Artificial Evolution for Real Problems

INMAN HARVEY

CCNR, COGS

Unwersity of Sussex

Brighton BN1 9QH, UK

Tel: +44 1273 678754, Fax: +44 1273 671320

Email: inmanh@cogs.susz. ac.uk

1 Introduction

Humans are naturally evolved creatures, and the selection criteria under
which our ancestors were judged did not include the ability to design complex
systems — in fact, we are not very good at it. A common and useful trick to
overcome our shortcomings is that of Divde and Conguer; a complex problem
is decomposed into separate, less daunting, sub-problems. This can be seen
in the division of labour which the industrial revolution brought about in
the workplace. Likewise in good computer programming practice, the overall
problem is broken down into smaller pieces that can each be tackled by a
separate function; these functions should be carefully fenced off from each
other, interacting only through the passing of values in a well-defined manner.

Only the relatively easy problems can be handled successfully using this
Dwnde and Conguer trick — the problems that we have had some success
with. But where interactions within a complex system are so many, or so
little understood, that we cannot understand how to divide it into smaller
comprehensible pieces, then we will not be able to control it for our purposes.
It is for these kinds of problems that artificial evolution is put forward as a
means to develop complex systems that work even when they are too complex
to comprehend.

I will first introduce Genetic Algorithms (GAs) as the best-known appli-

) . Initial
/— — " Random
/ _ _ \ Population
\

'
'
|
\ EQ
|

GENERATION /— —

%

% ST
@ J— J—
EVALUATE % BREED
7 @ @ 3 9 — — 6
RS e — i breed
9 6 Tyt _
1 g SELECT 53— — 1 %

Figure 1: The Genetic Algorithm Cycle. The lines represent genotypes or linear strings of
characters. The circles containing genotypes represent the corresponding trial solutions to
the problem, which can be evaluated.

cation of ideas from natural Darwinian evolution to engineering applications.
I shall then point to areas where standard GAs used for optimisation are not
the right tools, and show how GAs can be extended to deal with incremental
evolution. Some applications in evolutionary robotics, evolutionary hardware
and combinatorial chemistry will be discussed briefly, and then I will survey
very recent developments which are the topics of current research in the field.

2 Genetic Algorithms

GAs are generally used as a search technique to optimise a parameter set or
a design for a system; where different trial parameter sets or trial designs can
be evaluated against some particular criterion. So the parameters may be
the dimensions of the different parts of an aircraft wing which must balance
high aerodynamic lift and high structural strength against low weight and
ease of manufacture; or the design may be that of a control system for a
robot which has to generate some desired behaviour; or of a molecule to be
synthesised for pharmaceutical purposes, to maximise its binding properties
with some other target molecule; or the configuration of a silicon chip to be
used as an analogue circuit. In every case some ‘genetic encoding’ must be

0 01 11 01 O 1 1 O 1
I M OM
[}

1 01 0,1 1 0 01 1 0 0
[B S VN Y

1
1
1
1 Crossover
1
1
1

o o1 1,1 1 0 01 1 0O
[|
1
| ~ /
1 0 1 0+r1 O 1 O 1 1 1 KIDS
1 — AN
1
' mutation

Figure 2: A random crossover point is chosen on the two parent genotypes, and offspring
genotypes derived from them. Additional mutations can change individual characters on the
resultant genotypes.

devised to suit the particular problem, such that any possible trial parameter
set or design can be written down in the form of a string of characters which
can be considered as a genotype of artificial DNA.

The GA then uses a population of such genotypes; for example 100. The
initial population may be 100 randomly generated genotypes, each of which
encodes a trial solution to the problem. Each solution can be evaluated in
turn (or possibly in parallel) and given a score, its ‘fitness’. For randomly-
generated genotypes these fitnesses will probably be extremely low, but nev-
ertheless through chance some will be higher than others. As indicated in
Figure 1 the fitter members of the population are chosen to be ‘parents’ of
the next generation, whose genotypes will be derived from their parents.

Selection of the fitter parents is generally done in one of many probabilistic
methods [2] which still give a small chance even to the less fit; though one
option of truncation selection is to rank the population in order of fitness and
simply choose the first n fittest as parents. Pairs of parents are picked from
this pool, and from these parents offspring are derived in pairs as sketched
in Figure 2. Recombination means that each offspring inherits some genetic
material from each parent, and mutations add some variety.

The process of generating new offspring is continued until a number equal
to the population size has been reached. this forms the new generation; the
previous generation is discarded and replaced by the new one. The cycle
starts again (Figure 1) with the evaluation on the task of each new trial
solution as specified by the new genotypes.

If the genetic encoding is appropriate to the problem, then ideally the
succeeding generations under the selection pressure should become fitter and
fitter under the evaluation scheme, until near-optimal solutions to the par-
ticular problem are found. There are a number of factors that may prevent a
GA working in this ideal fashion, however. The process of searching for a fit
solution may take too long to be practicable, for instance, or a local optimum
may be found which prevents any further progress. There are a number of
ways in which the standard GA can be varied, which may affect these issues.

1. The population size can be increased or decreased; unless the population
can be evaluated in parallel this will affect the length of a GA run.

2. The Generational GA discussed here can be replaced with a Steady State
one, where only one or two members of the population are replaced at
each stage.

3. A variety of Selection schemes are possible, and these can increase or
decrease the selective pressure.

4. There alternatives to the single-point crossover form of Recombination;
for instance two-point crossover, or even uniform crossover where each
‘locus’ or character on an offspring genotype has an independent 50%
probability of being inherited from either parent.

5. Mutation rates can be altered.

6. A ‘Distributed GA’ can be used, as in Figure 3.

This latter type of GA requires the use of a hypothetical geographical
space in which each member of the population is notionally located in a grid
cell. The GA operations of selection, recombination and reproduction hap-
pen within the local area around any given member (the grid is considered
as toroidal, so that top and bottom edges meet, left and right edges meet).

4

Figure 3: A distributed GA. Each member of the population is allocated a different square
of the grid. If member X is selected as a parent, then the second parent for recombination is
chosen from its immediate neighbourhood, for example the 3 x 3 square. Resulting offspring
are also placed locally on this grid, so that neighbourhoods contain closely related members.

This allows for the maintenance over several generations of different subpop-
ulations which focus on different areas of the search-space; in effect different
sub-species, which still have the possibility of recombining where they are
neighbours. One effect of such a distributed GA 1is, by maintaining variation
in the population, to make it more unlikely to get trapped in a local optimum.

3 SAGA and Incremental Evolution

So far [have described the standard GA which is widely used for optimisation.
It can for instance be used as an alternative to Simulated Annealing, with
which it bears some similarities. A main distinguishing feature of GAs is
that they are a form of population search. One abstract way of visualising
how they operate is to think in terms of genotype space, the high-dimensional
space which contains as separate points each possible genotype. Each such
point can in theory be allocated a score, the evaluation of the trial solution
which the corresponding genotype represents; but typically there are far too
many points for an exhaustive search.

e

Initial random population Final converged

spans the whole space population

Figure 4: A two-dimensional sketch of a multi-dimensional genotype search space. An initial
population samples widely through the space, and through successive generations of a GA
cycle the population becomes focused in a (near-)optimal region.

The theoretical background to GAs such as the Schema Theorem [2] im-
plies that when an initial random population is widely scattered across geno-
type space, as in Figure 4, the successive application of selection, recombi-
nation and mutation is an efficient method of using the information gained
from the relatively small number of evaluated points to focus the population
in onto a region of high fitness, where good solutions to the problem are to
be found. This corresponds in standard GAs to the concept of convergence
to a good solution.

From now on this paper departs from standard GA orthodoxy, as from now
on I shall concentrate on SAGA (Species Adaptation Genetic Algorithms),
which uses rather different assumptions [9, 8, 3]. In contrast to the previous
picture, in SAGA the population is always genetically fairly converged — the
genotypes of different members of the population are rather similar to each
other. Whereas conventional GAs consider genetic convergence to the end of
an evolutionary run, in SAGA it is only the beginning (Figure 5).

Artificial evolution with genetically converged populations, for which the
SAGA approach is tailored, occurs under the following circumstances:

1. Incremental evolution, when the problem itself changes over time; for
instance a sequence of related problems of increasing complexity may be
tackled by a continuing evolutionary algorithm.

2. This may include cases where the genotype length may change in the

\

Figure 5: A sketch of the movement of a converged population through genotype space under
SAGA. The 2-dimensional picture represents a high-dimensional space, which may even be
increasing in dimensionality with successive generations.

course of evolution, particularly where increasingly complex solutions
require increasing genotypes in order to specify them.

3. It is becoming increasingly recognised that even in standard GA op-
timisation problems, an initially random population typically becomes
genetically converged after very few generations, and hence SAGA prin-
ciples are relevant.

The first case has been studied at length in the context of Evolutionary
Robotics [6, 4]. Artificial evolution can be used to evolve robots to perform a
sequence of increasingly complex tasks. The genotypes encode the architec-
ture of the robot control systems (Figure 6), plus possibly also some aspects
of their sensory morphology. In these examples the robot tasks were naviga-
tional tasks towards target objects which were to be distinguished by vision.
A real robot and real vision were used, avoiding some of the simulation prob-
lems to be discussed later.

Initially the target object to be identified and approached was extremely
simple — a long white wall contrasted with a dark background. The popu-
lation of robot genotypes was evaluated for robot prowess at this particular

Figure 6: A genetically specified control architecture for a robot. This is a form of recurrent
neural net, connecting robot sensors with robot actuators via intermediate nodes. This
net implements a control system which produces successful robot behaviour at a specific
navigational task, but as it was evolved rather than designed by a human, the rationale for
its operation is not immediately clear.

target for a number of generations, until success was achieved. Then the tar-
get was made more difficult to distinguish, and evolution continued with the
same population under these new conditions. A succession of such changes
of target took place, with a genetically converged population.

This scenario has properties common to many engineering domains, where
the specification for this year’s model is a tightening up or an extension of
last year’s. If artificial evolution is the design methodology, then it is a waste
of time to start a GA for each new specification with a random population;
instead one should use the SAGA approach of adapting the population that
was evolved for the previous specification.

SAGA differs from standard GAs because of the use of a genetically con-
verged population. Recombination, whilst still relevant, has a lesser role, and
mutation is probably more important as a genetic operator.

1. The converged population will almost always be (to a first approxima-
tion) centred around some current local optimum, or hill in the fitness
landscape (Figure 7).

2. With too little mutation (or too high a selective pressure) no further
progress will be made.

Selection Mutation (maybe

Fitness

rd
{enotype space

Figure 7: The balance between the forces of selection and mutation on the fitness landscape.
Here the vertical dimension represents fitness, and the horizontal dimension represents all the
many dimensions of genotype space. The population will move over this landscape through
successive generations.

3. With too much mutation (or too little selective pressure) any useful
information gained through earlier evolution will be lost.

4. With the right balance optimal search will take place along high ‘ridges’
in the fitness landscape which may lead to even fitter solutions.

5. To a second approximation, neutral networks in the fitness landscape
will be significant; to be discussed in a later section.

The ideal balance between the forces of selection and mutation occurs,
under normal selection scenarios, when there is of the order of 1 mutation
per genotype (regardless of the length of the genotype). This assumes for the
time being that any part of the genotype will have some effect if it is altered;
when we come to discuss junk DNA’ this figure will need to be adjusted.

4 Smooth Fitness Landscapes

So far the discussion has been general, not specific to any particular problem.
When it comes to applying these ideas in a specific problem domain, the first
question to be tackled is the choice of encoding from a linear genotype onto
a trial solution of the problem, a ‘phenotype’. Different choices made at this
stage may well result in different fitness landscapes, and some such landscapes

Zaay NN

Figure 8: Evolution is more effective on smooth fitness landscapes as on the left, rather than
rugged ones wherein similar genotypes typically have uncorrelated fitnesses.

are more amenable to evolution than others. Since most of evolutionary
progress is made through successive mutations, then a rugged landscape in
which neighbouring genotypes have fitnesses usually uncorrelated with each
other will cause problems. A gently rolling landscape is better than a rugged
one (Figure 8).

One lesson that can be drawn from this is that genotypes as represen-
tations of computer programs give inherently rugged fitness landscapes and
hence are not suitable for artificial evolution. The equivalent of a mutation in
a computer program is an arbitrary change of a single character to something
else, and any computer programmer who has written in C or in assembly code
knows that this is almost always fatal to an otherwise functional program.
The achievements of Genetic Programming (GP) [13] do not contradict this,
when one considers continual evolution of a genetically converged popula-
tion. The use of GP is generally confined to a relatively small number of
generations, and often a very large population. Recombination effectively
mixes and matches the variation in the initial population, but this variation
is rapidly exhausted in very few generations. Once this has happened, no
further evolution can take place.

Hence although GP may be appropriate for some specific optimisation
problems, it is not appropriate for the domains where mutation in a converged
population is required, as in SAGA.

When artificial evolution is used for evolutionary robotics, then a smoother
fitness landscape is achieved when there is noise within the control systems;
as then mutations in the structure have effects not so far different from those
of noise that is already present. This has been used with some success in the
robotics work cited earlier.

When evolving hardware circuits [14] on Field Programmable Gate Arrays

10

(FPGAS), then treating them as analogue circuits may well result in evolution
being far easier than if they were constrained to act as digital circuits. I would
suggest that the efforts of most current practitioners of hardware evolution
to evolve digital circuits will, in the long run, have the same limitations as
such paradigms as GP; it may well be that only short-term optimisation,
not long-term continued evolution, is possible. The work by Thompson [14]
avoids this limitation.

5 Neutral Networks

One worry about the use of a genetically converged population in SAGA is
that the population may get stuck on a local optimum in some corner of
genotype space, far from any useful solutions. However there is a large class
of problems for which there is good reason to believe that this is unlikely.

These are problems where the genotype encodes aspects of the phenotype
(or trial solution) in a potentially multiply redundant fashion. Examples in-
clude the three domains mentioned earlier: evolutionary robotics, hardware
evolution, and combinatorial chemistry. In all these cases parts of the phe-
notype may — or may not — be functional, depending on the context of
the rest of the genotype. In the control networks used in the robotics work
mentioned, individual connections or subnetworks have effects that may be
masked or eliminated by the presence or absence of other connections else-
where. In the hardware example discussed below there are comparable effects.
Where a genotype is encoding the linear structure of a molecule which folds
in three dimensions, the binding properties of one part of its length to a tar-
get molecule depend on whether this part is exposed on the 3-D surface, or
is altered by contact with other parts of the molecule.

In all these cases there is a very-many—one mapping between genotypes
and any one particular phenotype, where the phenotype is the behaviour
(of robot, hardware or molecule). This can result in neutral networks in
genotype space (Figure 9), where there are connected networks of genotypes
in genotype space which can be traversed through single mutations, yet which
code for the same phenotype. Models of RNA landscapes show that such
neutral networks can percolate throughout genotype space [10], implying that
any target phenotype can almost always be found fairly nearby to any starting

11

/
L

Q\)\J/

Figure 9: Neutral networks, of neighbouring genotypes which encode the same effective geno-
type, can under some circumstances percolate widely through multi-dimensional genotype
space.

point. Hence it is difficult to get trapped in a local optimum, and much
of evolutionary search is the process of a population ‘searching’ around the
neutral network associated with the fittest phenotype reached to date. When
such search happens upon another fitter neutral network, the population will
‘jump’ onto it, in a form of punctuated equilibrium.

This scenario shows that the simplistic picture of Figure 7 may be partially
misleading for the high-dimensional spaces that genotypes actually support.
There is reason to believe that such neutral networks heavily influence the
manner in which evolution takes place, and algorithms such as SAGA need
to take account of this.

6 Simulations

Evolution requires the evaluation of vast numbers of trial solutions to the
problem being tackled. For interesting real world problems, such evaluations
take time and money; indeed this is the bottleneck in a GA, as the genetic

operations are trivial in comparison. It is tempting, therefore, to use simula-
tions of the problem domain in which to evaluate trial solutions.

Simulations however must be validated; it is all too easy to evolve solutions
that work in simulation yet fail to work in reality. In addition, for some
problems simulations may be too computationally expensive to be practical
options, and testing things in reality may be cheaper. In the context of
evolutionary robotics, Jakobi has developed a theory and a methodology for
deciding just how minimal a simulation can get away with being, yet still
be adequate enough for evolved solutions to work when transferred to real
robots [12, 11]. By carefully assessing which parts of the real world should not
be used by the robot to influence its behaviour, and replacing these aspects
with noise in the simulation, Jakobi can produce minimal simulations that
can run very fast; and he has shown that these can be effective in evolving
designs that work in the real world.

7 Hardware Evolution

One area where simulations have been shown to be inadequate is that of
hardware evolution, when using an FPGA as an analogue device [14]. In this
work genotypes of length 1800 bits specified the configuration of a section of
FPGA containing 100 logic blocks, and evolution was carried out evaluating
the FPGA at a signal-recognition task — the real chip, not a simulation.

A successful evolved design is shown in Figure 10. By testing the chip
the functional subset of connections was determined, as shown on the right
of that Figure. The shaded portions shown affected the functionality of the
chip configuration if they were clamped to fixed values — yet those same
shaded logic blocks were not directly connected to the functional circuit.
Presumably as yet unknown side effects such as capacitance were implicated
in this, but without knowing what these effects were, no simulation could
model them.

As can be seen from Figure 10, although the genotype specified details of
all 100 logic blocks (shown in a 10 x 10 grid on the left), some 60-70% of
these details were redundant (corresponding to blank areas on the right). In
other words some 60-70% of the genotype was redundant or ‘junk DNA’ in
that successful genotype; mutations in such junk parts would not affect the

13

In =t b

| 5 AT
+‘. RS AP

NICH

I
Wi

=k

et e deaatatk
PRSI

(AN |
i
=

7
Zve

4

] 154! lita
S EiNiTaas e nilia
SRR
NN

.-‘l'_-

Figure 10: On the left is shown the genetically specified configuration of the FPGA after
evolution for 5000 generations. On the right is shown the subset of these connections which
is functional, in the sense that the hardware still functions appropriately when the rest of
the chip is clamped to fixed values.

fitness of the reconfigured chip, except perhaps some of those immediately
neighbouring the functional part of the circuit.

This has at least two implications. Firstly, the ideal mutation rate that
balances selection pressure against mutation needs to be adjusted to take
account of this, since mutations in the junk part of the genotype have no
immediate effect. Hence in this example the mutation rate used of some 2.7
mutations per whole genotype corresponds to about one mutation per func-
tional, non-yunk proportion of the genotype. Secondly there can now be seen
the possibility of enormous numbers of different genotypes each encoding the
same phenotype — where now ‘phenotype’ refers not to the complete FPGA
configuration, but to the behaviour of the chip in use. This demonstrates the
existence of neutral networks in genotype space.

Neutral networks need to percolate widely through genotype space to be
of assistance in aiding evolutionary progress, as in Figure 9. Where one
specific region of the genotype is junk, or non-functional, under all contexts,
then the neutrality conferred by this redundancy is no assistance as it will
be confined to a relatively small region. What would be useful is when some
regions of the genotype are junk in some contexts, but not in others, and
this can be seen to be the case in this FPGA example. Some areas of the
chip may be unused in the successful configuration shown, but in earlier

14

Fitness

2.00
1.80

1.60

1.40

1.20

1.00

0.80

0.60

!
ji

1
)
I
f

0.40

ks

0.20

0.00

0 1000 2000 3000 4000 5000
Generations

Figure 11: The maximum and mean fitnesses of the population are plotted over 5220 gener-
ations. The dramatic rise in mean fitness occurs at generation 2660.

‘ancestor configurations’ they would have had an effect on the chip behaviour.
This implies that intermediate neutral networks (passed through during the
evolutionary process) overlap and percolate widely through genotype space,
thus making entrapment on local optima less likely.

8 Analysis of a Fitness Landscape

The evolutionary pathway of Thompson’s experiment of [14] was analysed
in detail in [7], and this will be summarised here as it sheds light on more
general issues in artificial evolution.

A genotype of 1800 bits directly encoded the functions and pattern of
connections of 100 logic blocks, or ‘cells’, within the FPGA: 18 bits for each
cell. A population of size 50 was initialised randomly. In a generational GA
each genotype was used to reconfigure the FPGA which was then evaluated
at the task. The next generation was generated by first copying over the elite
member unchanged; the remaining 49 members were derived from parents
chosen through linear rank-based selection, in which the fittest individual of
the current generation had an expectation of twice as many offspring as the

15

average
average hamming
hamming distance
distance 900
900

800
700
600
500
400

300 300
200 200
100 100

0 0

800

700

600

0 2000 4000 generations 0 2000 4000 generations

Figure 12: Plot of genetic convergence within the population (measured as average Hamming
distance between pairs of genotypes) against generations. On the left, from the evolving
hardware; on the right, with fitnesses randomly allocated.

median-ranked individual. Single-point crossover probability was 0.7, and the
per-bit mutation rate was set such that the expected number of mutations
per genotype was 2.7.

Evolution was continued for 5220 generations, with full genetic data saved
every 10 generations. In Figure 11 the maximum and mean fitnesses are
plotted, showing a dramatic increase in the mean at around 2660 generations,
and the maximum fitness reaching a plateau at around 3000 generations
(there is a small but definite further improvement shortly after generation
4000). This fitness corresponds to near-perfect performance at the signal-
discrimination task on which the chip was being evaluated.

The fact that some 2/3 of the 1800 bits were redundant in the genotype
that produced the successful configuration of Figure 10 implies that it would

21800 1 0ssible points in

be a conservative estimate to suggest that out of the
genotype space — binary genotypes of length 1800 — at least 21200 points
represent hardware designs successful at the task; massive redundancy.

In Figure 12 we plot on the left side the genetic convergence within the
population as evolution progresses. This is measured as the average Hamming
distance between pairs of genotypes drawn from the population. In the initial
random population of genotypes of length 1800, this average is around 50%
or 900 bits, but it can be seen that genetic convergence to below the 100

level is rapid, occurring within the first 45 generations. There is a temporary

16

climb to above the 200 level after 2000 generations, which then falls back at
around 2660 generations: the same time as the sudden rise in mean fitness
shown in Figure 11.

The rapid convergence is not surprising, because something similar hap-
pens even in the absence of selective forces, merely through random ge-
netic drift. In [1] it is shown that with a population of size N, with zero
mutation, uniform recombination of n binary loci, and random selection
of parents the mean convergence time to zero variation is approximately
1.4N(0.5log.n+1.0)"! generations. In the presence of mutation the conver-
gence is not to a zero level of variation, but to a higher balance between
selection/drift and mutation; this is reached considerably sooner. To give a
baseline comparison to the hardware evolution example, an evolutionary ex-
periment was run with the identical GA conditions, save only that the fitness
of each genotype was allocated randomly at each test instead of being based
on performance at the tone-discrimination task. The convergence statistics
are shown on the right of Figure 12. In this case it takes some 220 gener-
ations to drop down to the 150 level; the average value is then maintained
somewhat above the 100 mark.

Almost all of the improvement in fitness occurs after genetic convergence;
the same phenomenon was discussed in the context of a different set of evo-
lutionary experiments in [5]. For many users of GAs this is unexpected,
but in fact analysis of conventional optimisation GAs will often show similar
characteristics.

The converged population is not stuck, but moves through genotype space;
when it is not climbing a fitness slope it will be drifting along a neutral net-
work. Whereas drift at a single locus may soon reach an absorbing barrier
(all Os or all 1s), neutral networks are frequently so enormous that in prac-
tice one can drift interminably. One way of visualising this movement is by
projecting the 1800-dimensional genotype space onto just 2 dimensions. We
choose the First and Second Principal Components of the movement of the
genotype ‘centroid’ of the population through the 5220 generations to define
the particular projection; this automatically gives a maximum spread to the
displayed pathway. In Figure 13 on the left is shown every 10th generation
plotted with this projection. This can be compared with the abstract sketch
of Figure 5.

17

Figure 13: The ‘Saga’ of the population starting from a scattered initial generation in the
centre, and then in each case proceeding clockwise with a converged population; on the left
data from the hardware evolution, on the right a comparison run with fitnesses randomly
allocated. Every 10th generation all 50 genotypes in the population are projected onto
Ist and 2nd Principal Components (PCs) derived from the population movement through
genotype space over 5220 generations. The PCs are different on left and right, but the same
scale has been used.

No special significance should be given to the gross shape of the pathway;
any process of random drift or ‘drunkard’s walk’ will give a somewhat similar
path. Above we mentioned a baseline comparison where the identical GA
was used, but allocating fitnesses at random without reference to the task.
The pathway for this run is shown on the right.

Some indication of the nature of the fitness landscape can be found by
plotting the fitnesses of each snapshot taken of the population during evolu-
tion. In Figure 8 the fitnesses of each individual in the population are ranged
in order within each snapshot, and then ranged alongside each other to cover
the 5220 generations (with one snapshot every 10th generation). Necessarily
this landscape does not show all of the fitness terrain around the current
population, but only that part actually sampled (with noise) by genotypes
generated through evolution.

Throughout the run there is a small part of the population, usually around
10 out of 50, which has zero or near-zero fitness. After generation 2660 there
is a high plateau on which most of the population lies; this is an indication
of how much neutral mutation is possible at this stage. For a period leading
up to this plateau there is a narrow ridge which holds the current elite, with
almost all the population considerably less fit. This period corresponds to
the increase in genetic diversity in the population (Figures 12 and 13). If the

18

Figure 14: The fitness landscape, as sampled by the population. Over 500 snapshots are
displayed from left to right (one every 10 generations). Within each such snapshot the 50
members of the population are ranked according to fitness, which is plotted on the vertical
scale. After the initial stages a narrow ridge leads up to a flat plateau which starts around
snapshot 266, which is generation 2660.

GA had not used the strategy of elitism, this type of ridge might not have
occurred; this speculation has not been checked by experiment.

9 Lessons for Evolutionary Algorithms

There is a lot more to evolution than meets the eye, and naive models and
metaphors may lead to poor decisions in the design of evolutionary algo-
rithms, or prejudice against reasonable decisions. In the context of much
contemporary GA practice, the use of a small population of size 50, with
genotypes of length 1800 bits, continued for 5000 generations with a genet-
ically converged population on a hard real-world problem, would seem to
many to be folly. With the different perspective of SAGA, and consideration
of the role of junk and neutral networks, it seems more plausible. The actual
result achieved, on a real silicon chip, supports the choice of method.

It is suggested in this paper that long-term incremental evolution of the

19

design of many classes of complex systems — robot control systems and
molecular design as well as hardware — will have some important character-
istics in common with this example. Genetically converged populations will
be used, as in SAGA, which means that mutation rates must be carefully set
to balance against selective pressure. Account must be taken of the propor-
tion of ‘junk DNA’ when setting these mutation rates. Such redundant or
junk DN A can under some circumstances be useful in allowing widely perco-
lating neutral networks through genotype space, making entrapment on local
optima highly unlikely.

Conventional GAs and GP, work on different principles, and are appropri-
ate for a different set of problems; where an individual parameter set has to
be optimised once and for all. There is a difference between such optimisation
problems, and long-term incremental evolution.

10 Commercial Prospects

The incremental nature of evolution, both natural and artificial, means that
any new adaptation builds on the inheritance accumulated from all its an-
cestors, without which it would have been inconceivable — literally as well
as metaphorically. Such an inheritance can only be achieved through enor-
mous numbers of trials, typically expensive. To achieve a complex system
capable of coping with (in order of difficulty) tasks T} — T3 will have cost a
lot; to go further from Ty — Ty will cost significantly less than starting from
the beginning and achieving all the capabilities 77 — Ty. This is equally
true in the world of, for example, aircraft design, where nowadays no aircraft
manufacturer could start up without buying in expertise derived from other’s
design and manufacturing experience.

Accumulated experience in artificial evolution can be expressed, given
some specific genotype-to-phenotype mapping, simply in the string of num-
bers that form the genotype. This provides a basis for, and also limits and
constrains, future pathways of evolution. The value of such a genotype can
easily be protected by copyright or patent laws, and licensed for use by others.
Future progeny can readily be identified as related by use of string-matching
algorithms, so that pirating of copies can be traced. It seems likely that in
the next century much design work for complex systems — not just robot

20

control systems, but aircraft design, computer chip design, etc. — will start
to be done by artificial evolution. The commercial prospects for any firm
that achieves a head start in some field, and then licenses its genotypes for
use by others with a licence fee payable on all progeny, could be phenomenal.
Such a licence fee could be insignificant on any one unit; as evolution con-
tinues it could have additional small fees added for the benefit of those who
have added value; long-term returns on all future progeny could nevertheless
be enormous. As other firms build on and add value, for their own benefit,
to the original genotypes, the commercial position of those genotypes rela-
tive to any competition becomes further strengthened — the founder effect
translated directly to the commercial world.

References

[1] Hideki Asoh and Heinz Muehlenbein. On the mean convergence time of
evolutionary algorithms without selection and mutation. In H.-P. Schwe-
fel Y. Davidor and R. Manner, editors, Parallel Problem Solving from
Nature (PPSN III), Lecture Notes in Computer Science 866, pages 88
97. Springer-Verlag, 1994.

[2] David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading MA, 1989.

[3] 1. Harvey. Evolutionary robotics and SAGA: the case for hill crawling and
tournament selection. In C. Langton, editor, Artificial Life 111, Santa Fe
Institute Studies wn the Sciences of Complexity, Proc. Vol. XVI, pages
299-326. Addison Wesley, 1993.

[4] 1. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi. Evolu-
tionary robotics: the Sussex approach. Robotics and Autonomous Sys-
tems, 1996 In Press.

[5] 1. Harvey, P. Husbands, and D. T. Cliff. Genetic convergence in a species
of evolved robot control architectures. In S. Forrest, editor, Genetic
Algorithms: Proceedings of Fifth Intl. Conference, page 636, San Mateo
CA, 1993. Morgan Kaufmann.

21

(6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

I. Harvey, P. Husbands, and D. T. Cliff. Seeing the light: Artificial evo-
lution, real vision. In D. Cliff, P. Husbands, J.-A. Meyer, and S. Wilson,
editors, From Anmimals to Anwmats 3: Proceedings of the Third Interna-

tional Conference on Simulation of Adaptive Behaviour (SAB94), pages
392-401. MIT Press/Bradford Books, Cambridge MA, 1994.

I. Harvey and A. Thompson. Through the labyrinth evolution finds a
way: A silicon ridge. In T. Higuchi, editor, Proc. of The Furst Inter-
national Conference on Evolvable Systems: From Biology to Hardware

(ICES96). Springer-Verlag, 1996.

Inman Harvey. The SAGA cross: the mechanics of crossover for variable-
length genetic algorithms. In R. Manner and B. Manderick, editors,
Parallel Problem Solving from Nature, 2, pages 269-278. North-Holland,
1992.

Inman Harvey. Species adaptation genetic algorithms: The basis for
a continuing SAGA. In F. J. Varela and P. Bourgine, editors, 7o-
ward a Practice of Autonomous Systems: Proceedings of the First FEuro-
pean Conference on Artificial Life, pages 346-354. MIT Press/Bradford
Books, Cambridge, MA, 1992.

M.A. Huynen, P.F. Stadler, and W. Fontana. Smoothness within rugged-
ness: The role of neutrality in adaptation. Proc. Natl. Acad. Sci. USA,
93:397-401, January 1996.

N. Jakobi. Half-baked, ad-hoc and noisy: Minimal simulations for evo-
lutionary robotics. In Submatted, 1997.

N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The
use of simulation in evolutionary robotics. In F. Moran, A. Moreno, J.J.
Merelo, and P. Cachon, editors, Advances wn Artificial Life: Proceedings
of the Third European Conference on Artificial Life (ECAL95). Lecture
Notes in Artificral Intelligence 929. Springer Verlag, 1995.

J. R. Koza. Genetic Programming. MIT Press/Bradford Books, Cam-
bridge MA, 1992.

22

[14] A. Thompson. An evolved circuit, intrinsic in silicon, entwined with
physics. In T. Higuchi, editor, Proc. of The Furst International Con-
ference on FEvolvable Systems: From Biology to Hardware (ICES96).

Springer-Verlag, 1996.

23

