); whereas the mapping S→D is potentially more than single-valued, specifically in the 
regions of a hysteresis loop.  
 In such regions, for any value of S (or, via the re-scaling shortcut, the corresponding T) there may be either a non-viable D 
population of D=0, or a viable D population >0. Whether one observes non-viability or viability in such circumstances depends on 
the contingent history; but the crucial definition of feasibility, on which the Gaia Regulation Theorem is based, requires only that at 
least one such contingent history gives rise to a viable non-zero population at steady-state. 

Plus and Minus, Rein Control.  Further, if both black and white daisies are potentially available with both positive and negative 
effects on the local environmental variable, temperature, they will collectively expand their joint feasibility range, as seen in Figure 
4. This phenomenon depends on some basic assumptions spelt out in Appendix A; each variant, black or white, largely determines 
its own local temperature but with some ‘leakage’ between them in their shared environment. In this model, interactions between 
different ‘species’ such as DB and DW are only mediated via environmental variables, rather than through e.g. direct predation of one 
on the other. The results here, and developed further in [7], demonstrate that any changes in feasibility range (for DB&DW, or DB or 
DW individually) always increase that range and never decrease it. 
 The expanded feasibility range takes the form of hysteresis loops as in Figure 4b. If the external perturbing force, here S, changes 
slowly, then which of the upper (viable) or lower (non-viable) arms of such loops is followed depends on which direction they are 
approached. In this sense history matters. 
 This is an example of ‘rein control’ [4, 5]. Clynes [4] observed a pattern when natural organisms exhibit homeostasis in response 
to external forces threatening viability both from above and below (e.g. both ‘too hot’ and ‘too cold’). Rather than one mechanism 
responding in two directions, he noted two mechanisms each responding in one direction only — referred to as unidirectional rate 
sensitivity. Since reins of a horse have this same property, each pulls but does not push, he called this ‘rein control’. 
 This is further related to Le Chatelier’s principle [13] as known to chemists and economists. This principle asserts that when any 
system in equilibrium is disturbed the system will adjust itself so as to (at least partially) nullify the effect of the change. Though 



posited some 80 years before ideas of rein control were introduced, it is aimed at precisely those forms of balanced dynamic 
equilibria such as we see in Gaia Theory and DW phenomena that may naturally be described in rein control terms. A practical 
application of this principle is the use of a buffer solution which resists changes in pH when acid or alkali is added. Such buffers 
may be artificial, i.e. designed by chemists [20], or seen naturally where the bicarbonate buffering system regulates pH of blood in 
humans or other animals [12].  

Multidimensional Daisyworld 
So far we only considered one environmental variable at a time: say temperature in DW, pH in the buffering examples. What if two 
or more such variables are simultaneously relevant, e.g. both temperature and pH? 
 We can answer this within any very simple, abstract class of ecosystem models where (any number of) ‘organisms’ are modelled 
by ‘hat-shaped’ viability functions of (any number of) environmental variables; and in turn the organisms have any effect of any 
kind, positive or negative, on each or all of the environmental variables. In such cases it has been shown in the ‘Gaian Regulation 
Theorem’ [7] that hysteresis loops or buffer zones as illustrated above exist regardless of the dimensionality of any such system. 
Perturbations in any number of dimensions will tend to be countered so as to widen — and under the stated constraints never lessen 
— the viability range of any disparate group of organisms in an ecosystem, or of individuals in a corresponding social system. 

Gaian Regulation Theorem 
In Appendix B we give the most recent version of the proof of this theorem, GRT. A main reason for Gaia Theory being 
controversial is that there are so many different versions of its supposed claims. Kirchner [10] catalogued and critiqued a number of 
different spins on Gaia Theory, but none of those correspond exactly to what is presented here as a mathematical theorem: provided 
a dynamical system meets the conditions specified, then provably the feasibility range of external perturbations for which a steady 
state with a viable (>0) population is possible can only be increased, never decreased, by any effects of ‘biota’ on ‘environment’. As 
a mathematical theorem, the only distinction between ‘biota-like’ variables B and ‘environment-like’ variables E is the different 
form of the equations relating one to the other.  
 We do not here address the separate scientific question of whether these equations can indeed (plausibly enough) model the actual 
interactions between biota and nature in the real world. But we note that both the equations of Watson and Lovelock [23], and their 
demonstrated core results, do indeed correspond to the requirements of the generalised GRT as presented here and its conclusions. 
GRT fully endorses the core point made in the original DW papers. Many of the subsequent misunderstandings of DW (e.g. see 
many listed in [10]) relate to the mathematics of feedback systems, not to the science itself. 

GRT summarised 
Here we more informally summarise the salient points of Appendix B. We generalise the original DW model to an arbitrary number 
m of B-variables (usually interpreted as different biota such as black and white daisies, D above); an arbitrary number n of E 
variables (environmental, such as temperature T above) associated with each B; and the same number n of perturbing forces P 
(external global perturbations such as solar insolation S above with its effects on temperatures). The interpretations are irrelevant to 
the mathematics; but the different classes of variables and parameters determine the forms of the simple differential equations 
defining a dynamical system. 
 Each B-variable changes over time according to a ‘viability-function’ of its n local E-variables, that carves up E-space into 
regions where B tends towards zero (i.e. is non-viable) and the remainder where B tends towards some positive value (is viable). 
The equations guarantee that B-variables must always remain non-negative. We can summarise this (omitting here any time 
parameter) as: 
 dB/dt = V(E) - B 

 Each E-variable that is associated with a B-variable will change over time according to a formula with three salient influences. 
Firstly, there is an external biasing term that influences E towards some externally fixed global P perturbation. Secondly, there is a 
‘diffusion’ or ‘leakage’ term that tends to diffuse the E-values of each B towards some average value E based on E-values of some 
or all of the other Bs. Thirdly and crucially, there is an ‘effect’ term F(), such that the B-variable may have influence so as to either 
increase or decrease its own local E-values. F() is a continuous, potentially non-linear, function of B subject only to the constraint 
that F(0)=0, i.e. zero B means zero local effect. We can summarise this as: 
 dE/dt = P + 𝛼(E -E) + 𝛽F(B) - E      
where 𝛼 and 𝛽 lie within the range [0,1]. 
 P are parameters in the sense that — if they do indeed vary — they vary on so much slower a time scale than B and E that the 
latter have time to reach a stable equilibrium for any given P. The form of the equations guarantees at least one, and potentially 
more, stable equilibrium/a. The GRT focuses on the conditions — specifically what we define as the feasible range of P-values — 
under which there exist such equilibria with positive B-values, i.e. with viable B.  
 The claim of Gaia theory is that the effects that biota have on their environment will — under some plausible range of conditions 
yet to be fully specified — somehow contribute to extending the capacity of the environment to sustain life. This translates within 
this model to the claim that the effects B-variables have on E-variables acts so as to potentially increase (and never decrease) the 
feasible range of P values, i.e. external perturbations. This corresponds to the core claim of the original DW models [23]. 
 The proof in Appendix B proceeds by comparing the feasible range 𝓕 of P values in the standard case (where B affects E) with 
the feasible range 𝓕0  in the ‘null’ case where B has no effect on the environment. If 𝓕 is bigger than 𝓕0, we may claim that the 



extended range is attributable to effects B has on E, and call this an example of Gaian regulation. However in practice we adopt a 
much more stringent condition than 𝓕 bigger than 𝓕0, namely 𝓕 ⊇  𝓕0. We cannot prove the more stringent result under all 
versions of the set of equations sketched out, because there are indeed counter-examples (and we shall show one). But for two 
simple versions we can indeed prove that the specific constraints entail 𝓕 ⊇  𝓕0. The form these proofs take indicates where we 
may find our counter-example. 

 One constraint for part of the proof to work is that we require viability zones to be convex. In other words, any point in E-space 
that is intermediate between 2 (or more) points lying within such a zone will necessarily also lie within the same zone (Fig. 5). In 
each case we can motivate the proof that the equation for dE/dt can be recast in the form 
 dE/dt = P + X - E     
where X (= 𝛼(E -E) + 𝛽F(B)) can be thought of as some potentially moving target, and E moves towards some intermediate value 
between X and P. If P is fixed at some value within the viability zone, and E starts off at the same value, what constraints on X will 
ensure that E never leaves the viability zone? 
 The first rather trivial Scenario I we can prove is where diffusion effects are zero (𝛼 =0). This means that there are zero 
interactions between the local environments of any one bio-variable and any other; in effect each bio-variable exists in its own 
isolated world, and in that case we can quickly show (Appendix B) that 𝓕 ⊇ 𝓕0. The proof can be summarised as taking 
 dE/dt = P + 𝛽 F(B) - E    (since 𝛼 =0) 
and noting that this indicates a vector of change of E towards P + 𝛽 F(B). If P is within B’s viability zone, and one initialises E at the 
same value P, then subsequent dynamics will move E but can never take it across the zone boundary — because at that boundary 
B=0 and hence F(B)=0. So wherever E finishes up, it must be within B’s viability zone. 
 The second Scenario II we can prove is where we allow diffusion effects (so that the different Bs interact) but require all their 
different viability zones to cover the identical convex region of E-space. This means that we reintroduce the term 𝛼(E -E); but since    
E is derived from averaging across different Bs, then so long as the Bs are viable then the convexity entails that E will also lie 
within the same shared viability zone. Once again this means that the dynamics cannot take E across the zone boundary. 
 The details of the proof in Appendix B confirm that it is a sufficient — but not necessary — requirement for all the Bs to share 
the same convex viability zone; this guarantees 𝓕 ⊇  𝓕0. We note that this points to where the proof may break down: when 
viability zones are not identical, and the diffusion effect may be strong enough to ‘pull’ an E-value outside a viability zone. This 
motivates the minimal counter-example shown in Fig. 6, with a single E-variable and two B-variables. Using the numbers shown, 
we can see that — although individually in the absence of diffusion, B1 and B2 do extend their P-feasibility ranges — collectively in 
the presence of diffusion B1&B2 do not. 

 Perhaps surprisingly, it is somewhat difficult to construct such a counter-example. Fig. 6 demonstrates an ‘exception that proves 
the rule’. The conditions on convex shared viability zones that do guarantee Gaian regulation are sufficient but not necessary for the 
proof to hold, and it turns out that in practice many of these constraints can be relaxed whilst still providing such regulation. 
Analysis [5, 7],  together with observation and common sense, support heuristics that large B-effects on E (whether positive or 
negative) are more likely to extend feasibility range than small effects; and where there are many B variables interacting, greater 
extension of feasibility range is promoted by having diffusion or ‘leakage’ terms at intermediate values. Too little diffusion results in 
B variables having little interaction, whereas too much diffusion means their behaviours tend to merge towards one global average 
where positive and negative effects cancel each other out. This observation motivates the use of intermediate diffusion or leakage 
values in both the simple 2-B version of the original DW (see Appendix A) and in the following illustrative multi-B example 
(elaborated in Appendix C). 

Figure 5. (a) a convex zone ensures that if points J and 
K lie within, then any intermediate point L also lies 
within. This is no longer guaranteed for (b) a concave 
zone, nor (c) for separated zones.



Illustration of Multidimensional Gaian Regulation 
As an illustrative example of Gaian regulation in some abstract multidimensional domain, Figure 7a shows 8 groups of 8 species in 
clusters of narrow preferences for 3 environmental variables. Within each group, there is indeed the shared convex viability zone 
discussed in the proof. In the absence of DW feedbacks at most one such group could be viable since the small group-viability 
spheres do not intersect (only P and V spheres shown here). If we add DW effects, different for all 8 members within each group, 
then when an external perturbation happens to pass the neighbourhood the whole group of 8 becomes jointly viable with a 
feasibility radius greatly expanded (from 0.05 to 0.218 for effect size 0.4; details in Appendix C). Given the technical definitions of 
feasibility and viability given above, we may call the expanded region a feasibility region (based on the axes being perturbation 
dimensions); whilst the original unexpanded spheres are viability regions (based on environmental variables providing the 
dimensions). The expanded feasibility spheres (e.g. V-sphere in Figure 5b shows the expansion for an effect size of 0.4) may now 
overlap and (depending on environmental history) several such groups may become simultaneously viable; feasibility regions may 
overlap even where the viability regions do not — indeed this lies at the core of the DW phenomenon. If the effect size were 
increased (from the 0.4 shown in Fig. 7b) to 0.8, the mid-value perturbation C (0.5,0.5,0.5) would be within all 8 such potentially 
expanded feasibility spheres, thus allowing all 64 (8x8) species with diverse environmental limits and diverse effects to be 
simultaneously viable — provided that contingent history did accumulate all these buffering steps. 

Hysteresis and History 
This illustrative proof of principle still only has 3 dimensions of environmental/perturbation variables, and is symmetrically set up 
to demonstrate an effect. The GRT is as valid for 103 dimensions as it is for 3, and the motivation for using 3 here was only that it is 
easier to visualise in a diagram. Real systems will typically have more dimensions and be highly asymmetrical and locally varied, 
with convoluted overlaps of basins of attraction. Nevertheless we can see that different perturbation trajectories may result in very 
different ecosystems. Trajectories matter, history matters — and the choice points relate directly to hysteresis effects. Hysteresis and 
history may be etymologically largely unrelated, but conceptually there is a strong connection.  
 Such meandering paths through ecosystem-space can be compared with meandering evolutionary paths through DNA-space, and 
some degree of resemblance is not entirely accidental. From a high-level perspective the viability functions of DW can be related to 
the survival focus of Darwinian evolution. The natural settlement into attractors of the broad class of dynamical systems that is 
multidimensional DW relates directly to the natural selection of Darwinian evolution. Indeed the latter may be seen as a special case 

Figure 6. A counter-example where the addition of interacting effects does indeed reduce the feasibility range of B1&B2, with a 
single environmental variable E. B1 and B2 have witch’s hat viability zones of radius 10, centres 50 and 65. Hence in absence of 
effect or diffusion (column 1), feasibility ranges are [40,60] and [55,75], with an overlap [55,60]. B1 effect size is +10, meaning 
(column 2) its self-effect does not extend viability range [40,60]. B2 effect size is +40, meaning (column 3) its range extends to 
cover [42,74] with its self-effect. However if (column 4) these effects are shared with a diffusion rate of 0.5, the interactions 
means B1 and B2 mutually exclude each other, they now have zero common range of feasible P values. 



of the former. They both have surprising and counter-intuitive consequences; for instance an increase in an effect that increases the 
range of DW robustness usually decreases a conventional measure of Darwinian fitness [7]; feasibility and viability are subtly 
different. 

Where an A-Historical Analysis Differs 
The analysis of ecosystems in terms of DW, with robustness associated with complexity, runs counter to the expectations of some. 
One influential analysis [17] of an even broader class of ‘any large complex system’ (that includes multidimensional DW) purports 
to contradict it, proposing that, after some critical number of variables is exceeded, such systems are inherently unstable. Three 
mathematical flaws in this analysis have been previously exposed [6]. We here go further in identifying these flaws as arising from 
an a-historical analysis that resembles the a-historical analysis of IPD [19, 22].  
 May [17] picks out an arbitrary equilibrium point of a large complex system and analyses its properties. This arbitrary choice, 
together with other explicit or implicit assumptions he makes, allows one to draw general conclusions; as the system gets larger, the 
chance that this specific equilibrium is stable tends towards the vanishingly small. This part of May’s argument resembles 
creationists’ arguments about the improbability of the ‘irreducibly complex’. But even though the probability of an arbitrary lottery 
ticket being a winner may become arbitrarily small as the lottery itself gets arbitrarily big, this does not in itself prevent there being 
a winning ticket, or indeed many such.  
 A dynamical system left to its own devices will naturally head towards a stable equilibrium, such a ‘winning ticket’; GRT 
assumptions ensure there is indeed at least one stable one, and any unstable equilibrium will only be briefly observed. As external 
conditions change, such a system inevitably passes through a sequence of metastable states. Thus any observed equilibrium is 
almost inevitably a stable one; which equilibrium it is depends on the history of the system. May’s analysis [17] of a generic a-
historical equilibrium state has little relevance for the analysis of specific, observed, historically contingent equilibria [6]. Likewise 
the analysis by Press and Dyson [19] of extortionate ZD strategies for IPD, or by Stewart and Plotkin [22] of generous ZD 
strategies, has little relevance for historical contingent strategies such as TFTC or TFTD. 

Conclusions 
Crudely speaking, biology equals physics (and chemistry) plus history — stability in the short term plus the contingent context 
arising from an extended history of (meta-)stability. More elegantly put, “Biology has always occupied a middle ground between the 
determinism of classical physics and the uncertainties of history” [21]. When the physics of short-term stability is the focus of 
attention to the exclusion of contingent history, key concerns that can characterise complex systems can be missed. 
 It may be more than a coincidence that Press, Dyson, Stewart, Plotkin and May, variously cited and criticised above, all come 
from physics backgrounds. Another physicist, Rutherford, is quoted [2] as saying “All science is either physics or stamp-collecting”. 
If the latter is interpreted as contingency, it need not be taken as derogatory; this is not only important for understanding real 
biology and social science but equally so for Artificial Life models of these. 
 In biological systems internal DNA is one obvious marker of a history, but other external markers may also be crucial. In 
polycentric social contracts [18] there may be multiple overlapping simultaneous systems of governance; likewise in polycentric 
organisms, polycentric ecosystems. Adaptations (and neutral changes) in any one system layer are within (and constrained by) the 
contingent current context of the others. Complexity of the whole arises through such adaptive/neutral trajectories through history, 
and cannot be explained a-historically. 

Figure 7. (a) 3 dimensions of external environmental 
perturbations. P is  group of 8 species, preferred env. 
(0.4,0.4.0.4), viable within radius 0.05 of this as shown by P 
sphere. Similar groups centred on Q, R…W, at corners of 
cube. Arrows show a possible trajectory of external 
perturbation. (b) This passes through viability zone of group 
V, DW effect consequently expands its viability radius to 
0.218. See Appendix C.



 A specific novel observation in this paper, apparently not noted by other commentators, is that the recently discovered 
extortionate ZD strategies in IPD [19], together with their generous cousin strategies [22], have very little relevance to any 
biological or social studies of cooperation because they are all avowedly a-historical. Their Markovian assumptions are 
mathematically powerful but implausible as models of reality. The same applies to May’s analysis of large complex systems [17]. 
 The Gaian Regulation Theorem has been presented here in its most general form to date. As a mathematical analysis of a very 
broad class of dynamical systems, it may be applicable far beyond its origins in Daisyworld models. The different trajectories 
available at the hysteresis loops central to such systems are key to their capacity for accumulating history, and the GRT points to 
relationships between adaptive stability and history. 
 Successful real social systems and ecosystems have a history of adapting to circumstances, and this gives context to their current 
stability. Artificial Life models should reflect this, and there are currently many promising research areas that give scope for 
developing what are often currently deficient a-historical models too as to take account of such contingency. History matters. 

Appendix A  
Figure 4 shows ‘black’ and ‘white’ daisies, DB and DW, and respective local temperatures TB, TW [5]. Figure 3, using DB only, is 
similar except that DW is clamped to 0. 
 Daisy viability w.r.t. local temperature is based on a ‘hat-shaped’ function H(T) with (Figure 2) peak value 1.0 at Topt   reducing 
to zero outside some limited viability range. Results are not qualitatively changed by different hat shapes. 
             (A1)   H(T) = max(0, 1 - abs(Topt - αT)) 
Parameter α sets slope of hat. hence radius (=1/α) of daisy-viability in terms of its local temperature. Parameter β sets the rate at 
which daisy-viability moves towards the hat-function: 

(A2)   dDB/dt = β (H(TB) -DB) 
(A3)   dDW/dt = β (H(TW) -DW) 

The local temperature TB, of black daisies DB is based on the solar insolation S, altered (i) by positive influence from the black 
daisies, and (ii) by equilibration towards TW. TW is conversely affected, white daisies have negative effect. On the assumption that 
temperatures settle faster than rate of change of Daisies we can use the steady-state values as in [5]. Using Tʹ for intermediate values 
of T, phase (i) is: 

(A4)   TʹB = S + γ DB 
(A5)   TʹW = S - γ DW 

where γ parameterises the effect size for black/white daisies increasing/decreasing their own local temperatures. Phase (ii) gives the 
final temperature T as a compromise between each individual Tʹ and their average current values; there is some ‘leakage’ [5], here 
parameterised via δ (for 0≤δ≤1), between temperatures of black and white daisies: 

(A6)   TB = δ TʹB + (1- δ)( TʹB + TʹW) 
(A7)   TW = δ TʹW + (1- δ)( TʹB + TʹW) 

If we choose δ=0.5, then algebraic manipulation shows that equations (A4,A5) together with (A6,A7) can be replaced by: 
(A8)   TB = S + ε (3 DB - DW) 
(A9)   TW = S + ε (DB - 3 DW) 

where for convenience we substitute ε (= γ/4) for parameter γ.  
 Equations (A1), (A2,A3) and (A8,A9) can be simulated computationally by choosing some specific value for S, and running 
these equations from starting values for D, T, until steady-state is reached. In hysteresis regions, the end-states reached will depend 
on the starting states. To plot one branch of each hysteresis loop,  S should be initialised at a low value, and the computation run 
until D, T reach steady-state.  Then S is incremented slightly, keeping current values of D, T as new starting values for the next run; 
this is further repeated, through to high values of S.  If the process is then reversed, moving from high S to low S, the other branches 
of the hysteresis loops can be plotted. In Figure 4b, the feasibility of DB+W is plotted as: IF (DB>0 AND DW>0) plot 1, ELSE plot 0.  

Appendix B  
We here develop the formal analysis of the Gaian Regulation Theorem of [7] to be even more general, covering arbitrary numbers of 
variables. The proof requires certain constraints that we show are sufficient (but not necessary). 
 We use 3 classes of variable, B, E and P, that correspond to Biota, Environmental variables and external Perturbations, 
generalised to m biota Bi (i=1..m), and n types of environmental variables (env-var) and perturbations. This gives us Pj (j=1..n); and 
since each biota has its own local env-var, we have Eij (i=1..m, j=1..n). 
 We assume that perturbations are slow-moving enough to act as fixed parameters for long enough for the other variables to reach 
equilibrium, as governed by the equations: 

   (B1)   𝜏i dBi/dt=Vi(Ei,j=1..n) - Bi 
     (m eqns for i=1..m) 
   (B2)   𝜏´ij  dEij/dt=Mij(Pj)  + 𝛼Dij + 𝛽 Fj(Bi) - Eij 
     (mn eqns for i=1..m, j=1..n) 



where M(), D() and F() are respectively Monotonic, Diffusion and Effect functions to be defined below; 𝛼 and 𝛽 (in range [0,1]) 
parameterise degrees of diffusion and effect; 𝜏 and 𝜏´ are positive parameters setting timescales for the trajectories of Bi and Ej 
towards their respective nullclines (given by dB/dt=0, dE/dt=0): 

   (B3)   Bi  = Vi(Ei,j=1..n) 
   (B4)   Eij = Mij(Pj) + 𝛼 Dij + 𝛽 Fj(Bi) 

Vi() is any continuous non-negative bounded Viability function of any or all the E; Vi() divides E-space into a region 𝓥+i where 
Vi()>0 (Bi is viable) and the remainder 𝓥0i where Vi()=0 (Bi is non-viable). For the purposes of this proof we are going to add the 
quite strong constraint that each such viability region 𝓥+ is convex, as illustrated in Figure 5. Mij() is any continuous monotonic 
(for example linear) function of external perturbations that acts as an external biasing term. Dij represents a diffusion term that tends 
to equilibrate E-values towards Ei some average of different ‘neighbouring’ environmental values; for any given i, Ei  = ∑wijEij/∑wij  
(summing over j) where all weights are in range 0≤w<1, and Di = Ei - Ei . For example, in the original DW these terms mediate the 
diffusion of heat between populations of black and white daisies. Fj() is any continuous bounded Effect function of any or all the B, 
constrained only by the requirement that Fj(0)=0 (zero B means zero effect).              
 The simplicity of this family of ODEs means that there are only point equilibria, where the nullclines intersect; each equilibrium 
is either stable or unstable with only the stable ones acting as attractors. Since the nullclines are continuous, it can readily be shown 
that neighbouring equilibria along any intersection of nullclines must alternate between stable and unstable. Because the nullcline  
functions are bounded, there must be at least one stable point attractor; and in fact there will be some odd number 2a+1 (for some 
a≥0) of equilibria of which a+1 are stable, the rest unstable [7].     
 We are interested specifically in any stable equilibria where biota are viable, B>0; we may be considering a single B, several, or 
all of them collectively. We define as feasible those regions 𝓕 of P-space where there exists at least one stable equilibrium with B 

viable. We do this under two different scenarios: firstly the standard scenario where 𝓕 defines the feasible parts of P-space with the 
B-effects as specified above, and secondly the null scenario where 𝓕0 defines the feasible parts of P-space when the B-effects are 
all nullified or turned off. We can then look at the difference between 𝓕 and 𝓕0 as defining the difference in feasible P-space 
attributable to those B-effects being non-zero. We now proceed to prove for two specific scenarios that 𝓕 ⊇ 𝓕0; in other words the 
B-effects can only expand the range of P-space feasibility (as compared to the range with null B-effects) and never decrease that 
range.   

Scenario I, no diffusion. If we set 𝛼=0, there are no diffusion terms and indeed no interaction at all between the different Bs. Hence  
in this rather trivial scenario we can treat each one independently. For any one B, eqns (B2, B4) become (omitting i):  
   (B5)   𝜏´j  dEj/dt=Mj(Pj)  + 𝛽 Fj(B) - Ej 

and at equilibrium (B6) Ej = Mj(Pj)  + 𝛽 Fj(B) 
 Within a j+1 dimensional phase space, comprising the j dimensions of E (or P) plus the one dimension of a single independent B,  
the B-nullcline of eqn (B3) comprises a manifold whose B>0 values define a viability-zone 𝓥+ for B. The E-nullcline of eqn (B6) is 
a line passing through E=M(P) when B=0. Joint equilibria for both B and E occur at point(s) where the line intersects the manifold. 
Consider first the null case where 𝛽=0, and any external perturbation P* for which there is a viable (B>0) stable equilibrium. It 
follows from (B6) that that equilibrium value E0*=M(P*), and E0* lies within the viability zone 𝓥+. Moving on now to the standard 
case where 𝛽=1, with the same external perturbation P*, we see that the E-nullcline of (B6) becomes E = M(P*) + F(B). Let the first 
point at which  this line intersects the B-nullcline of (B3) be at E=E+*. We have 
  (B7) E+* = E0* + F(B) 
But E = E0* + F(B) defines a continuous line, passing through the point (E=E0*, B=0) and necessarily intersecting the B-nullcline 
manifold where B>0. So E+* must also lie within the viability zone 𝓥+. 
 In other words, any P* that provides a viable (B>0) stable equilibrium in the null case will necessarily also provides a viable 
stable equilibrium in the standard case: for this no-diffusion Scenario I, for each B independently (and hence for all collectively) 𝓕 
⊇ 𝓕0. 

Scenario  II,  with  diffusion,  but  with  a  common viability  zone.  Here  we  wish  to  consider  positive  𝛼,  e.g.  𝛼=1,  when  in 
consequence the diffusion of environmental variables means that the Bs can no no longer be treated independently. We can still 
prove the desired result, provided we add the significant constraint that all the different Bs share the same common convex viability 
zone 𝓥+. 



 The proof is by reductio ad absurdum, considering what would happen if we choose to vary 𝛼 continuously from 0 to 1. We know 
that at 𝛼=0 we have the desired result since this is Scenario I. Suppose at some intermediate value of 𝛼, as it is increased, the result 
first fails to hold true: one at least of the Bs fails to have a viable stable equilibrium in the standard case. At that moment, for each B, 
their E-values must be either within 𝓥+ or (for Bs on the point of becoming non-viable) at the very boundary of 𝓥+. Hence at that 
moment any weighted average E of some or all the Bs must — because of the convexity of  𝓥+  — itself lie within 𝓥+. In 
consequence we can go through the same steps of the proof as for Scenario I, considering one specific B on the point of becoming 
non-viable, except that at equation (B7) our E-nullcline now includes the diffusion term: 
   (B8)  E = E0* + D + F(B) 
Because D is defined in terms of E, (E0* + D) must be within 𝓥+. So the same arguments as in Scenario I will hold, replacing E0* 
with (E0* + D), and again the E-nullcline intersects the B-nullcline manifold where B>0. So again E+* must also lie within the 
viability zone 𝓥+. But this contradicts our supposition that we are considering a value of  𝛼 where this ceases to be true.

Thus in Scenario II, using our constraint a common convex viability zone 𝓥+ shared between all the Bs, the diffusion terms will 
not shift any equilibria out of such zones; again we have  𝓕 ⊇ 𝓕0. 
 We should note from the details of the proof that it requires the null B-effects not merely to refer to any B-effect that directly 
affects the viability of itself, but also to B-effects that may only do so indirectly via other Bs. 

Appendix C  
Figure 7 shows 3 dimensions of external env. perturbations. Viability of group of 8 species at P is 1.0 at (0.4,0.4,0.4), decreasing 
linearly to 0.0 at radius (Euclidean distance) 0.05. Each species has different +/- effects on 3 respective env. variables (2^3 = 8 
variants); signs differ, but effect size is always 0.4. The other 7 groups (Q,…,W) are formed similarly.   
 Effects of a P-species are multiplied by their viability and have two local contributions: half serves to shift the P-group local env. 
away from the perturbing force (and is thus shared with other P-members; ‘leakage’ or ‘diffusion’); and half shifts the species- 
specific env. away from the P-local env.  This choice is motivated by the observation that extended feasibility range is promoted by 
such intermediate diffusion values. Over a trajectory of env. perturbations, at each point 20,000 computational iterations altered 
viability by 0.001 and local env. variables by 0.005 of their indicated shift. This smoothing of dynamics, together with the 
inheritance of previous env. values as perturbations changed, avoided numerical instabilities. A species was considered extinct if 
viability<0.01.  
 An effect size 0.4 expanded feasibility radius of each group from 0.05 (the basic viability radius with null effects) to 0.218; an 
effect size 0.8 is seen to expanded feasibility radius further to 0.35. 
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