
Pervasive and Mobile Computing 4 (2008) 481–505
www.elsevier.com/locate/pmc

Composing software services in the pervasive
computing environment: Languages or APIs?!

Jon Robinson∗, Ian Wakeman, Dan Chalmers

Department of Informatics, University of Sussex, Brighton, UK

Received 30 October 2006; received in revised form 7 December 2007; accepted 2 January 2008
Available online 6 January 2008

Abstract

The pervasive computing environment will be composed of heterogeneous services. In this work,
we have explored how a domain specific language for service composition can be implemented
to capture the common design patterns for service composition, yet still retain a comparable
performance to other systems written in mainstream languages such as Java. In particular, we have
proposed the use of the method delegation design pattern, the resolution of service bindings through
the use of dynamically adjustable characteristics and the late binding of services as key features in
simplifying the service composition task. These are realised through the Scooby language, and the
approach is compared to the use of APIs to define adaptable services.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Pervasive computing; Programming languages; Performance evaluation

1. Introduction

In this paper we present the Scooby Service Composition system.1 The main
contribution of this research is a service composition language for pervasive computing

! Funded under the EPSRC projects Nathab GR/S26408/01 and TrustUs GR/S69016/01.
∗ Corresponding author.

E-mail addresses: j.r.robinson@sussex.ac.uk (J. Robinson), ianw@sussex.ac.uk (I. Wakeman),
d.chalmers@sussex.ac.uk (D. Chalmers).

URL: http://www.informatics.sussex.ac.uk/softsys/ (J. Robinson).
1 Scooby is our acronym for Service Composition Objects Ordered By You.

1574-1192/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.pmcj.2008.01.001

http://dx.doi.org/10.1016/j.pmcj.2008.01.001
http://www.elsevier.com/locate/pmc
mailto:j.r.robinson@sussex.ac.uk
mailto:ianw@sussex.ac.uk
mailto:d.chalmers@sussex.ac.uk
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/
http://www.informatics.sussex.ac.uk/softsys/

482 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

environments. Past research in distributed systems suggests that separating service and
configuration is a viable approach [1,2], but pervasive computing provides a new set of
challenges because of connectivity, the need to take account of context in choosing services
and the dynamicity of the services within any pervasive computing environment. Scooby
attempts to provide programming abstractions and design patterns that make it easy for
programmers to compose new services that are context-aware, and provides a platform to
explore the following questions: how do we combine services which have been produced
by different developers? and How can we compose services to meet the demands of users?.

1.1. Our research goals

One of the goals of our research has been to determine if the coupling of a domain
specific language and middleware is an effective way to enable programmers to create
services and compositions. In Fig. 1 we outline a basic Scooby service which provides the
ability to route messages to different devices depending on their co-location with the user.
The current user’s location is used to dynamically rebind to the various output services.
When the stock service provides a notification the event handling code routes this to the
most appropriate output at that time. The example highlights the simplicity of the Scooby
domain specific language, when considering the alternative of programming such a service
in another high-level language, such as Java with the use of APIs to access middleware
functionality. In Sections 4 and 5 we describe the Scooby language and constructs in more
detail.

There are a number of technologies that can provide the building blocks towards such
a system, including service discovery, remote invocation and messaging systems, such as
CORBA and J2EE. However, we have opted to take the approach where we are not directly
reliant on such technologies as we are targeting the system towards low-powered devices
with limited processing power, such as PDAs and devices that can be embedded within
home appliances. When taking the nature of the environment and the limited scope of the
devices available into account, using heavy-weight technologies is not the most practical or
viable way forward. Instead, we have chosen to utilise the publish/subscribe paradigm as
the method for relaying event information between devices, using the content-based router
Elvin [19]. This provides a light-weight communication medium on which we can then
build our middleware. One of the characteristics of a pervasive computing environment
is the ad hoc combination of devices and intermittent and unpredictable availability of
devices. There is no guarantee of the device being available over the course of time due to
a number of physical reasons such as network disruption, the device dropping outside of
the influence of a wireless network and power loss/power saving modes. The adoption of a
publish/subscribe mechanism therefore would not have an impact on the environment when
taking into account the lack of message guarantee. Additionally, the utilisation of key-value
pairs available within publish/subscribe is heavily relied upon when disseminating service
characteristics.

The Scooby language acts as the medium in which a user can compose services.
As the language and resultant compiler are lightweight, much of the complexity of
implementation is pushed down to the middleware level instead of the language. If there
were to be millions of services and thousands of events per second, then such an approach

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 483

Fig. 1. Follow-me service code.

would not be viable. Pervasive computing environments could potentially contain many
thousands of devices where scalability is of paramount importance. However, the type of
environment that we have positioned our system at is that of a home or office environment.
This provides us with the opportunity to investigate an environment which is much
more constrained than other larger scale systems thus reducing the issue of scalability.
Much of our limitation in this respect is due to the use of Elvin below our system. The
performance of this has improved since the work described here, and so Scooby would
be less constrained than our results suggest. We have not targeted the smallest devices in
pervasive computing, for example motes, at this stage, but consider PDAs and consumer
appliances etc. We leave the investigation of the application of Scooby’s principles on
these devices to future work. This approach has also been adopted in similar intelligent
environments such as EasyLiving by Microsoft [13] and Adaptive House by Colorado
University [9], which are constrained by their physical presence within the real world.

Another aspect of the middleware that is not going to use existing technologies is that
of method invocation. There are traditional methods for performing invocations by using
Java RMI or CORBA, for example. However, these methods do not fit in with the overall
model of the middleware as these types of communications fall under the category of

484 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

method-based publish/subscribe [20] and are not in line with the view of utilising the
content-based publish/subscribe paradigm.

A number of technologies already exist that have components which provide service
discovery and identification such as CORBA,.net or JINI. As a result of the plethora of
technologies, there is unlikely to be a monoculture in future pervasive computing due to the
dominance of larger software companies. Indeed the use of different software technologies
(CORBA [18], DCOM [21], RMI [16]) and different naming/service discovery paradigms
(UPnP [22], JINI [23], SLP [24]) can hinder matters when exploring new ways of designing
the home pervasive environment. Instead we have used our own minimal approach for
implementing middleware based on the publish/subscribe system.

1.2. Paper structure

In Section 2, we provide an overview of available systems and technologies. Section 3
provides an overview of the Scooby system. Section 4 provides a more in-depth
examination of a service along with examples. Section 5 focuses on the Scooby language
and middleware aspects and discusses the main contributions. In Section 6, the evaluations
used are discussed along with the results gained. Finally, in Section 7, we make our
conclusions.

2. Other work

There has been a great deal of research in the pervasive computing domain that has
attempted to provide an application framework based on APIs and middleware so that
developers can create their own services. Examples of such systems are One.World [3],
Gaia [5], Solar [6], SAHARA [7] and Ninja [8]. However, not all systems have taken this
approach. The notable exceptions are Adaptive House [9], which uses a neural network-
based approach to composition, Colomba [10] that utilises a high-level policy description
language based on Ponder [11], and Olympus [12] that provides a high-level programming
abstraction based on a set of operators. However, in the latter case, these operators are
provided as a set of classes and can fall into the same category as an API style of producing
services.

The middlewares that are used by these systems range from ones that are specifically
written for them (One.World, SAHARA, Ninja, Solar, Easy Living [13], Aura [14]) to
ones that build upon others (Olympus uses Gaia which itself uses Corba). In addition,
different middleware systems are targeted to provide composition through other means.
For instance, Adaptive House builds upon a house equipped with a variety of sensors
that are linked to a neural network. This is used to provide a probability to base a
decision on, that can affect the current state of the house. Another differing method
through which communication is handled is an event-dispatch paradigm while others
utilise more traditional client/server approaches. Both methods have their advantages and
disadvantages. For instance, the event-dispatch paradigm can suffer from scalability and
event delivery guarantee problems, while the client/server approach does not fully take
into account flow, time and space decoupling [15].

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 485

Other more esoteric methods are employed for a number of key system components
dealing with service discovery, invocation, service description and service management.
The use of a standardised approach to service discovery that utilises a single service and/or
client/server model is quite prevalent throughout the middlewares. In addition, remote
invocation utilises existing methods and technologies, such as RMI [16]. Finally, service
control can be provided by using Jini [17] or CORBA [18].

When viewing the systems as a whole, the majority of cases have taken the approach of
tackling service composition by adding an API to an existing language. However, Scooby
does this differently as it has a specifically designed compositional language in which
users can write both the original services and composite services. This approach reduces
the number of system concepts present within the language and so reduces the complexity
of the programming. There are other systems available, for instance OASiS [30] which
provides a light-weight middleware infrastructure for wireless sensor networks, in which
services become subsumed within the middleware substrate. This approach is similar in
concept to the way in which services within the Scooby system are absorbed within the
middleware. Another vein in which there is overlap between Scooby and other work, is that
of the work carried out in the RUNES [31] and SATIN [32] projects that have adopted the
idea of reifying bindings amongst services. This supports the justification for the dynamic
binding mechanism within the Scooby middleware.

The contribution of this research has been the investigation into the design space of
language approaches to service composition, combining several approaches to language
design that are particularly suited to this problem. In addition to the composition language,
a middleware has been designed and implemented that uses late dynamic binding variables
to allow services to identify others, which satisfy their needs most effectively. Finally,
a methodology on how to compare systems has been formulated. The aforementioned
binding variables, coupled with the use of service attributes, allow services to adapt their
advertised characteristics over time. Service attributes are used to allow bindings to be
flexible in their lifetime, during which they alter due to service or environment changes
through a matching of service attributes. Building upon these system concepts and the
results from a comparison with the one.world system, we claim that a domain specific
language is the most effective service composition technique for programmers to use.

3. Scooby overview

The most practical way of introducing the Scooby service composition middleware
is to split the infrastructure into multiple levels, where each offers a particular form of
functionality. Fig. 2 outlines the general levels in the creation, compilation and execution
of a scooby service.

Programmers would initially specify their service description (code) within the
composition language (see Section 5). It is at this layer that the process of identifying
which service or set of services is required. In order to form a new composition,
service ontological information formed from the method signatures, characteristic interface
definitions are used. The language composition compiler would translate the user’s service
into the relevant Scooby middleware programming language code which in turn would

486 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

Fig. 2. Scooby hierarchy.

Fig. 3. Scooby middleware components.

be compiled into a new service that would then become part of the Scooby middleware
infrastructure.

The infrastructure can be broken down, exposing more details of its composition. Fig. 3
expands the components within the layered model from Fig. 2.

The compilation process that occurs at layer two, takes the Scooby code, along
with ontological information detailing the method signatures of referenced services and
produces a Java program which is then compiled by the system. For more information
regarding a comparison between the Java code produced and that of its Scooby counterpart,

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 487

refer to Section 6.2.2 in which a more detailed comparison between both sets of code can
be found.

It can be seen that the middleware layer (3) contains the most complexity. It is at this
level in the hierarchy that all service and method publication, discovery and invocation,
message notification handling and access to an external medium through a set of proxies
(SMS, Email etc) take place. Additionally, once a new service composition becomes
available it is placed within the middleware layer and inherits the core functionality that
permeates throughout all services.

We have chosen Elvin [19] as the basis for handling all messaging within the system due
to the event model that it employs. It fits well with the notion that a pervasive environment
has a dynamic and fluid nature to it and, as such, an event model is the ideal form of
communication between these services. We have identified that a pervasive computing
environment needs to be able to cope with the dynamic availability of disparate services
and devices within the middleware [25,26]. Due to the ad hoc dynamically changing
topology of the availability of services, there is no guarantee of delivery. Such a topology
requires the dimensions of time, space and flow decoupling [20] to be applied to the
underlying messaging system. Other more classical technologies (CORBA, JINI) rely
on a client server model, which does not satisfy these three dimensions. Information is
required about both the sender and the receiver of the message and blocking occurs when
invocations are performed. None of the three dimensions in this case are satisfiable due to
the nature of these technologies (synchronous invocation). What is needed, however, is a
way in which they can all be met. The only form of publish subscribe that adheres to these
dimensions is that of content-based which has led us to adopt Elvin in order to provide
the asynchronous message notification requirement of the middleware. Furthermore, the
decoupling of the production and consumption of events using these three dimensions
improves the scalability and reduces the overheads introduced through synchronisation
and coordination, by removing any dependencies between interacting parties [27]. Another
reason for adopting content-based publish/subscribe rather than one which is type-based
is through the flexibility of the content message which can be built out of different key-
value pairs. This allows flexibility of the characteristics variables (discussed in Section 5.1)
which can dynamically change over time, rather than relying on a type-based system
where registrations of subscriptions would have to change to take into account any
alterations.

Notifications are directionless messages, which can contain any number of details that
satisfy the space dimension. The purpose of this type of communication is to act as a
broadcast detailing service information regarding the originating service. As Elvin handles
notification messages utilising a tuple-based format, we have similarly adopted tuples
as the atomic currency in which to describe information within the system. This is a
fundamental criterion as it has been used extensively to add different sections to an event
message.

A service description is sent to the discovery service, which details the interface of
available functionality for that service. The structure of the service description notification
contains a number of tuples that describe the service characteristics and method signatures
offered by that service. Based on these forms of notifications, communication is achieved
throughout the middleware in which service discovery, identification and invocation can

488 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

Fig. 4. Scooby services and middleware.

occur. The method and type definitions are determined by the middleware as soon as the
service is instantiated, at which point this information is then inserted into the ontology.

The binding manager resolves requests from services for other services that match the
required constraints. When a service wishes to invoke a method upon another service, it can
request a binding from the binding manager for a service of the necessary type, and which
has matching characteristics, such as location, performance or load levels. Our current
matching algorithm simply provides the first application that provides a match, but more
complex load balancing is possible.

The service control tracks the current state of each service, such as whether it has
been initialised, whether it is accepting requests, and whether all necessary bindings have
succeeded.

4. Service anatomy

Scooby provides a composition language for the management and organisation of
services. Although the ultimate aim is for Scooby services to be compiled automatically,
direct programming is designed to be easy. We have adopted a standard object-oriented
approach to typing the interfaces describing services, using a form of method delegation.
Interfaces are defined through the method and attribute signatures.

Scooby allows user defined services to be written and inserted into the middleware at
run-time. User services are defined using the Scooby language and compiled into Java
through the Scooby compiler. The middleware handles all service discovery, lookup,
remote invocation and service control. Underlying the middleware, Elvin is used to
propagate event information throughout the environment. Users’ services are triggered
when events are received. To allow Scooby services and the middleware to communicate
and operate devices in the real world, an additional layer of services needed to be
provided. These proxy services act as a point of control to the attached device and provide
functionality to allow its operation. Fig. 4 outlines the layers and relationships of services
in the Scooby middleware.

The Scooby middleware requires a service to go through a number of steps before
it is made available to the rest of the infrastructure. The Scooby system first requires
the resolution of any bindings within the service. The binding process locates matching
components and provides a way for the service to use these components. Bindings can
have a number of states, some of which generate exceptions and are discussed in more

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 489

Fig. 5. Printing service characteristics.

detail in Section 5.2. Once a service has established its bindings, it sends a description
which contains information regarding the types, methods and characteristics offered by
that service. This description is cached by the middleware and can be used in the discovery
process for other services trying to find services of that type.

To facilitate service composition, services are able to draw upon others that match a
given criterion detailing their requirements. For example, a printer composition scenario
where a document has to be in PDF format before it can be printed. The composition
occurs when trying to print, the service will determine if the file is of the correct type.
If it is, printing occurs, otherwise, the composition will lookup and bind to a conversion
service to allow the document to be converted before it can be printed. In this instance,
the service must resolve two other services on which to base the composition. The first is
to resolve a printer, and the second, a PDF converter. Fig. 5 outlines the basic structure
of the composition, shown by the solid-edged boxes. When a composition occurs, the
discovery service will bind to services offering particular functionality through the use of
service characteristics. These allow services to provide additional information to aid in the
resolution process. In the previous example, the printer and converter services advertise a
set of characteristics. The dashed-edged boxes in Fig. 5 show how the necessary bindings
can be resolved with instances having particular characteristics. In this case, the printer
proxy would offer a print method along with characteristics detailing its abilities and
location, while the converter would detail what input and output it could accept and offer a
convert method. The composed service would be constructed to bind to both services given
its requirements.

The Scooby code required to perform composition is detailed in Fig. 6. One of the
important features of the Scooby language is the ability to extend a service by utilising
the decorator design pattern. In addition to this, another feature provided by the language
is that it allows services to act as proxies to other services. For instance, in the previous
example, the printer service which has been referenced, could in turn be referencing a

490 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

Fig. 6. Composed printer service code.

service provided by the original manufacturer. This enables a service to incorporate the
functionality found within any referenced service.

The notion of late binding has been adopted when applied to binding variables such as p
or c above. In this case, a binding variable is not initially associated with a service until as
late into its lifetime as possible. Service descriptions are used to identify a matching service
that satisfies the requirements laid out in the binding specification. Once a service has been
identified, a link between the two will be maintained. However, during the lifetime of a
service, the attributes that it advertises in its service description continue to evolve and as a
result, any bindings to that service may become obsolete. Any referencing bindings within
other services would change state at this point in order for a new service to be identified.
In essence, bindings allow services to adapt to available services within the middleware
automatically. The binding process is expanded in Section 5.2. When all bindings have
been made, the associated code block is executed. Methods declared in the class body can
then be invoked upon the instance. The exception handling block provides a way for the
programmer to specify how the service should react to binding failure.

5. Language constructs

In this section we will introduce a number of constructs and concepts that are
implemented within Scooby. We will discuss the motivation and use of the feature, describe

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 491

the syntax for using the feature within the Scooby language, and highlight any issues
concerning implementation.

5.1. Service characteristics

One of the primary goals within the middleware and language is to provide a service
with the ability to dynamically alter its advertised capabilities over its lifetime. If a service’s
functionality is affected by the availability of other services, this allows it to reflect its
current situation — so providing honest advertisements. This mechanism is accomplished
by providing a set of service characteristics. These offer a means by which the service
definition can be altered through the use of service variables, found within the service
definition. Service characteristics expand upon the normal service description header that
includes method definitions along with typing, return types and decorated services. Any
characteristics to be linked to the service are defined within the characteristics stub which
would be located after the initial binding definitions (see Fig. 6). Characteristics are defined
by names, which are generally statically defined on service construction (the set of names
can be varied, but this is not discussed here). The values associated with these names can
be defined in one of two ways: statically or dynamically, providing flexibility depending
on what is ultimately required.

If a characteristic of the service never changes throughout its lifetime, then it should
be statically defined. For example, a printer service would be able to advertise that it is a
“laser” printer through its service characteristics, but would not be expected to alter this
characteristic during its lifetime. This would be defined in code by:

{
printertype: "laser";

}

As seen, characteristics are name-value tuples. The left-hand side provides the key, which,
in this case, is the characteristic name that is defined and advertised within the service
description header. The right-hand side provides the value. As well as strings, as above,
integer or boolean values can be used.

An example of a dynamic characteristic is the printer’s state, which might vary between
busy, idle or attention. Such changes clearly cannot require removal and re-definition of the
service, so dynamic characteristics are used to represent this changing state. The following
code fragment illustrates the dynamic form of a characteristic:

{
printerstatus: status;

}

In this example, a characteristic variable has been defined on the right-hand side as a
placeholder for a value that is automatically advertised once an advertise message is sent
by the middleware. As the definition is a variable, it means that its visibility is global to
all methods defined within the service and allows methods to alter the value stored within
it, and hence advertised through the service description header, through the assignment
operator.

492 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

These advertisements are used in order to allow the most appropriate service to
be selected for a given situation, based on the context information supplied with the
advertisement. The highly variable nature of pervasive computing environments means
that the selection of services should be programmable; for instance, the location of printers
is likely to be an important factor in service discovery.

5.2. Binding variables

Service characteristics allow services to describe themselves. We use binding variables
to allow services to constrain which other services they bind to. Binding variables allow a
service to discover, and via the middleware connect to, a remote service depending upon the
type of service and its characteristics. Services are defined to provide a type, or alternatively
to act as a proxy for another service, which describes the initial narrowing of the search
space; the characteristics are used to identify services within the given type. Once a service
has been identified at run-time, any remote invocation of methods is performed through the
associated binding. The syntax for a binding is illustrated by the following example:

service s decorates s1:service1 {
bind s1

match { aName1: aValue1 & aNamea: aValuea }
bind s2 as service2

match { attributeName2: arbitraryValue2 }
...

It can be seen that there are two ways of writing the binding: in s1 the type of the service
bound-to is defined in the first line, through the decoration; in s2 the type of the service is
defined within the binding. As many matches as required can be defined.

Bindings are finite state automata that alternate between several different states during
their lifetime depending on whether a remote service has been identified or not. Initially,
bindings are placed into an unresolved state. Immediately after the instantiation of the
service, a binding will change into a discovery state. This is the point at which service
discovery takes place depending on the service type and attributes supplied within the
service code. Moving on from this point, a binding is able to switch into either a connected
state, where a service has successfully matched the search criteria and allows binding calls
to be made, or it enters a suspend state indicating that the discovery of a relevant service
has not succeeded at this time. If a binding is connected and a remote method is invoked,
then depending on the method definition (i.e. if a return value is required) the binding will
change to a waiting state, which only changes back to a connected state once a reply has
been received. This process is repeated constantly throughout the lifetime of the binding.
Due to the nature of a pervasive environment, the middleware automatically governs these
state change operations transparently. However, if at some point, a service ceases to be
available or ceases to match the required conditions, then a new discovery and binding
process is started. If no service is available then the binding fails and the corresponding
binding exception segment of code is executed. The use of bindings in practise would
block when no remote service has been identified successfully. It is only when a successful
state (connected) has been attained that any remote calls will be performed on that binding.

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 493

There is no guarantee that a service will be present in the middleware that successfully
matches the search criteria specified for the binding. This is due to a number of factors
such as different services becoming available at varying times, network loss and device
availability. If a remote service is resolved there is no guarantee that the same service
will be identified again when performing another discovery operation if multiple services
match the search criteria. Additionally, bindings will automatically verify that the remote
service is still available before initiating a remote invocation, as there is no way for the
local service to know if the former is still accessible. This is performed automatically by
the middleware, but would result in the binding performing an invocation, or changing into
a suspend state which will perform a service rediscovery at some point.

When bindings fail before code blocks are completed, the system will raise an
exception. If the conditions for execution of the composed service are still valid, then
the system will attempt to bind other services matching the required context to the
variables and re-execute the code block. However, this could introduce the problem
of inconsistent state. Bindings could possibly become unsynchronised and potentially
reference invalid services depending on when the exception was raised. The middleware
does not specifically deal with this problem and relies on the programmer to provide a
solution within the exception code block and how to recover from it. Providing more
automated methods of recovery remains an issue to be addressed in future work.

The Scooby language provides two forms of binding constructs: a binding for
performing a remote method invocation on another service and an event binding that allows
complex events to be monitored and triggered when an event description is met. Event
bindings will be discussed in more detail later in Section 5.3. However, both forms of
bindings are similar in syntax and follow the same binding attribute rules.

One problem associated with discovering a service is that at compile-time, there is
no guarantee that a service will be available that meets the search criteria at run-time.
Similarly, we introduced the notion of a service characteristic that allowed change through
its lifetime, which is either static or dynamic in nature. The requirement of a statically or
dynamically defined matching ability of a binding is a pre-requisite. To revisit the syntax
of a binding:

binding:= bind var1 as Type1 match { attribute* }
attribute:= key : data [operator]
operator:= & | == | > | < | != | >= | <=

A variable, visible to the service, var1 is defined, which identifies a binding to a service
of type Type1, where that service matches the specified attributes. The attributes, as seen
above, are key (or name) and data (or value) tuples, separated by a colon; an additional
operator can be used to define to specify how the attribute is matched: the default is an
exact match (==) of an attribute. The set of inequalities is limited to those which are
defined for the type of the attribute value. The “&” operator represents the join operation
that allows multiple attribute comparisons.

An attribute key value is statically defined at compile-time within the code to signify the
value that will be present within the service description. The right-hand side data value can
be defined as either static or dynamic. This does not reflect the static or dynamic nature
of the characteristic values advertised by services (discussed above), but reflects the need

494 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

for variation in the service searched-for and bound-to. Static values are quoted strings and
require an exact match. In a fluid environment where services have the ability to alter their
service descriptions dynamically, there needs to be a way in which bindings are able to be
altered accordingly. Dynamic values are expressed by replacing a string-based item with
an attribute variable. The language interprets the name as a variable and generates a code
so that any value associated with the key component is automatically stored within the
variable declared. This attribute variable is then globally available to all methods defined
within the service. Additionally, the variable may be referenced in another nested attribute
comparison in the same binding, or alternatively referenced with subsequent bindings.

The following code fragment highlights the differences between a simple static and a
dynamic binding declaration:

Static: bind ptr as Printer match { location: "5a22" }
Dynamic: bind ptr as Printer match { location: whereitis }

In addition to specifying simple attribute conditions, a binding allows the use of more
complex structures that incorporate an operator. The latter can provide different forms
of equality expressions (conditions) as well as the “join” operation. Bindings can also
be composed of a combination of statically and dynamically defined set of attributes. In
the following code fragment, a binding searches for a printer in a static location, and an
undetermined value stored in status:

bind ptr as Printer match { location: "5a22"
& status: printer_status }

In this fragment, the status that is advertised by a service implementing a printer
would automatically store the value within the printer status attribute variable. This
example would provide a general catch-all of services matching these requirements when
any processing of the value stored within the attribute variable would be performed by
code calling the binding and would have to be specifically written beforehand. However,
bindings can accommodate more complex processing by introducing different equality
operations within the binding definition itself. For example:

bind ptr as Printer
match { location: "5a22" &

location: "5a23" &
status: printer_status &
printer_status != "attention"

}

In this example, location is joined (&) and so can be either “5a22” or “5a23”.
The printer status contains the status of the printer as advertised by the service, but
the service matching does not succeed until the second component evaluating the value
stored in printer status does not equal “attention” (ie is “idle” or “busy”). Only when
a condition for each key has been met will the associated binding change its state to
connected. In this case, a static string has been used. However, if a value is not known
at run-time, for instance if a comparison is required based on a characteristic from the
local service, the reference can be added to the criterion match of the binding.

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 495

5.3. Event bindings

Event bindings allow the capture of an event based on a set of criteria much in the same
way as a binding binds to a service. However, event bindings allow for complex composites
of events as well as simple event handling. For instance, an event can be triggered once an
event is received which matches a single tuple. Event criteria can also be formed over
multiple event messages. This provides the ability to determine if a set of events has
occurred before the event binding is satisfied. The syntax of an event binding is as follows:

bind X to event match { attributes * }

Attributes follow the same rules as those for service bindings and can be formed with
predicate operations as well as single tuples. Any event information referenced within the
set of attributes would map directly to a holder within the middleware that stores tuple
information regarding events that are received. Only when all event matching attributes
have been met does the event become triggered. A special event notification method
construct is used within the Scooby language to capture the moment the triggering of the
event becomes active. The following code demonstrates a notification handler for the above
definition:

on notification(X) {
// rest of code goes here
}

As the language does not constrain the use of multiple bindings, the same applies for
notification handlers. The only criterion which governs the use of a notification handler is
that the reference to the desired event binding must be used within the definition of the
handler.

5.4. Method delegation

Scooby is an object-oriented language and follows the normal syntax for method
invocation, where dot notation syntax is used to offset a method call within a binding.
For example, ptr.print(document) would reference the print method passing in the
document parameter. Whilst binding information is not known until run-time, return types
as well as parameter types are known at compile-time. To facilitate type checking, interface
definition files are used that specify typing and method information for a particular service.
This can be linked in at compile-time to allow verification of any referenced service
method.

The Scooby language does not provide single- or multiple-inheritance. Instead, as the
language supports the decoration of other services within the definition of the service,
method delegation becomes of paramount importance. The way in which the Scooby
language deals with delegation is through the inclusion of public method definitions when
the source code is generated by the compiler. As any referenced services have an associated
interface file, methods that are not specifically defined within the service are automatically
added as a wrapper by the compiler so that calls to that method would in turn call the
implemented service. Therefore, interfaces act in a way to import external services into the

496 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

Scooby type system, thereby providing an alternative to inheritance by allowing transparent
method delegation to services. The decorator design pattern is used within the language,
as services can refer to others and add to their functionality. In addition, the proxy design
pattern is used by bindings to provide indirect access to remote services. A service defining
myprinter that decorates the printer service would be:

service myprinter decorates p:printer {
{
public void doprint(blob document) {
print(document)

}
}

} when bindexception() { }

The print method is not specifically defined within the myprinter service, but is instead
defined within the printer service, as outlined by the following interface file:

interface printer {
public void print(blob)

}

The compiler would include the print method within the generated code:

public void print(Blob val0) {
p.callMember("print", new String[] { val0.encode() })

}

The compiler automatically inserts additional method parameter conversion subroutines
and all error handling is controlled within the middleware thereby greatly reducing the
complexity of the generated code. Within this example, the printer is not bound to a specific
service and therefore the middleware will automatically search for any generic printer and
bind the first one it finds. However, if a specific printer is required, for example, located in
a particular room, the system binding can be enhanced by providing a binding clause. In
these circumstances the previous code would now become:

service myprinter decorates p:printer {
bind p match { location : ‘‘5a22’’ }
{
public void doprint(blob document) {
print(document)

}
}

} when bindexception() { }

This allows the binding p defined in the service header to resolve a printer located in
“5a22” thereby increasing the flexibility of automatically resolving which service to draw
upon for the base functionality. Normally, delegation is sufficient for referencing methods
defined within any services that are referred to in the decorates clause. However, there are

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 497

Table 1
Evaluation scenarios

Scenario Description

1. Printer
composition

A user would like to print a PDF document on a printer. The required printer must be able to
print with the following characteristics: print in colour, double-sided and print on A4-sized
paper.

2. Follow-Me
service

A user has configured a stock monitoring service to inform them when a stock price reaches a
certain point. The service is configured to display the stock price on the closest available
smart device to the user. This could be in the form of a message on a screen, printout, sms or
email message, depending on the location of the user within the smart environment. It is
assumed that the user may walk around within this environment and alter their location.

3. Smart home The user is in their car, returning home from work. A PDA is present within the car and is
connected to a GPS system allowing a calculation of the time remaining before the user
reaches home. Ten minutes before arriving, the PDA signals the home, telling it of the user’s
imminent arrival. Upon doing this, devices in the home activate. The heating device turns on
so that the house is warm and hot water is available. The lights are turned on in the garage and
entrance hall of the house. The curtains are automatically drawn and the coffee machine starts
preparing some fresh coffee. As soon as the user reaches home and enters the house, the
garage lights turn off as they leave the garage, motion detectors track the user’s movements in
the house, turn on the living room lights and start playing their chosen piece of music in the
CD player.

4.
Context-aware
media players

The user is sitting in a dimly lit living room, listening to music. Suddenly the phone starts
ringing. Connected to the phone is a device that detects an incoming call. This automatically
causes the lighting levels to be returned to normal (if previously dimmed) and for the volume
in the CD player to be reduced. The user picks up the phone and begins to talk. Once the
conversation has finished, and the receiver is placed back on the phone, the lighting is
returned to the previous levels, and the volume returns to what it was before the phone call.

instances where methods defined in more than one service are identical to each other. For
instance, in the previous example, if another service is included, which also provides a
print method with identical parameters, then on specifying a call to print, an ambiguity
is introduced concerning which method is the correct one to use. A way to resolve this
is to use the binding reference and offset the call against it. This directs the compiler to
reference the appropriate method.

6. Evaluation and results

Our central claim is that the use of a domain specific language makes the composition of
services easier. To support this claim, we have devised a number of scenarios showing the
use of service composition in the domestic environment. We have then implemented these
scenarios both within the Scooby language and within the one.world [3] programming
environment for pervasive computing. We then compare the service compositions from the
two environments across a number of metrics. The scenarios are presented in Table 1 and
their use is described below.

The types of scenarios highlighted in the aforementioned table are for exploring
simple interactions between the user and the environment rather than something which
is more in-depth and complex. Simplicity, in terms of the definition of the scenario and

498 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

resulting interactions would be more useful in showing the applicability of a purpose built
composition language. However, the language itself is expressive enough to handle more
complex scenarios.

6.1. Introduction to One.World

One.World [3,4] is a pervasive computing environment developed at the University of
Washington. We have chosen this system to act as a control since it is well-documented
and has been used in a number of projects. One.world is implemented as a set of Java
packages that add functionality to the language. The system itself shares a number of
common notions with Scooby (albeit implemented and manifesting themselves in different
ways), such as events and bindings. However, as One.World has adopted an API approach
to service development, we can use this as a basis for comparison as we advocate that
providing a domain specific language is the better route to take. What follows is a more
in-depth description of the key components to the One.World system and a general guide
on how it works.

Each device runs a single instance (node) of One.World that acts independently.
One.World allows applications to run within the environment sharing the same node and
the same instance of the architecture. However, there is a separation of concerns by sorting
abstractions into application data and functionality. Applications store and communicate
data in tuples, which include type information and can be nested. An application is
allocated a unique identifier to support symbolic references and a meta-data field to support
application specific annotations that are composed of components.

Components provide functionality and interact by importing and exporting event
handlers, which consume asynchronous events. Event handlers are dynamically linked
and unlinked, but statically declared. The type of event handlers that components use are
defined in the constructor when instantiated. These can change throughout the component’s
lifetime, where it can be linked or unlinked to other event handlers.

The purpose of an environment is to provide structure and control, and act as
containers for tuples, components and other environments. Each application has at least
one environment which can also span several other environments. Within One.World, the
latter are used for dynamic composition. Leases allow access to local and remote resources,
for instance, tuples within the environment. Migration allows the environment to be copied
or moved to another node.

Remote event passing allows events to be sent to remote receivers that support point-to-
point communication and service discovery. In addition three abilities are provided: export,
send and resolve. The export functionality allows an event handler to be accessible from
remote nodes through the use of a symbolic descriptor. This results in a binding between an
event handler and a descriptor that is leased. When exporting an event handler for service
discovery, the binding is propagated to the discovery server of the local network. The send
functionality sends an event to the previously exported event handler by using an exported
descriptor or discovery query as the remote address. When using late binding, the event is
routed to the discovery server where the discovery query is resolved. However, if this is not
the case, the event is dispatched to the node exporting the targeted event handler instead.

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 499

Finally, the resolve functionality resolves event handlers contained within the discovery
server.

6.2. Comparison metrics and analysis

Devising metrics to determine the usability of a programming language is a difficult
challenge, which can only be truly undertaken through the comparison of the outputs of
experienced programmers working within the language. In the absence of such experience,
we have attempted to use standard software engineering approaches to show that Scooby
is more expressive than using one.world, and produces comparable code sizes in the final
Java output. Our metrics have been designed to highlight:

Service composition language: where comparisons between Scooby and the control
system can be made based on the inputted code, constructs and syntax. We are
primarily interested in how each approach compares through the use of finding
common concepts and notions on which to base the evaluation.

Size of code generation: compared to service definition in both Scooby and the control
system. This would give an indication on how many lines of code are required to
approximate similar services in either system and provide an initial indication on
the ease of use of each one of them.

Expressiveness of service: comparing the inputted code of both systems. We are interested
in viewing comparisons based on common concepts and notions present
within the languages that closely approximate each other. This can give rise
to information regarding the number of constructs used, as well as other
comparisons.

We built implementations for each of the four scenarios described in Table 1, and
examined each against the metrics above.

6.2.1. Service composition language
In Table 2 we analyse the service compositional languages in order to determine the

similarities between the two with respect to the common traits and constructs that they
share. The purpose of the criteria is to determine the expressiveness of the Scooby language
when viewed as a whole. We are mainly interested in how the languages compare when
it comes to common concepts, notions, constructs and language features. In Table 2, we
show that Scooby provides more features needed for composing services than one.world,
but if we use the number of keywords as a measure for complexity, then scooby is
less complex. Since the motivation for Scooby was to design a language containing the
necessary abstractions for composing services, it is perhaps not surprising to discover
that Scooby is feature rich when compared to one.world, yet appears to have a lower
level of complexity. This is borne out by the line counting metric described below in
Section 6.2.2.

Both languages were object-oriented but only One.World (through Java) allowed the use
of inheritance. Inheritance was mostly used for defining event handlers and in subclassing
the main class for any applications. Our experience in composing services has shown that
inheritance is often used as a overly restrictive way of building the delegation pattern.

500 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

Table 2
Language comparisons

Metric Scooby One. World

Binding Variables " "a

Service Discovery " "
Service Alteration " ×
Service Descriptions " ×
Remote invocation " ×
Object-oriented " "
Keyword count 74 20 Packages, 353 classes, rest of Java language
Event handling " "
Java Extension (API) × "
Method delegation " ×
Inheritance × Single
Typing Static Static
Exception handling Bindings "
Arithmetic handling " "

Event driven " "b

Global variables " "c

Procedural " "

a Binding variables found in One.World differ considerably from those found in Scooby. However, the
terminology used is the same.

b One.World provides an API that augments Java with a way to interact with the environment. Used within
this context, One.World is able to achieve similar functionality to that found in Scooby, but requires additional
programming to accomplish this.

c Global variables can be achieved by using the Java Language. However, these do not strictly adhere to the
same definition as found within Scooby.

We therefore decided against providing inheritance and instead used method delegation to
access any referenced services and automatically build proxies.

6.2.2. Size of code generated
When comparing languages, one of the metrics that can provide insight is through the

examination of the physical size and number of lines required to produce a service, as
detailed in Table 3. At this point we were not interested in the final object code size, but
by the amount of work needed to be done by the user to construct the service they wanted.
We were able to observe that the number of lines of Scooby code (and for that matter,
the size of code) is significantly smaller than that found in the comparable One.World
service. However, when viewing the resulting Java code produced by the Scooby compiler
we found it to be somewhat similar in size to the comparable One.World code that was
generated. From this, we can have confidence that the Scooby compiler produces code that
is at least as efficient as that hand-crafted in Java.

When comparing the effectiveness of a dedicated service composition language to an
API-based approach, it can be seen that the Scooby language fulfills the goal of making
services and compositions much easier than its counterpart. This can be justified when
comparing the initial number of lines used to write the Scooby code and its resulting size
in Bytes, with its One.World equivalent. The reduced code and size, coupled with the

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 501

Table 3
Code generation comparisons, A is Scooby, B is One.World

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Metric A B A B A B A B

Initial size (Bytes) 832 12 231 1 635 23 073 2 123 24 476 2 034 18 611
Initial lines 44 366 62 712 88 724 91 549
Final size (Bytes) 14 535 12 231 15 980 23 073 27 550 24 476 18 295 18 611
Final lines 525 366 575 712 974 724 640 549

less complicated syntax of Scooby, results in a language that is compact and lightweight.
However, due to the reduced set of semantics found in Scooby it does not allow any
additional functionality to be described. This is not the case when looking at One.World,
as Java can be used to provide any other functionality that may be required, and as a result
provides more flexibility. However, this is at the expense of complexity and ease which are
the metrics that we are interested in.

6.2.3. Expressiveness
We have found it difficult to measure the expressiveness of a language by providing

any objective metrics. Therefore, a set of criteria on which to base our results had to be
formulated (as shown in Table 4). The approach adopted was to view common notions and
concepts present within both languages. This included amongst others, data types, method
declarations, characteristics, event handlers and bindings. One of the overlapping concepts
was that of bindings, which provided a way in which we were able to compare them and
subsequent notions that were introduced into the language. Similarly, remote invocations
were relevant in the design and implementation of a language, and therefore were used
as a way of seeing how the languages compared. Finally, standard language constructs,
for instance, different types of variables, were used on which to base a comparison of
the respective languages. One of the first and most obvious differences we found when
comparing services between the two was that there was considerably less coding involved
when writing a Scooby program. This fact is borne out when comparing the number of
code lines as in Table 3.

Even though One.World shares similar terminology with Scooby, in this instance, the
use of binding variables, the constructs in both languages were considerably different
in concept and execution. In One.World, event handlers are used to describe a way in
which a service could offer its functionality to others, as well as leases and bindings that
maintain a connection between local and remote services. However, Scooby provides a
more streamlined approach in which services provide service descriptions and attributes to
resolve a service based on a set of criteria, instead of a typed interface which defines an
event handler as found in One.World. In addition, Scooby provides both static and dynamic
service attributes that allow services to alter their descriptions during their lifetimes, whilst
One.World does not offer similar capabilities. It is due to this very reason that some of
the values in the One.World columns are represented by zeros. This is mainly because a
number of the metrics used for comparisons were available within the Scooby system but
not so much in its counterpart. This does not necessarily mean that it would not be possible

502 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

Table 4
Expressiveness comparisons

Scenario 1 Scenario 2 Scenario 4 Scenario 5
Metric A B A B A B A B

Number of services 3 2 3 3 4 4 3 3
Lines 44 366 62 712 88 724 91 549
Blank lines/Comments 10 57 18 96 14 96 15 96
Keywords 86 1139 83 2122 199 2171 248 1642
Variable declarations 3 22 0 41 1 44 5 72
Binding constructs 2 2 5 7 5 8 4 7
Binding attributes 2 0 4 0 3 0 4 0
Binding variables 1 0 4 0 0 0 0 0
Method declarations 3 20 3 4 9 40 10 30
Remote invocations 2 0 2 0 10 0 11 0
Dynamic characteristics 3 0 2 0 0 0 0 0
Static characteristics 3 0 3 0 2 0 3 0
Event handlers 0 4 1 8 1 8 4 6

Code A is written in Scooby, whilst B is written in One.World.

to extend One.World to incorporate this additional functionality, but it would however,
incur a high programming cost to add these features.

Remote invocations between services are easily accommodated in Scooby, as binding
constructs provide a conduit in which remotely executing a method is able to take place.
However, in One.World, this is not possible due to the event model used by the middleware.
It can only be performed where events are sent to a service event handler, which then
processes the event to determine what operation needs to be performed. When compared
to Scooby, this is a less elegant way for remote invocations to take place and as a result
introduces a considerable amount of complexity. In addition, to aid in remote invocations,
Scooby automatically offers any defined methods within the service to others through its
service description.

As well as the high-level metrics described above, we have also run extensive tests on
the low-level characteristics of the systems, such as measurements on the various latencies
in the propagation of events, and the scalability of the system across events and services.
Space precludes a full discussion of these tests, since they are mostly concerned with the
design of the middleware and the use of the Elvin router, but performance was comparable
to the one.world system in all cases. Full details can be found in [28].

6.3. Summary of results

The principle objective of our research was to determine whether using a specifically
designed composition language was a better alternative to using an API-based approach.
One.World is a stable and mature platform for developing services. Its developers,
University of Washington, are experienced and well-respected researchers in the area
of Pervasive Computing. We believe One.World is therefore representative of all API-
based approaches providing service composition and our conclusions can therefore be
generalised across all API-based systems.

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 503

We can summarise the results of the high-level language comparisons into the following
observations and key points which support our initial supposition.

• The expressiveness of both languages was considerably different as Scooby consisted
of 74 keywords whilst One.World comprised 353 classes, which additionally required
and relied upon the Java language.

• The number of lines required to program a Scooby service was significantly smaller
than its counterpart in One.World.

• Constructing a Scooby service was much easier than programming one using
One.World.

• Scooby provided a rich set of features for handling binding variables and service
description adaptation. Binding attributes provided a clean way in which to specify the
criteria on how to resolve required services. In addition, the use of static and dynamic
binding variables provided a powerful feature for the language.

• Scooby was exclusively designed and implemented for service composition, whilst
One.World basically just extended Java.

• Both languages were object-oriented but One.World allowed the use of inheritance
through Java whilst Scooby provided a form of method delegation to access any
referenced services.

• Due to the reduced set of semantics found within Scooby, the language did not allow
any deviation from the purpose of service composition.

• Even though Scooby shared similar terminology with One.World, the constructs in both
languages were considerably different in concept and execution.

• Remote invocations between services were easily accommodated in Scooby. The
binding constructs provided a conduit through which the remote execution of a method
could take place. Conversely, One.World relied on event handlers where processing of
events determined what action needed to be done.

From the results gained from the evaluations, we found that service composition was
indeed enhanced for the user. This led to an easier domain specific language for the user to
learn and use that resulted in less time and work required on their part.

7. Conclusions

We have presented the Scooby Service Composition system. We believe that this
provides an effective method for combining services to meet the needs of users in a
variety of pervasive computing scenarios. Scooby uses a specifically designed composition
language, which separates coding of services as building blocks from their composition
into useful applications which respond to available resources.

The Scooby language and middleware provide a rich system for matching advertised
services with requirements, while using many familiar techniques from languages such as
Java. Both the advertised and required characteristics of those services can be dynamic,
so that the inevitable changes in capability and requirements that flow from pervasive
computing scenarios can be accommodated.

This approach lends itself to the development of end-user configuration tools, as
explored in the NatHab project [29], where programming language APIs and exposure to

504 J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505

source code present a significant obstacle to most users. The (re-)binding of services is an
important part of the middleware, and the Scooby system provides for bindings which take
account of both types and characteristics of the service in order to dynamically respond
to the requirements of the application and the visible facilities. A content-based event
communications model was employed, to support this approach.

Since embarking on this research, a number of systems have started to materialise that
support our initial supposition in which a dedicated composition language and light-weight
middleware are of a viable nature, for example, the work carried out in OASiS [30]. The use
of reifying bindings amongst services is another area in which there is overlap with other
research projects (for example, RUNES [31] and SATIN [32]) and provides a justification
for taking this route initially.

There still remain aspects of our research that require further exploration with regards to
the issues of standardisation between developers and the sharing of information regarding
method signatures and the semantic meanings of parameters. Currently, our ideas focus on
using an ontological database in which causal relations between parameters and methods
can be produced. However, this is still in an initial state at present.

In summary, one of the most important benefits of the Scooby language is that service
creation and composition can be achieved in very few lines of code while others require
significantly more. This simplicity, in comparison to other middleware systems exemplified
by one.world, is explored through the development of various example services in our
evaluation.

References

[1] J. Magee, N. Dulay, S. Eisenbach, J. Kramer, Specifying distributed software architectures, in: Proceedings
of the 5th European Software Engineering Conference, Springer-Verlag, London, UK, 1995, pp. 137–153.

[2] E. Lupu, M. Sloman, Conflicts in policy-based distributed systems management, IEEE Transactions on
Software Engineering 25 (6) (1999) 852–869.

[3] R. Grimm, One.world: Experiences with a pervasive computing architecture, IEEE Pervasive Computing 3
(3) (2004) 22–30.

[4] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, T. Anderson, B. Bershad, G. Borriello, S. Gribble,
D. Wetherall, System support for pervasive applications, ACM Transactions on Computer Systems 22 (4)
(2004) 421–486.

[5] M. Romn, C.K. Hess, R. Cerqueira, A. Ranganathan, R.H. Campbell, K. Nahrstedt, Gaia: A middleware
infrastructure to enable active spaces, IEEE Pervasive Computing (2002) 74–83. URL http://choices.cs.
uiuc.edu/gaia/html/publications.htm.

[6] G. Chen, D. Kotz, Solar: A pervasive computing infrastructure for context-aware mobile applications, Tech.
Rep. TR2002-421, Dept. of Computer Science, Dartmouth College, February 2002.

[7] B. Raman, S. Agarwal, Y. Chen, M. Caesar, W. Cui, P. Johansson, K. Lai, T. Lavian, S. Machiraju,
Z.M. Mao, G. Porter, T. Roscoe, M. Seshadri, J.S. Shih, K. Sklower, L. Subramanian, T. Suzuki, S. Zhuang,
A.D. Joseph, R.H. Katz, I. Stoica, The sahara model for service composition across multiple providers,
in: Pervasive ’02: Proceedings of the First International Conference on Pervasive Computing, Springer-
Verlag, London, UK, 2002, pp. 1–14.

[8] S.D. Gribble, M. Welsh, J.R. von Behren, E.A. Brewer, D.E. Culler, N. Borisov, S.E. Czerwinski,
R. Gummadi, J.R. Hill, A.D. Joseph, R.H. Katz, Z.M. Mao, S. Ross, B.Y. Zhao, The ninja architecture
for robust internet-scale systems and services, Computer Networks 35 (4) (2001) 473–497.

[9] M.C. Mozer, The adaptive house. http://www.cs.colorado.edu/mozer/nnh/index.html, 2004.
[10] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli, Dynamic binding in mobile applications: A

middleware approach, IEEE Internet Computing 07 (2) (2003) 34–42.

http://www.cs.colorado.edu/mozer/nnh/index.html
http://choices.cs.uiuc.edu/gaia/html/publications.htm
http://choices.cs.uiuc.edu/gaia/html/publications.htm
http://choices.cs.uiuc.edu/gaia/html/publications.htm
http://choices.cs.uiuc.edu/gaia/html/publications.htm
http://choices.cs.uiuc.edu/gaia/html/publications.htm
http://choices.cs.uiuc.edu/gaia/html/publications.htm
http://choices.cs.uiuc.edu/gaia/html/publications.htm
http://choices.cs.uiuc.edu/gaia/html/publications.htm
http://choices.cs.uiuc.edu/gaia/html/publications.htm
http://www.cs.colorado.edu/mozer/nnh/index.html
http://www.cs.colorado.edu/mozer/nnh/index.html
http://www.cs.colorado.edu/mozer/nnh/index.html
http://www.cs.colorado.edu/mozer/nnh/index.html
http://www.cs.colorado.edu/mozer/nnh/index.html
http://www.cs.colorado.edu/mozer/nnh/index.html
http://www.cs.colorado.edu/mozer/nnh/index.html
http://www.cs.colorado.edu/mozer/nnh/index.html

J. Robinson et al. / Pervasive and Mobile Computing 4 (2008) 481–505 505

[11] E.L.N. Damianou, N. Dulay, M. Sloman, The Ponder policy specification language, in: M. Sloman, J. Lobo,
E.C. Lupu (Eds.), Policies for Distributed Systems and Networks, in: Lecture Notes in Computer Science,
vol. 1995, Springer Verlag, 2001.

[12] A. Ranganathan, C. Shankar, J. Al-Muhtadi, R. Campbell, M. Mickunas, Olympus: A high-level
programming model for pervasive computing environments, in: PerCom 2005: Third IEEE International
Conference on Pervasive Computing and Communications, Kauai Island, Hawaii, USA, 2005.

[13] Easy living, http://research.microsoft.com/easyliving/, 2004.
[14] D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste, Project Aura: Toward distraction-free pervasive

computing, in: IEEE Pervasive Computing. http://www-2.cs.cmu.edu/aura/publications.html.
[15] P.T. Eugster, P.A. Felber, R. Guerraoui, A.-M. Kermarrec, The many faces of publish/subscribe, ACM

Computing Surveys 35 (2) (2003) 114–131.
[16] Java rmi specification. ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf, 2002.
[17] S. Microsystems, Jini architecture specification, 2004. URL http://www.sun.com/software/jini/specs/jini1.

2html/jini-spec.html.
[18] Corba notification service specification. http://www.omg.org/docs/formal/02-08-04.pdf, 2002.
[19] Elvin. http://www.elvin.org/, 2003.
[20] P. Eugster, R. Guerraoui, J. Sventek, Type-based publish/subscribe, Tech. Rep. IC200029, School of

Computer and Communication Sciences, EPFL, 2002.
[21] Distributed component object model technologies, http://www.microsoft.com/com/default.mspx, 2005.
[22] Upnp device architecture. http://www.upnp.org/, 2000.
[23] Jini architecture specification. http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html, 2004.
[24] E. Guttman, C. Perkins, J. Veizades, M. Day, Service location protocol (slp) v2, Tech. Rep. RFC 2608, IETF,

June 1999.
[25] O. Nierstrasz, T.D. Meijler, Requirements for a composition language, in: ECOOP ’94: Selected Papers

from the ECOOP’94 Workshop on Models and Languages for Coordination of Parallelism and Distribution,
Object-based Models and Languages for Concurrent Systems, Springer-Verlag, London, UK, 1995,
pp. 147–161.

[26] M. Satyanarayanan, Pervasive computing: Vision and challenges, IEEE Personal Communications (2001)
10–17.

[27] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, T.D. Chandra, Matching events in a content-based
subscription system, in: PODC ’99: Proceedings of the Eighteenth Annual ACM Symposium on Principles
of Distributed Computing, ACM Press, New York, NY, USA, 1999, pp. 53–61.

[28] J. Robinson, The exploration and design of a language and middleware architecture dedicated to service
composition in a pervasive computing environment, Ph.D. Thesis, Dept. of Informatics, University of Susse,
June 2006.

[29] T. Owen, I. Wakeman, B. Keller, J. Weeds, D. Weir, Managing the policies of non-technical users in a
dynamic world, in: IEEE 6th International Workshop on Policies for Distributed Systems and Networks,
Stockholm, Sweden, 2005.

[30] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, J. Sztipanovits, OASiS: A Programming Framework
for Service-Oriented Sensor Networks.

[31] P. Costa, G. Coulson, C. Mascolo, G.P. Picco, S. Zachariadis, The RUNES middleware: A reconfigurable
component-based approach to networked embedded systems, in: Proc. of the 16th Annual IEEE
International Symposium on Personal Indoor and Mobile Radio Communications, PIMRC’05, Berlin,
Germany, 11–14 Sept. 2005.

[32] S. Zachariadis, C. Mascolo, W. Emmerich, SATIN: A component model for mobile self-organisation,
International Symposium on Distributed Objects and Applications (DOA), Agia Napa, Cyprus, October,
2004.

http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://research.microsoft.com/easyliving/
http://research.microsoft.com/easyliving/
http://research.microsoft.com/easyliving/
http://research.microsoft.com/easyliving/
http://research.microsoft.com/easyliving/
http://www-2.cs.cmu.edu/aura/publications.html
http://www-2.cs.cmu.edu/aura/publications.html
http://www-2.cs.cmu.edu/aura/publications.html
http://www-2.cs.cmu.edu/aura/publications.html
http://www-2.cs.cmu.edu/aura/publications.html
http://www-2.cs.cmu.edu/aura/publications.html
http://www-2.cs.cmu.edu/aura/publications.html
http://www-2.cs.cmu.edu/aura/publications.html
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.omg.org/docs/formal/02-08-04.pdf
http://www.omg.org/docs/formal/02-08-04.pdf
http://www.omg.org/docs/formal/02-08-04.pdf
http://www.omg.org/docs/formal/02-08-04.pdf
http://www.omg.org/docs/formal/02-08-04.pdf
http://www.omg.org/docs/formal/02-08-04.pdf
http://www.omg.org/docs/formal/02-08-04.pdf
http://www.omg.org/docs/formal/02-08-04.pdf
http://www.elvin.org/
http://www.elvin.org/
http://www.elvin.org/
http://www.elvin.org/
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://www.upnp.org/
http://www.upnp.org/
http://www.upnp.org/
http://www.upnp.org/
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html
http://www.sun.com/software/jini/specs/jini1.2html/jini-spec.html

	Composing software services in the pervasive computing environment: Languages or APIs?
	Introduction
	Our research goals
	Paper structure

	Other work
	Scooby overview
	Service anatomy
	Language constructs
	Service characteristics
	Binding variables
	Event bindings
	Method delegation

	Evaluation and results
	Introduction to One.World
	Comparison metrics and analysis
	Service composition language
	Size of code generated
	Expressiveness

	Summary of results

	Conclusions
	References

